Tallinna Pedagoogikaiilikool
Matemaatika-loodusteaduskond

Matemaatika-informaatika osakond

Mikk Normak

OD Struts in Three - Tier Web Applications

Juhendaja: Pasi Salminen

Tallinn 2002

Table of Contents

1. INTRODUCTION 3
2. STRUTS-RELATED TECHNOLOGIES 4
2. L. JAVA oottt e e et et ————————aatara——— 4
2.2 SERVLET....uuuuuuuuuuuuteususteesesssssseseseseesresereseeesee.....————————————........r......———————————......... 5
2.3. JSP —JAVA SERVER PAGES......coitiiiitiiiiiieeeeieee ettt eette et e e e sae e e s eiraee e 6
2.4. EJB — ENTERPRISE JAVA BEANS. ...uttttiiiiiiiiiiiiitreeeee e e e eeeeeivreeeeeeeeeeearneeeeeseeeennns 7
3. STRUTS AND THE MVC SOLUTION 8
4. “HELLO WORLD” IN STRUTS 10
4.1. HOW TO RUN “HELLO WORLDuuuiiiiiiiiiiitiiee ettt e e et e e e e e eaaannans 10
5. CONTROL FLOW IN STRUTS 12
6. INFORMATION FLOW IN STRUTS — FORM BEANS 15
6.1. BEAN POPULATION.....cuuuuuuuutuueteuuseeeesrsressserssesesssessssssssssssseseeesaneeeee.e.e.——————————————— 17
7. THE MODEL 19
T.1. ACTION FORMS ...ovtitiiiiiiiiiiiiiieiiieteieessesasssassssssessesssssssssssssesssssassssssessaasearsranneana.. 19
7.2. BUSINESS LIOGIC ..ottt ettt e e e e e e et e e e e e e eaaaannas 22
8. THE VIEW 23
8.1. CUSTOM TAGS IN OD STRUTS ..cettuueeiiiiieiitiiiieeeeeeeeeeeeiieeeeeeeeeeeaaaieeeeseeeesaannnns 23
B2, LLBN oottt e e e e e e —r e e e e e e e e e trraaaeaeeeenaans 27
9. THE CONTROLLER 29
0.1, FILTERS ..uttttttttieieietetiteieieieietaistssasasaessasasssasssasssnnanes 29
10. A REAL-LIFE EXAMPLE 31
11. CONCLUSION 32
12. KOKKUVOTE 33
13. USED LITERATURE 40

1. Introduction

The Internet has changed the world. The ability to be anywhere and do anything
without leaving the confines of your home has revolutionized the business world. The
success or failure of a company is often decided by its ability to attract clientele from the
web. Companies want to transfer more and more of their functionality into the web,
because of the maintainability, and savings from excluding the human factor from client
interaction process. This requires a transition from the traditional static HTML-based
environments to a dynamic solution that could actively interact with the client in a fast,
supportive and easily maintainable fashion.

In the competitive business world time-to-market is the keyword for the success
of any business. A business without the ability to rapidly deploy new ideas and stay
ahead of the competition is ultimately doomed.

With websites becoming larger and more complex another problem looms on the
horizon. How to maintain and when necessary, update this vast network of pages, code
and configuration files in a cheap and effective manner and where to find the human
resources with all the skills necessary.

Struts is a framework that targets these key points. Using Struts as the basis for
web development increases the speed, at which the product will be completed, allows the
usage of specialists that must not necessarily be proficient with all the aspects of web
development and keeps the maintenance effort and therefore cost less than traditional
web development methods. The skills needed by people working with Struts are easily
found in today’s market. Knowledge of Java, HTML and JSP is widespread, but using
Struts lowers the qualification bar even more. No single person in a development team
must have all the skills listed above.

Struts is created by Craig R. McClanahan, who on Mai 200 donated it to the
Apache Software Foundation. Since then McClanhan has remained as the leader of the

Struts project even though he is actively participating in other Apache projects.

2. Struts-related technologies

2.1. Java

Struts is a development platform for web systems developed in Java. Struts itself
is also written in Java.

Java is a general — purpose object — oriented programming language developed to
be completely platform independent. This goal has almost been reached and has granted
considerable success to the Java language. A Java program once compiled has the
remarkable ability to work under several operating systems and computer types without
any change.

Java’s greatest advantage is also its greatest drawback — it is an interpreted
language that is not compiled to machine code as most other programming languages do.
When a Java program is run, the Java Virtual Machine reads the bytecode and translates
it to the platform — dependent machine code. This solution provides the portability (also
known as “write one, run anywhere”), but also suffers a performance loss compared to
traditional programming languages like C. However every new Java release and the
continuous enhancements in computer hardware, this performance gap is becoming ever
narrower. The incredible success of the Java platform is a solid proof that the platform —
independency, the wide array of included libraries and the simplicity of learning far

outweigh the drawbacks.

2.2. Servlet

A technology, that allows a Java program to dynamically create a web page. The
trend in web systems has been towards thin clients, where all the work gets done on a
central server and clients simply display the information originating from the server.

When a request is made to a web server, it first decides based on the configuration
files, which page to display to the client. If the page that is currently being requested is
mapped to a servlet, then the web server runs that servlet and calls its "service()", which
in turn calls usually either “doGet()” or “doPost()” method, depending on whether the
page was requested with GET (typical in links) or POST (typical in form submission).
When the servlet finishes it will have created a response, for example an HTML page,
into the web server’s memory, which is then served back to the client as if it were a static
resource. The client (usually a web browser) receives the response (e.g. HTML page or
PDF document) never knowing, that the resource that was requested did not exist before
the request and handles it as any other web page.

The same sequence of actions also happens in case of a CGI (Common Gateway
Interface), Perl, PHP, ASP and etc. pages. The reason, why Java, generally known as a
slow language, is so widely used as a web development platform is, that when the
bytecode for a servlet first gets loaded by the web server, it remains in the web server’s
memory and the next time the servlet is requested, the appropriate method (“doGet ()” or
“doPost ()) gets called on the instance of the servlet already in memory.

Coupled with the ability to use already existing Java classes, servlets were the
answer to creating dynamic web content in Java. However, there is a downside. A servlet

must contain the HTML output within itself.

2.3. JSP - Java Server Pages

JSP is a natural evolution of servlet technology. The problem with servlets is that

all HTML output must be contained in the servlet itself.

Out.println(“<HTML>");
Out.println(“<BODY>");
Out.println(“Hello World”);
Out.println(“</BODY>");
Out.println(“</HTML>");

As seen from the example above this method presents several difficulties to the web

developer:

1. The code for a servlet becomes difficult to understand for the programmer.

2. The HTML content of such a page is difficult if not impossible for a web designer to
understand or design.

3. Any changes in the HTML content require the rebuilding of the whole servlet.

4. The learning curve for a programmer to maintain or develop the web application is
very steep and becomes increasingly difficult with the expansion of the application.
JSP solves these problems by giving a way to include java code into an HTML page
using scriptlets. This way the HTML code remains intact and easily accessible to web

designers, but the page can sill perform its task.

