Anu Kurm

EESTI KUNSTI AJALOO (1860 – 1940)
VEEBIPÕHISE ÕPITARKVARA PROTOTÜÜBI
LOOMINE

Magistritöö

Juhendajad:
Prof Kaalu Kirme
Jaagup Kippar

Autor: ... “.....” 2004
Juhendaja: .. “.....” 2004
Juhendaja: .. “.....” 2004
Osakonna juhataja: .. “.....” 2004

Tallinn 2004
SISUKORD

SISSEJUHATUS ... 5

1 PROBLEEMI ANALÜÜS JA HETKEOLUKORRA KIRJELDUS................................. 8
 1.1 Probleemi püstitus .. 8
 1.2 Probleemi põhjused ... 9
 1.3 Sihtruhmad .. 10
 1.4 Pakutavad lahendused ... 11
 1.5 Eesti kunsti ajaloo õpetamisest Eesti koolitussüsteemis 12
 1.5.1 Gümnaasiumi õppekava ... 12
 1.5.2 Kutseõppeasutuse õppekava ... 13
 1.5.3 Ülikoolide õppekavad .. 13
 1.6 Ülevaade kunstialastest trükistest ja elektroonilistest materjalidest 14
 1.6.1 Kunstialased elektroonilised materjalid maailmas 14
 1.6.2 Kunstialased trükised ja elektroonilised materjalid Eestis 18
 1.7 Tiigrihüppe Sihtasutuse roll eestikeelse õpitarkvara loomisel 20
 1.8 Arvutite kasutamine kunstiõpetuse tundides Eestis 20
 1.9 Hetkeseis ja üldised hoiakud ... 21
 1.10 Probleemid .. 21

2 ÕPITARKVARA LOOMISE TEOREETILISED LÄHTEKOHDAD 23
 2.1 Ülevaade õpetamismeetoditest ... 23
 2.1.1 Õpetamise teooriad ... 23
 2.1.1.1 Biheiviorism .. 24
 2.1.1.2 Konstruktivism ... 24
 2.1.1.3 Kongnitivism .. 26
 2.1.1.4 Ankurdatud õpetus ... 27
 2.1.2 Erinevad mõtlemisviisid ... 27
 2.1.3 Tajueelistused .. 29
 2.1.4 Õpiprotsessi osad .. 29
 2.1.5 Õpitegevused .. 30
 2.1.6 Hindamisreeglid .. 31
 2.1.7 Testid ... 32
 2.2 Õpisüsteemi disaini mudelid .. 35
 2.2.1 Õpisüsteemi disaini mudelite liigitus .. 36
 2.2.2 Õpitarkvara arenduse mudelid ... 41
 2.2.2.1 Koskmudel .. 42
3.2 Struktuuri osad

<table>
<thead>
<tr>
<th>Osakond</th>
<th>Sisu</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Esileht</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Kunstnike elulood</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Lehekülged kunstnike elulugudega</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Kunstikultuuri sündmused</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Galerii</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Testid</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Lingid</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Kasutusjuhend</td>
</tr>
<tr>
<td>3.2.9</td>
<td>Otsing</td>
</tr>
<tr>
<td>3.2.10</td>
<td>Foorum</td>
</tr>
<tr>
<td>3.2.11</td>
<td>Saada kiri</td>
</tr>
<tr>
<td>3.2.12</td>
<td>Kasutajaliidese kujundus</td>
</tr>
</tbody>
</table>

3.2.1 Struktuuri mõiste
3.2.2 Struktuuride põhjused
3.2.3 Struktuuride järgimine
3.2.4 Struktuuri meetodid
3.2.5 Kvantitatiivne ja kvalitatiivne informatsioon
3.2.6 Öpitarkvara hindamine

2.3 Öpitarkvara Interneti keskkonnas

2.3.1 Autoriõigused
2.3.2 Veebilehtede esitamise head tavad
2.3.2.1 Failistruktuur
2.3.2.2 Info paigutus, suurus, kerimisribad
2.3.2.3 Lingid
2.3.2.4 Värvid
2.3.2.5 Tekst
2.3.2.6 Graafika

2.4 Tehniline teostus

2.4.1 Veebiserverid
2.4.2 Brauserid
2.4.3 Veebilehekülgede loomise tarkvarad
2.4.4 HTML standard
2.4.5 CSS
2.4.6 Veebprogrammeerimiskeeled
2.4.7 Andmebaasid
2.4.8 Veebilehtede administreerimine
2.4.9 Veebilehtede testprogrammid