<HTML>

<BODY>

<%SimleDateFormat sdf = new SimpleDateFormat(“dd.nm.yyyy”); %>
The date is: <%=sdf.format(new Date())%>

</BODY>

</HTML>

A JSP page is handled differently compared to a servlet by the web server. When a
servlet is deployed into a web server in compiled (bytecode) form, then a JSP page is
deployed in its original, human-readable form. When a user requests the specific page,
the web server compiles the page into a servlet and from there on handles it as a standard
servlet. This accounts for a small delay, when a JSP page is first requested, but any

subsequent requests benefit from the same speed effects that are associated with servlets.

2.4. EJB - Enterprise Java Beans.

Enterprise JavaBeans (EJB) is a transaction server development technology. EJB
both enables transaction processing and control transactions across multi — platform
enterprise systems and database servers.

EJB is actually a specification — not a product. As a specification, it defines a way
to do multi-platform transaction processing in Java. However, EJB is implemented as a
product as the center piece of Sun's J2EE (Java 2 Enterprise Edition).

The basic idea behind EJB is distributed networking that benefits from Java’s
cross — platform portability. An Enterprise JavaBean is a piece of Java code usually
performing a single business logic function. It can be deployed in an EJB server (also
known as “container”) that manages the deployment, execution and maintenance of all
EJB-s in it. Distributed networking means the ability to harness the processing power of
several computers especially for high user — load environments. An EJB server has the
ability to forward requests coming to it to another server containing the same EJB
instead. This forwarding decisions are made based on the load of both computers, a busy
server forwards the requests to an idle server or servers thereby distributing the computer
load.

EJB has become the proffered way of deploying Java business logic for client —

server applications.

3. Struts and the MVC solution

When JSP first appeared it was rightfully hailed as a revolution in Java web programming
and the development pattern, where JSP replaces servlets became known as “Model 1.
However it was soon realized that placing the whole business logic of an application into
JSP files is cumbersome and defeats the advantage of making JSP-s easily accessible and
editable.

To solve that problem the “Model 2” solution or the MVC solution was crated.
The basic idea behind the MVC solution is to separate the presentation part that the
customer interacts with from the business logic part of the application. To do this the

application must be divided into three distinct parts:

e View - presentation part, that the customer interacts with

e Model - business logic behind the application

e Controller - the central framework holding the Model and the View together
Web Server

Struts
Application

Figure 1. MVC

These parts perform different tasks and also physically apart (in different files). This
allows the Model and the View parts of the application to be developed separately by
people with different skills. For example the person creating JSP and HTML pages for an
application does not need to have any Java knowledge, since his task is separate from a
Java programmer’s task of creating business logic.

The Model and the View are linked by the Controller, a central servlet that
manages the flow of control throughout a Struts application. This means that neither the
Model nor the View are hard linked to each other, but use abstract names to reference to

each other and the Controller deciphers the abstract names based on its configuration.

This makes the components of a Struts application highly reusable, since neither the

Model nor the View have to be rewritten and reconfiguring the Controller will suffice.
Since the control flow of the whole application is visible from the configuration

of the Controller, there is always a clear overview of the entire system. Using Struts

considerably reduces the cost in time and effort to maintain or modify an existing system.

4. “Hello World” in Struts

Before discussing the operation of Struts components in detail, lets look at a
sample application — “Hello World”. Locate the “HelloWorld.war” file alongside this

document. This sample application consists of 9 files:

HelloWorld.htmlcccccoooiiiiiiiiiiices the View
WEB-INF folder :
APP- XM ..t Controller configuration
Web. XM ..ot web server configuration
[ib\od-Struts.jarcceeevveeenieeenieeiiee e, the Controller and Struts-related files
lib\od-core.jarccceeevvierniieiniiiiieeeen, other necessary files for Struts
tlds\od-struts.tld.........cccceeieeiiiniinnienee tag library for Struts-specific tags
classes\strutsDoc\HelloWorld folder:
HelloWorld.java.......cccccceevnieenneen. the Model
HelloWorld.class.......cccccceerueenneen. HelloWorld.java compiled

This looks confusing, but most of these files are standard and are never changed. Only
the following files are application-specific and were created for the “Hello World”
application.

e HelloWorld.html

e app.xml

e HelloWorld.java

4.1. How to run “Hello World”

A Struts application must be deployed inside a web server in order to run it. The
web server must support Servlets and JSP. For demonstration purposes the web server,
that the sample applications are developed for is Apache Tomcat, because Tomcat is
freeware, is only 4.2 MB in size, takes less than 5 minutes to install and it takes only

seconds to deploy the sample applications under Tomcat. The latest version of Tomcat

10

can be downloaded from http://tomcat.apache.org/. Sample applications were developed

and tested in Apache Tomcat 4.0, but they should also run under newer versions of

Tomcat.

A

Follow these steps to run the “Hello World” application:

Download Tomcat

Install Tomcat

Copy “HelloWorld.war” to the “webapps” folder, in the Tomcat installation folder
Run tomcat (Start Menu/Programs/Apache Tomact 4.0/Start Tomcat)

Open the URL http://localhost:8080/HelloWorld/HelloWorld.do in a web browser

11

5. Control flow in Struts

The best way to understand Struts is to see, how a simple application functions.
“HelloWorld” is the simplest Struts application possible. It has one Model and one View
component and the necessary files to configure and run Struts Controller binding them
together. The Model does not do anything and the View is a simple HTML page
displaying “Hello World” in the browser.

The web server, containing a Struts application, is set up to listen to HTTP
requests arriving at a specific port of the server. In case of the “Hello World”, Tomcat’s
default setup is to listen to port 8080.

The client contacts the web server (localhost at port 8080) and requests a web
page (HelloWorld/HelloWorld.do). This translates to “HelloWorld.do” page from the
“HelloWorld” application.

Tomcat examines the web.xml file at startup to determine the configuration of

each deployed application. The lines:

(WEB-INF\web.xml)
<servlet>
<servlet-name>
action
</servlet-name>
<servlet-class>
com.oncedone.struts.action.ActionServlet
</servlet-class>
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/app.xml</param-value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>
</servlet-mapping>

tell Tomcat to send all requests to all “*.do” pages to servlet “action” which is

implemented by “com.oncedone.struts.action.ActionServlet”, which with its supporting

12

classes makes up the Controller. The location and name of the Struts configuration file is
also defined within the <servlet> tag.

The request is passed to the Controller that extracts the string between the last
slash and the last full stop — “...lloWorld/HelloWorld.do” and finds out, that the
“HelloWorld” action was requested. The Struts configuration file maps the “HelloWorld”

URL to the actual file performing that action.

(WEB-INF\app.xml)
<action-mappings>
<action path="/HelloWorld"
type="strutsDoc.HelloWorld.HelloWorld">
<forward name="welcome" path="/HelloWorld.html"/>
</action>
</action-mappings>

This means that any request made to the “HelloWorld” page is first routed to
“strutsDoc.HelloWorld.HelloWorld” class, which represents the Model (the business
logic) in this example. On this occasion the Model does nothing, but returns the control

flow back to the Controller and requests a forward page “welcome”

(WEB-INF\classes\strutsDoc\HelloWorld\HelloWorld.java)
ActionForward forward = mapping.findForward("welcome");
return forward;

Looking back at the Controller configuration, the “welcome” page was mapped to the
actual “HelloWorld.html” page. Controller forwards the request to the View component
implemented by “HelloWorld.html”. The view page is written to the HTTP response and
the activation sequence falls back to the Controller. The Controller then forwards the
page to the client.

In a client’s perspective a page was requested (HelloWorld.do) and a page was
returned (HelloWorld.html). In most cases the client is a web browser thus the end result
of a request to a Struts application is displayed in that web browser and the client remains
unaware of the Struts application that delivered the page behind the scenes. Even the
returned result is not displayed as “HelloWorld.html”, but instead as “HelloWorld.do”,
because as far as the browser is concerned, the information returned came from the

“HelloWorld.do” page.

13

From the Struts application’s perspective the following sequence of actions took
place:
e The client requests the “HelloWorld.do” page
o ActionServlet.doGet()
The request to HelloWorld.do page was forwarded to the “ActionServlet”
class and Tomcat calls the doGet() method on ActionServlet
= HelloWorld.perform()
This method was called by the Controller to invoke the business logic.
When finished control is returned to the Controller.
= Controller called the view
The HTML page was loaded into the HTTP response
When finished, View returned to the Controller
o The response was sent back to the client

e The client displays the page

Web Server

Hello World

g =
6 Controller 3 ode
K
5

il

Figure 2. Struts activation order

This is a simplified view of a Struts application. In a reality much more is
happening behind the scenes like Action Filters, Form Bean population, form validation,
etc. This is a basic overview of Struts and necessary to understand more thorough
descriptions of Struts components and on the other hand a more comprehensive
description of Struts cannot be given without descending into the nuances of Struts
components.

A more detailed view of activation sequence in Struts is given in the Controller
description later in this document.

14

6. Information Flow in Struts — Form Beans

Since Struts separates the View from the Model, it must also provide means of
information transfer between them that retains the ability of different Struts components
to be easily reusable.

Any web page served by a Struts application is usually acquired by the following
sequence: Client -> Controller -> Model -> Controller -> View -> Controller -> Client.
The client is usually a web browser contacted over the Internet. This means that all the
information going to a client must be in HTML format and the information coming from
the client must be in an HTML form.

Between Struts components more sophisticated means can be used. In a standard
application two distinct information routes can be identified. When a client submits
information from an HTML form, then that information must reach the Model, that can
act accordingly, and information must be passed from the Model to the View in order to
pass it to the client. To solve these problems Struts uses form beans, classes that act as
data holders and can be accessed by both Model and View components.

The traditional way of solving this was to bind objects to either session or request
objects. When an HTML form is submitted, the web server, that is running a Java-based
web application in places all the information form that form into the request as
parameters and the handling servlet (or JSP page) extracts that information. However in a
large-scale multi-language application than integers or strings, this approach demands
quite a lot from the handling class.

When an HTML form is submitted, all the information on it is in string format
and if it represents another format, for example a date, it must be converted from a string
to a date. However a date can be represented differently in different countries. For
example in some countries when writing a date the month is placed before the day of the
month — “mm-dd-yyyy”. Hence it would be wise to centralize information extraction and
storage and thereby avoid such complications. The form beans and the way they are
handled in Struts provide the solution.

Simply put a form bean is a Java class that has all the information stored in it as

private variables. To set and retrieve the information inside a form bean, it must provide a

15

getter and setter methods for each of these variables. Using these methods Struts can
populate information on an HTML form, when the form is created, by matching the

getVariable and setVariable methods to the name of the form field. For example:

‘<input type="text" name="login">

would be matched to:

private String login;

public String getLogin(){
return login;

}

public void setLogin(String newLogin){
login = newLogin;

}

methods.

When an HTML form is submitted to a Struts application, then the Controller can
be configured to create the specific form bean and populate it with the information
coming from the client. To do this the submit address of the HTML form must be

configured in Struts like this:

<form-beans>
<form-bean name="LoginForm" type="forms.LoginForm"/>
</form-beans>
<action path="/LoginAction"
type="actions.LoginAction"
formName="LoginForm"
formScope="session">
<forward name="success" path="/login.html"/>
<forward name="retry" path="/index.html"/>
</action>

When an HTML form is submitted to “.../LoginAction.do” page the Controller initializes
the forms.LoginForm file and binds it to the session with the name “LoginForm”. The
Controller then calls bean population process that extracts the information sent by the
user, converts it to appropriate data types and saves it into the bean. The bean is then
passed to the Model that can run higher level data validation on the data in the bean.

When the Controller calls the View the bean can still be easily accessed and any

16

information originally present in the bean or changed by the Model can be displayed to

the client.

6.1. Bean Population

Bean population is the process of extracting information submitted by the user

and placing it inside the form bean. This process is divided into three distinct tasks :

1. Extracting data

2. Converting from string to appropriate data types

3. Populating the bean
Since different applications might require different ways of population, Struts offers a
default populator that can handle the most common situations, but an application that
requires functionality beyond that supported by the default populator can create its own
populator class. If no specific populator is defined, Struts uses the default populator.

Populator definition is done in Controller configuration file.

<populators>
<populator name="“ExamplePopulator”
type="“com.oncedone.struts.population.DefaultPopulator”>
<default-value parameter="login” value=*“login”/>
<default-value parameter="age” value=*10"/>
</populator>
</populators>

When the populate() method is called on a populator, the empty form bean and the HTTP
request are also passed to it. First the populator extracts the info user submitted as
key - value pairs from the HTTP request. It also adds any default values given in the
Controller configuration as fallback for when the specific field was left empty or was not
present in the form.

The populator then iterates through the values one - by — one and uses a converter
to change the string value to a specific data type that the bean is expecting to receive.

The converter is a class that has a convert() method accepting a string value and
the class type that this must be converted to — for example ‘“date”. It then does the

conversion and returns the date representation of the given string.

17

After convert in the value the populator calls the setter method of the form bean
based on the name that was associated with that value. For example if the HTML was:
<input type="text” name="age’>,
the value entered was “10” and
the method setAge(int) was in the form bean,
then the populator converts the string “10” to number 10 and then calls the setAge(10)

method based on the name of the input field.

Form bean population

Controller
——p populator extracts the data submitted by the user
——> converter converts the value to the necessary format
—» form bean the setter method is called

Figure 3. Form bean population

When a conversion error occurs, the error handler is called with the details of the

error. The default error handler adds a new error to a stack with an error code “SYS0000”
which is usually mapped in an error description file as “Wrong data type”. If any errors
have been raised when the populator finishes, the Controller sends the user back to the
original page. When the View (the page) is properly designed, it should then show the
value or values that the populator was not able to convert highlighted in red and with the

error message from the error description file attached to them.

18

7. The Model

The Model is the business logic of the application. This is the part that actually
does the tasks the application is supposed to perform. In most applications the Model is
the most reusable and the most resource-demanding component. Hence the Struts
framework is designed to produce easily modifiable and highly reusable Model
components.

To accommodate such abilities and to offer easy integration with already existing,
Struts divides the Model into two separate parts:

1. ActionForms

2. Business logic

Web Server EJB server

Struts application

Model

| Crotontoms)y (ommsionc)
ontroller [Action forms] usiness 10gic

Figure 4. Struts using external business logic

7.1. Action Forms

Action forms are the Struts - specific part of the Model. Actions forms are Java
classes that reside in a Struts application in the web server and perform the following
actions:

e Form validation
e Error reporting

e Call business logic functions

19

e Interpret the result(s) returned by the business logic

e Decide which page the client will be forwarded next

e Pass the information to the View to be displayed
When a form is submitted, the first validation occurs during form bean population,
however that only verifies the format of the information (textual, numerical, date, etc.). It
is clear that before using that information to run business functions, it has to be verified
to a much higher level. That verification, if not built into the business logic, is done
primarily by action forms. Since action forms are supposed to extract the information
from the form beans and present it to the business logic, they are also in the position to
verify that information and abort the process, before any potentially damaging actions are
performed.

The traditional way of handling an error is to send the user to a special error page.

Struts provides an alternative solution. When an error is encountered, the action form can
return an ErrorActionForward instead passing the collection of errors that occurred. For
example when two entries were incorrect, action form adds these two separate errors into
an error collection and returns the collection to the Controller with an
ErrorActionForward. This usually sends the user back to the same page that generated the
error unless a different fallback path has been defined in the configuration. How the View

handles the errors, is explained in the View part of this document.

Errors errors=new Errors();
if(form.getLogin().length() < 4){

errors.addError(new Error("login", "Error.addUserRequest.loginError"));
}
if(form.getPassword().length() < 4){

errors.addError(new Error("password",
"Error.addUserRequest.passwordError"));
} else if(!form.getPassword().equals(form.getPassword2())){

errors.addError(new Error("password2",
"Error.addUserRequest.passwordMatch"));
}
if (errors.size() > 0){

return new ErrorActionForward(request, errors);

}

This example checks if the login and the password are both longer than 4 characters and

that password and the retyped password are the same. If any of these conditions is

20

present, an error is thrown and the user is sent back to the page that this information
originated from.

When an action form has validated the information submitted by the user, it calls
the business logic to perform the requested function. In most cases this involves simply
calling a method on the business logic class with the parameters being the information
submitted by the user.

Since business logic is independent from a web server, the action form has to
interpret the result returned by the business logic method or methods and must convert
into a form that is usable by the View. For example if the action was to request a bank
account balance, the information returned by the business logic would be the amount of
money on that account. The action form has to associate that number with a specific text
field on the result page.

Sometimes the result of the called business logic function is not only information
that is to be displayed to the user, but as a result the user must be forwarded to specific
pages. An example of that is when a user logs into a system. The information sent by the
user are his username and password and based n the result, the user might be allowed to
access the system or might be asked to check the password or to register. Since the
business logic is not supposed to handle web-specific functions, that responsibility falls
to the action form. The beauty of the Struts solution is that the action form does not have
to know or hardcode the pages that it can forward the user to. The URL-s for the pages
are in the Controller configuration and mapped to logic names. Hence when any changes
in the structure of the application occur only the mapping in the configuration must be

changed.

<action path="/LoginAction"
type="actions.LoginAction"
formName="LoginForm"
formScope="session">
<forward name="success" path="/login.html"/>
<forward name="retry" path="/index.html"/>
</action>

For example this configuration creates two logic mappings “success” and retry”. And

this is how an action form might use this:

21

if (accessLevel <=1){

forward = mapping.findForward("success");
}else{

forward = mapping.findForward("retry");

}

7.2. Business Logic

Business logic performs the business logic of the application. This is the most
easily reusable component, if basic design guidelines are used to develop a Struts
application. T is possible to write the business logic of an application directly into the
action forms, but it is strongly recommended to have separate and therefore easily
reusable components performing the tasks.

The business logic should be a generic class or a combination of classes
performing a specific action. When properly designed, the business logic should be
platform independent and also unaware of the method in which it is being deployed. This
means that even though a Struts application is a web application, the business logic
should never take tasks or use functions that are web server specific. If the necessity for
web server specific tasks arises, they should be solved using action forms.

The generic nature of business logic components allows them to be used not only
in other Struts applications but also in any future Java-based programs that might not be
web-based. And vice-versa already existing Java components can very easily be
incorporated into a developing Struts project.

The most commonly used deployment method of business logic is Enterprise Java

Beans (EJB).

22

8. The View

The View is the part of the application that directly communicates with the user.
The View usually consists of HTML and JSP pages where HTML pages are used to
display static information and JSP pages for dynamic data. The usage of Multilanguage
and custom tags allows developers to create sophisticated and highly interactive user

interfaces with little effort and resources.

8.1. Custom tags in OD Struts

A custom tag is a way of introducing functionality into a JSP page without
overwhelming it with Java code. A custom tag does not exist in HTML specification, but
is interpreted by the web server and replaced by HTML code before it is sent to the user.
This allows developers to hide complicated pieces of code behind simple and easily

usable tags.

<% @ taglib uri="/WEB-INF/tlds/od-struts.tld" prefix="od" %>
<HTML>
<body>
<od:form
name="login"
action="LognAction.do"
type="forms.LoginForm"
method="post"
labelCatalog="properties.loginPage">

<od:label for="login" /> <od:text name="login" >
<od:label for="password" /> <od:password name="password">
</od:form>
</body>
</HTML>

This is a simple JSP page asking the user for a login and a password, however it does
much more than that. At the beginning of the page od-struts.tld tag library is associated
with prefix “od”. When Tomcat processes the page, it searches for all the tags starting
with the “od” prefix from the tag library. On this page the tags are:

e form

23

e Jlabel

e text

e password

The tag library associates a specific Java class with that tag name and also specifies

which attributes this tag accepts. For a “label” tag the description is:

<tag>

</tag>

<name>label</name>
<tagclass>com.oncedone.struts.taglib.html.LabelTag</tagclass>
<bodycontent>empty</bodycontent>
<info>
</info>
<attribute>
<name>for</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>
</attribute>
<attribute>
<name>name</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>
</attribute>

The “label” tag accepts attributes “for” and “name” and attribute “for” is a required

attribute. When the web server encounters the <od:label .../ > tag, it finds the description

from the tag library and calls the “com.oncedone.struts.taglib.html.LabelTag” class to

perform the actions associated with this tag.

Struts provides several custom tags to help create web pages and to extend the

functionality of existing HTML tags. The following is short descriptions of some of the

most commonly used:

form — form tag is the equivalent of HTML form tag, but with extended functionality.

Forma tag is the required container for most other Struts tags. Its attributes configure the

whole form with all its sub tags.

<od:form

name="LoginForm"
action="LoginAction.do"

24

type="forms.loginForm"
method="post"

labelCatalog="properties.mappings"
labelPrefix="login">

</od:form>

This example creates an HTML form tag that is later sent to the user, but it also
associates the form with a form bean, specifies the property files that the language-

specific texts are located and the prefix o the mapping that these texts have.

label — in an html form all the form elements have a label associated with them. In classic
solutions this label is usually hardcoded into the HTML file. A label tag is Struts’s
replacement for that descriptive text. It locates the text it is supposed to display from the
property file configured in the form tag. A label is also the default way of displaying

errors. This is an example of a label — element pair:

<od:label for="password" /> <od:password property="password" size="20" />

When an error occurs and the user is returned to the form page where the error originated,
the name of the form element causing the error is passed along with that error. When a
label tag is writing itself, it checks, if there are any errors with the same name that it has.

If there are, it displays itself as a link to the error description.

Paszsword |

Paszgword |

On this HTML page the label displays the “Password” text and clicking on the link shows

the error text

Your password must at least 4 characters long

The following tags are Struts extensions of standard HTML tags. When a page is
submitted, the Controller extracts the information from the HTML form and puts it into

the form bean. Struts tags also support populating the from with the information inside

25

the form bean. When Struts displays a page with a form created with Struts tags instead
of standard HTML tags, it attempts to look up the form bean and the specific value for
each form object inside that bean. For example, for a text field with the name
“userName” Struts will try to get the value using a function getUserName(). If that value
is retrieved, the tag is written with a “value” attribute. If the value were “user” the final
HTML code would be: <input type="text" name="userName" value="user" />. This way
Struts prefills all forms with existing information.

This a very effective solution coupled with the error reporting process. When an
error is sent either by the action form during validation or the converter during bean
population, the user is sent back to the page where he entered the incorrect information.
When Tomcat is creating this page, all the information that the user submitted, is already
in the form bean and therefore placed into the created page. This means that the user does
not have to enter anything twice, but can fix the incorrect piece of information and
resubmit the page.
text — corresponds to HTML <input type="text" ... /> tag.
password — corresponds to <input type="password" ... /> tag.
textarea — corrsponds to <textarea ...> ... </textarea> tag.

submit — corresponds to <submit ... /> tag.

message — displays text to users. Message tag creates Multilanguage texts on a web page.
Struts allows a single page to be displayed in several languages. To accomplish this no
user - visible texts can be hardcoded into the JSP page. A message tag supplies a key that

is used to look up the language — dependent text.

messageGroup. Since the message tag only supplies a key for looking up the text it must

be in the scope of a messageGroup tag that gives the location of the language file. It is
not smart to code the page layout information inside a message tag since this does not
depend on language and would create large and unreadable language files. To avoid the
duplication of language file information among the many message tags, they are

contained within a messageGroup tag.

26

8.2. 118n

I18N is the nickname for internationalization — the process of making an
application support several languages. Struts is designed with internationalization in mind
with most custom tags supporting several languages by default and with easy ways to
include multilanguage texts into a web page.

The basis for I18N in Struts is Java’s multilanguage support class called
ResourceBundle. ResourceBundle handles several text files with key-value pairs,
choosing the appropriate text file for a specific language. The naming convention for the
text files is “name_language_country.properties”. For example
mappings_en_us.properties would denote a file containing US English mappings. Struts
tags use Resource bundle to get the language-specific texts from a collection of text files
based on the language and country codes provided either by the client or the server.

The country and language codes are ISO standards. The language codes are based
on ISO-639 standard and the country codes on ISO-3166 standard.

Most commonly used tags that display information to the user are “label”,

29 ¢

“message”, “options” and “radio”. All of these tags except “message” are inside a “from”
tag and thereby associated with a label catalog which is the base directory and name of
their language — specific properties files. All of these have a name associated with them
that serves as the key in these properties files. The value associated with the key is the
actual message displayed to the user.

For example the following tag <od:label for="login" /> has a name “login” and
that name is the key in the language file. In the loginPage_en_us.properties file the
mapping might be: “login=Enter your username” and in the loginPage_et_ee.properties
file the mapping might be: “login=Sisesta kasutajanimi”. When the label tag is run, it
uses a ResourceBundle to find the appropriate file and then extracts the value using the
current language and country settings. If the language was “en” and country “us” the
value returned would be “Enter your username”.

ResourceBundle tries to find the exact match to the language and country codes,

however if there is none, it then attempts to find a file with only the language code. For

27

example if the file loginPage with language “en” and country “us” is needed and no
loginPage_en_us.properties file exists or there is no required aping in that file,
ResourceBundle attempts to find the loginPage_en.properties file. If that file is also not
found, the file loginPage.properties containing the default language is searched next.
Struts attempts several ways of finding the language and country codes to use.
First Struts checks the session object. If there is no language information stored in the
session, Struts attempts to get the language from the request. When a browser sends a
request for a page, it attaches the desired language to the request. If Struts has found no
preferred language from the session or the request, it takes the default language of the
web server. Knowing this, it is easy to override the language selection, for example when
user has manually selected the language, by putting that language and country code into

the session.

28

9. The Controller

Many of the Controllers functions have already been discussed in this document
in other sections. Since Struts operates as a whole, it is difficult to discuss one single
component without insight into the whole of the system.

The Controller controls a Struts application, receiving client requests and calling
other components. The Controller ties together the otherwise separate View and Model
components.

e Receives and routes client requests

e Runs filters

e Creates and manages form beans

e Populates the form beans

e Calls the Model

e Calls the View

e Easily configured by an XML file
Since the Controller provides standard services for the application, it is usually not
created by the programmer but only configured. In almost all cases the Struts provided
Controller and supporting files are sufficient for any web application, but if the necessity
arises for functionality beyond those provided by Struts, all components can easily be

rewritten or overridden to include the necessary functionality.

9.1. Filters

A filter is a piece of program that can be called by the Controller before Struts
starts processing a user request. When the Controller receives a request by a user, the first
thing it does, is check if there are any filters associated with that page in the configuration
file. Filters can take major decisions or perform tasks before Struts starts processing the
user request. An example of that would be a login filter. In a multi — user environment
there are often several user roles and the tasks performed by a role may be performed by

no one else. To insure that, every action form accessible by a certain role must check if

29

the user belongs to that role. This task of ensuring that a user belongs to a certain role can
instead be given to a filter, which would free the action forms from repeating the same

piece of code and easily changeable without having to worry about updating all instances.

<action-filters>
<action-filter name="LoginFilter” type="filters.LoginFilter’>
<property name="role”” value="“administrator”/>
</action-filter>
</action-filters>

Struts does not limit the number of filters that can be run a single page even though the
configuration of a page only accepts one filter. To solve this Struts has a filter chain
concept, where several filters can be combined into a single filter chain and that chain is
passed as a filer to a specific page. With the ability to include other filter chains as well

as filters this provides a simple and easy solution to filter encapsulation

<action-filter-chains>
<action-filter-chain name="FilterChainl” >
<action-filter-link name="DebugFilter”/>
<action-filter-link name="TokenFilter’/>
</action-filter-chain>
<action-filter-chain name="FilterChain2”’>
<action-filter-chain-link name="FilterChainl”’/>
<action-filter-link name="“CheckLogonFilter”/>
</action-filter-chain>
</action-filter-chains>

An action mapping with a filter would look like this:

<action-mapping path="UpdateUser”
type="“com.mydomain.actions.UpdateCustomerAction’
filterName="FilterChain1”/>
<forward name="success” value="acceptChanges.jsp”/>
<forward name="failure” value="‘error.jsp”’/>
</action-mapping>

9

30

10. A Real-Life Example

To show how a Struts application actually works, I have provided a real - life
example. It should be included with his document on a floppy disk, but is also fond on
the Internet under the following address:

http://www.tpu.ee/~normakm/movDB.exe

This is the source code of the application in a self — extracting zip achieve. To see

the application work go to the following address:

http://212.47.216.220:8080/movDB/

31

11. Conclusion

At the moment there are two main competing technologies for large — scale client
server and web development: J2EE (Java 2 Enterprise Edition) and Microsoft .NET.
Struts is compliant with J2EE and supports several design patterns associated with
application development in Java.

For companies Struts offers a lot. The companies can use people with skills
otherwise lacking in web development and compile a full working product from their
contributions. Struts the quick development and easy maintenance needed in today’s fluid
market conditions by allowing the reuse of existing products and providing easily
changeable components within an application.

Struts also helps the development of small — scale projects. Having an overview
of the entire application, the ability to create a multilanguage environment for the users
simply by editing text files outweigh the slight increase in time and effort inherent to
Struts web development.

The real beauty of the Struts framework is that one does not have to know it in
depth to use it for developing sophisticated web applications. Any person familiar with
Java and HTML is capable of creating Struts application acquiring only practical
knowledge of the environment.

In a longer perspective Struts is pointing the way for any future tools aiding in the
slow and painful development process. The functions of those tools will still include

those of Struts even though they might be implemented in a different manner.

32

12. Kokkuvote

Internet on muutnud maailma. Ellu jadmiseks peavad firmad oma veebiteenuseid
pakkuma seniste staatiliste HTML lehekiilgede asemel diinaamiliste lahendustena.
Tooted ja teenused peavad olema kiiresti turule paisatavad, vdimalikult mitmekiilgsed,
diinaamiliselt turu vajadusele muudetavad, vGimalikult odavad valmistada ja hallata.
Nende eesmirkide saavutamiseks on loodud mitmeid vahendeid, mis lihtsustavad ja
lihendavad tarkvaraarendusprotsessi ~ samas ohverdamata loodavate toodete
mitmekiilgsust. Uks sellistest vahenditest on Jakarta Struts.

Strutsi loojaks oli Craig R. McClanahan, kes mais 2000 annetas selle Apache
Software Foundation -ile. McClanahan on jdénud siiani Strutsi projekti juhatajaks, kuigi
tegutseb aktiivselt ka teiste Apache projektidega. Struts on iiks Apache Jakarta
projektidest, mille eesmirgiks on luua kvaliteetseid serverilahendusi Java platvormile,
mida arendataks vabas ja koostddaldis keskkonnas.

Struts ei ole mitte valmisprodukt, vaid raamistik, mille koodi v&ib soovi korral
muuta. Struts on vabavara ja seda vdivad kasutada era- ja drikliendid nii alg- kui nende
poolt muudetud kujul oma toodete komponendina.

Riikides Strutsist baseerun ma OD Strutsil, mis on Profit Softaware OY poolt

kasutusele voetud ja arendatav Strutsi implementatsioon.

Strutsiga seotud tehnoloogiad

Java - programmeerimiskeel. Java on iildotstarbeline objekt-orienteeritud
programmeerimiskeel, mille arendamisel on eesmirgiks olnud vdimalikult vihe arvuti
arhitektuurist sdltuda. Seetdttu on Java programmidel tdhelepanuviirne omadus todtada
erinevate operatsioonisiisteemidel ja erinevatel standarditel ehitatud arvutitel. Java
programme jooksutab virtuaalne masin, mis arvuti arhitektuurist sdltumatu koodi tolgib
arvuti masinkoodi ning kiivitab selle. Tolkimisprotsess aeglustab mirgatavalt
programmide kdivitamiskiirust, kuid selle kao teeb tasa keele mitmekiilgsus ja lihtne

Opitavus.

33

Servlet — Tehnoloogia, mis lubab veebiserveril luua diinaamilisi veebilehti. Uuemad
tehnoloogiasuunad eelistavad suurema osa to0st teha keskserveris ja klientide masinaid
mitte koormata. Servlet on programm, mis tootab veebiserveris, ja loob igale kliendile
oma HTML lehekiilje. Selle tehnoloogia eelis tavalise HTML lehekiilje ees on, et igale

kliendile saab kuvada erineva lehekiilje, néiteks laoseisu paringu hetkel.

JSP - Java Server Pages. JSP on edasiarendus Servleti tehnoloogiast. Luues Servleti abil
HTML lehekiilge, peab sinna rida-realt kirja panema. See on tiilikas ning pérast raskelt
loetav ning muudetav. JSP lehekiilge hoitakse ldhtekoodilisel kujul. Kui kliendilt tuleb
piaring JSP lehekiiljele, siis veebiserver loeb vastava lehekiilje, kompileerib selle ja
kdivitab. Too 10ppedes jdidb lehekiilg veebiserveri millu ja jiargnevad paringud samale

lehele on sama kiired kui servlet tehnoloogia lahendus.

EJB - Enterprise JavaBeans. Tehnoloogia, mis lubab Javas kirjutatud &riloogikat
installeerida ja kéivitada spetsiaalsetel EJB serveritel. Samas toetab EJB ka
kasutajakoormuse jagamist mitme arvuti vahel. Kui server, kust driloogikat kiisiti tegeleb
millegi muuga, siis vOib driloogikat jooksutada hoopis teine server, kellele on

installeeritud sama driloogika komponent ja vastata esimese serveri eest.

Struts ja mudel 2

JSP tehnoloogia ilmudes vdeti see mitmete arendajate poolt kiiresti kasutusse.
Kasutusmudelit, kus kogu veebirakendus on iiles ehitatud JSP lehekiilgedele kutsutakse
mudel 1. Varsti selgus, et ei ole lihtne kogu driloogikat JSP lehekiilje sisse kirjutada ning
sellise lehekiilje haldamine muutub peaaegu vdimatuks. Selle probleemi lahendamiseks
kasutab Struts MCV (Model Cotroller View) lahendust, ka tuntud kui mudel 2

Struts on modulaarne struktuur. Struts jaotab loodava veebirakenuduse kolmeks

iksteisest funktsionaalselt eraldi seisvaks komponendiks: mudel, kontroller ja vaade.

34

Mudel on édriloogika - programm v&i programmid, mis teostavad teenust, mida
kliendile pakutakse. Niiteks andmebaasiliides, mis tagastab pliiatsite arvu laos voi
programm, mis kannab rahasumma arvelt A arvele B.

Vaade on JSP lehekiilg, mis suhtleb kliendiga. Sellel on vormid, mida kasutaja
tdidab ja sellele kuvatakse kasutajale vajaminev info.

Kontroller on keskne servlet, kes kiivitab vastavaid Mudeli programme ja

tagastab saadud tulemuse vastavale JSP lehekiiljele, mida siis kuvatakse kasutajale.

Kontrolli liikumine Strutsi rakenduses

Klient kontakteerub veebiserveriga kiisides lehte “HelloWorld/HelloWorld.do”. See
tahendab HelloWorld.do lehekiilge HelloWorld rakenduses. Veebiserver kontrollib oma
konfiguratisiooni ja leiab, et kdik .do lehekiiljed tuleb saata Kontrollerile. Kontroller
leiab, oma konfiguratsioonist, et vastavat lehekiilge teostab Java klass
“strutsDoc.HelloWorld.HelloWorld” ja kidivitab selle. Antud niites saadab Mudel kliendi
“welcome” lehele. Kontroller leiab oma konfiguratioonist, et “welcome” lehele vastab
URL “HelloWorld.html” ja suunab kliendi sellele lehele. Klient piris “HelloWorld.do”
lehekiilge ja talle tagastati tema teadmata “HelloWorld.html”.

Andmete liikumine ja hoidmine Strutsi raamistikus

Enne kui uurida pohjalikumalt Strutsi moodustavate komponentide olemust, tuleb
selgitada, kuidas liigub info Strutsi raamistikus. Selleks tuleb selget vahet teha kahel

litkumissuunal: Vaade - Klient - Kontroller ja Kontroller - Mudel - Kontroller - Vaade.

Kuna kliendini jouab HTML lehekiilg, siis on info liikumine Vaatelt kliendini piiratud
HTML vodimalustega. See tdhendab, et Mudeli poolt tagastatud info peab olema Vaate
poolt kirjutatav HTML dokumenti. Info liikumine kliendilt Kontrollerini on v&imalik
kahte teed pidi, kas klient vajutab lingile (vOi kirjutab brauserisse aadressi), voi tdidab

oma brauseris HTML vormi véljad ja vajutab "Saada" (Submit) nuppu. Esimesel juhul

35

saadetakse Kontrollerile HTTP piring, kus on kirjas lehekiilg, millele klient soovis
minna. Teisel juhul loeb brauser kliendi poolt tdidetud lahtrite vdirtused ja paneb need
HTTP piringusse koos lehekiilje aadressiga, kuhu need taheti saata.

Info liikumine veebiserveri sees Kontrolleri Mudeli ja Vaate vahel toimub Java
objektide kaasabil. Nendeks objektideks on erilised Java klassid - vormi oad (form bean).
Igale vormi oa muutujale peab vastama kaks funktsiooni, tuntud kui getter ja setter
funktsioonid, millest iiks, "get", tagastab vormi oa vastava muutuja viirtuse ja teine,
"set", muudab vormi oas oleva muutuja véirtust.

Sel viisil tekib andmehoidla, kus andmeteks on vormi oa muutujad ning vormi uba
kasutavad programmid saavad neid muutujaid funktsioonide abil lugeda ja muuta. Kui
vormi uba esimest korda luuakse, siis asetatakse ta veebiserveri millu temale méadratud

kehtivuspiirkonda (scope). Kaks kdige kasutatavamat on péring ja sessioon.

Vormi oa tiitmine

Kliendilt tulev info on tekstilisel kujul isegi kui see tdhistab nditeks aastaarvu. Enne kui
driloogika seda kasutada saab, tuleb see konverteerida oigele kujule. Kuna
konverteerimisprotsess on tavaliselt standardne, siis pakub Struts selle standardset
lahendust. Strutsi komponent “poulaator” hoolitseb kliendilt tuleva info eraldamise eest
ja selle muutmise eest digele kujule konverteri abil. Konverter on Java programm, mis
suudab tekstilist infot tdlgendada vajalikule kujule, vdi kui see pole vdimalik, siis
teavitada sellest klienti. Néiteks kui aasta tekstivéljale sisestati tdhti numbrite asemel, siis

ei ole seda voimalik numbriks muuta ja kliendilt tuleb antud infot uuesti kiisida.

Mudel
Struts jagab Mudeli kaheks alamkomponendiks:

Tegevus (Action) - otsustab "mida teha".

Ariloogika (EJB - Enterprise Java Beans) - teostab vajalikku tegevust.

36

Strutsi raamistikus on piiiitud toetada komponentide taaskasutatavust. See tdhendab, et
komponenti, mis on loodud mingi programmi vOi veebirakenduse koosseisu, voib
taaskasutada ka teistes programmides. See eeldab, et komponent on piisavalt iildise
arhitektuuriga. Tema sisend, véljund ja tegevus ei tohiks sdltuda situatsioonist, kus ta
kiivitatakse. Kuna Mudel peab kasutama veebiserveri funktsionaalsust, nditeks milline
kasutaja sisestatud info on rakenduse jaoks mittesobilik ning suunama kasutajat erinevate
lehekiilgedele, peab driloogika lahutama veebiserveri kesksest funktsionaalsusest.
Tegevus teostab jargmisi toiminguid:

Kasutaja poolt sisestatud info verifitseerimine.

Ariloogika vilja kutsumine

Ariloogika poolt tagastatud info pohiselt otsustamine, millisele lehekiiljele
kasutaja edasi saata.

Info tagastamine Vaate komponendile, millele klient suunatakse.

Niiteks kui Tegevus kontrollib kasutaja sisselogimist, siis v0ib see toimuda jargmiselt:

Kontroller kdivitab Tegevuse ja annab talle sisselogimise infot sisaldava vormi
oa.

Tegevus loeb kasutajanime ja salasdona vormi oast ja kdivitab driloogika.

Ariloogika kontrollib kasutajanime niiteks andmebaasist ja tagastab kas tdese
(kasutaja lubatakse sisse logida) voi vidra.

Tegevus kontrollib tagastatud viirtust ning kui see oli "tdene", siis suunatakse
kasutaja edasi. Samas vOib Tegevus Vaatele edastada ka kasutaja nime, et saaks
kasutajale nimeliselt viidata, niiteks "Teretulemast tagasi Mikk".

Kui Tegevusele tagastati "vdir", siis suunab Tegevus kasutaja lehekiiljele, kus
oeldakse, et sisselogimine ebadnnestus.

Sel viisil muutub kasutaja sisselogimist kontrolliv iriloogika komponent iilejadnud
veebirakendusest iseseisvaks ja seda saavad kasutada ka teised samalaadset teenust

tarbivad veebirakendused ja programmid.

Tegevus annab kiivitusjidrje oma to6 10ppedes tagasi Kontrollerile, kes Tegevuse poolt

tagastatud info alusel kidivitab Vaate vastava objekti. Info, mida Tegevus tagastab

37

Kontrollerile, ei sisalda lehekiilje aadressi, kuhu kasutaja suunatakse, vaid ainult
siimboolset viidet. Igale sellisele viitele on vaste Kontrolleri konfiguratsioonifailis.
Niiteks voib sisselogimist kontrolliv Tegevus tagastada: suuna tagasi lehekiiljele

"sisselogimine".

Vaade

Vaade on Strutsi rakenduse osa, mis suhtleb otseselt kliendiga. Vaateks on tavaliselt
diinaamilise info nditamiseks JSP lehekiiljed ja staatilise info jaoks kasutatakse HTML
lehekiiljed.

JSP kasutamine koos kasutaja poolt loodud mirgenditega (custom tags) laiendab veelgi
Struts toetab peale tavalise tekstivélja ka muid HTML vormi elemente. Tdielik nimekiri
asub http://jakarta.apache.org/struts/struts-html.html. Suurem osa neist kdituvad sarnaselt
nende HTML kujule.

Peale selle toetab Vaade ka mitmekeelseid veebirakendusi. Selle teeb vdimalikuks Java
vastav funktsionaalsus, mis on realiseeritud ResouceBundle klassi poolt. ResourceBundle
klass lubab samal programmil kuvada erinevas situatsioonis erinevas keeles
kasutajaliidest. Infot selle kohta, millist keelt kasutada, on vOimalik saada mitmest
allikast. Lehekiiljel voib olla keele valik, kust kasutaja valib endale sobiva keele, iga
HTTP péringuga saadetakse serverile ka keel, mille kasutaja on valinud enda brauseris
vaikimisi keeleks. Veebiserverile voib anda vaikimisi keele, mida kasutatakse, kui muul
viisil ei olnud voéimalik kasutaja keele eelistust teada saada. Seejdrel vidrtustatakse
sessiooni muutuja "Locale" kujul keel - kahe tdhega (ISO-639 standardi jédrgi) ja maa -
kahe tdhega (ISO-3166 standardi jirgi). Niiteks "EE, ee" tahendab eesti keelt Eestimaal,
"EN, us" tihendab USA inglise keelt ja "EN, gb" tdhendab Inglismaa inglise keelt.
Niiteks kui JSP lehel on kirjas <pre:label for="tekstiviljaNimi" /> ja keel on "EN, us" ja
nimesid otsitakse "Nimed" failist, siis otsitakse koigepealt "nimed_EN_us.properties"
faili. Kui leitakse selline fail, siis vOetakse nimi sellest failist, niiteks
"tekstivdljaNimi=Text field" ja kuvatakse kasutajale. Kui aga keeleks oli "ET, ee", siis

otsitakse faili "nimed_ET_ee.properties", kus on hoopis "tekstividlajaNimi=Tekstivali".

38

Kuna ei ole reaalne, et rakendust koigis keeltes esitataks, siis faili
"nimed_ET_ee.properties" puudumisel otsitakse faili "nimed_ET.properties" ja kui ka
seda ei leita, siis faili "nimed.properties". Nii on garanteeritud, et iikskoik, millises keeles

klient ka ei rdfigiks, saab ta veebirakendust igal juhul kasutada.

Kontroller

Kontrolleri funktsioonid on eelnevalt juba loetletud. Kontroller on Strutsi raamistiku
keskne komponent, mis kiitub liidesena teiste veebirakendust moodustavate osade vahel.
Kuna Kontrolleri tegevused on standardsed, siis ei ole tavaliselt vaja muuta Strutsi enda

poolt pakutud Kontrollerit, vaid piisab selle kditumise juhtimisest konfiguratsioonifailiga.

Filtrid

Enne kui Kontroller kédivitab vormi oa tditmise voi Mudeli, kontrollib ta, kas antud
lehekiiljega on seotud mingeid filtreid. Kui on, siis kidivitab Kontroller kdigepealt filtrid.
Filtrite abil on lihtne kirja panna korduvaid tegevusi, mille muidu peaks teostama Mudel.
Niiteks voib filter kontrollida, kas kasutaja on sisse loginud ja kui mitte, siis suunata ta
sisselogimise lehekiiljele ja seda enne, kui Kontroller on kéivitanud Mudeli vdi Vaate.
Selline lahendus garanteerib, et kogemata (vdi meelega) valele lehekiiljele sattunud

inimene ei tekita rakenduses olevale infole kahju.

39

13. Used Literature

http://jakarta.apache.org/tomcat/index.html

http://jakarta.apache.org/struts/index.html

http://java.sun.com

http://java.sun.com/products/servlet/index.html

http://java.sun.com/products/jsp/index.html

http://www-106.ibm.com/developerworks/library/j-struts/

http://drdb.fsa.ulaval.ca:8080/dr/html/struts/strutsPres _en.html

http://www.javaskyline.com/learnejb.html

A A S G R e

http://www.din.de/eremien/nas/nabd/iso3166ma/codlstpl/

10. http://www.loc.gov/standards/is0639-2/langcodes.html

40