3 ÖPITARKVARA PROTOTÜÜP

3.1 Struktuur
3.2 Struktuuri osad
5.
4 ÖPITARKVARA PROTOTÜÜBI HINDAMISETAPID ...117

4.1 Esimene etapp..117
 4.1.1 Küsitlus ekspertidele (kunstiõpetajatele) ...117
 4.1.2 Küsitlustulemuste analüüs ...118
 4.1.3 Prototüübis tehtud muudatused ja täiendused ...123

4.2 Teine etapp...124

5 HINNANGUD JA PLAANID TULEVIKUS ...126

5.1 Hinnang valminud prototüübile ...126
5.2 Hinnang prototüübi realiseerumisvõimalustele ..127
5.3 Plaanid tulevikus ...128

KOKKUVÕTE ..129

SUMMARY ...131

KASUTATUD ALLIKAD ..133

LISAD ..139

Lisa 1. Väljavõte Põhikooli ja gümnaasiumi riiklikust õppekavast139
Lisa 2. Väljavõte üldharidusainete ainekavast põhihariduse baasil
 kutsekeskharidust andvatele kutseõppeasutustele ..143
Lisa 3. Osaline väljavõte dokumendist, kus kirjeldatakse Eesti avalike
 religiasutuste veebilehtede ülesehitamise üldisi printsilpe145
Lisa 4. Küsimustik ekspertidele (kunstiõpetajatele) ...148
Lisa 5. Õpitarkvara prototüüp CD plaadil ..150
Magistritöö teemaks valis autor Eesti kunsti ajaloo (1860 – 1940) veebipõhise õpitarkvara prototüübi loomise (vt http://www.zone.ee/ekunst), kuna tänapäeva kiiresti arenevas maailmas kerkivad meie ette iga päev küsimused:

- Kuidas muuta õppeprotsess efektiivsemaks?
- Kui suur roll võiks siin olla Eesti haridussüsteemis arvutite kasutamisel õppeprotsessi läbiviimisel?
- Milline peab olema õpitarkvara, mis tõstab õppimise ja õpetamise kvaliteeti?

Haridustehnoloogia kui arendustegevus on tänapäeval kujunemas oluliseks uuenduste allikaks haridussfääris. Praktikute keeles tähendab haridustehnoloogia uute metoodikate, õppematerjalide ja abivahendite väljaloodamist, katsetamist, hindamist ja juurutamist (Laanpere, a).

Euroopa Liidu programmid (e–Euroopa+, eriti aga e–Euroopa 2005) seavad konkretsete sihid, mida tahetakse ja loodetakse saavutada ja täita 2005. aastaks. Taotlus muuta digitaalne kirjaoskus kõigile Euroopa noorttele põhioskuseks, hõlmab kolme põhivahendkonda:

- Interneti ja multimeediavahendite valamine;
- nende vahendite kasutamine uute oskuste õppimiseks;
- võtmeeskondade omandamine, näiteks koostegutsemine, loovus, multidistsiplinaarsus, kohanemisvõimalised ja kultuuridevaheline suhtlemine (Vare).

Kui vaadata infotehnoloogia kasutamist Eesti koolihariduses laiemalt, siis sõltub see kindlasti mitmest erinevast tegurist. Nendeks on juurdepääs arvutitele, arvutiloohtade arv koolis, õpetajate professionaalsete oskuste täiendamine infotehnoloogia vallas ning õpilaste hoiakud ja motivatsioon arvutite kasutamisel õppetöös.

Vaatamata eelnevalt mainitud probleemidele, on arvutite kasutamine õppeprotsessis muutunud üha laiemalt kasutatavamaks meetodiks õppetöös.
Töö on aktuaalne, kuna:

1. Tiigrihüppe Sihtasutuse prioriteediks on eesti keelt, kultuuri, ajalugu ja loodust käsitleva eestikeelse tarkvara toetamine. Valmiv õpitarkvara peab olema kasutatav üldhariduskoolides kehtiva õppekava järgselt kas põhi- või lisamaterjalina (Tiigrihüppe Sihtasutus).
2. Eesti kunsti ajalugu kajastavaid elektroonilisi materjale on valminud vähe.
3. Ajakirjandusest ja foorumitest loetud kunstiõpetajate arvamuste põhjal võib järeltada, et vajadus kunstialase õpitarkvara järelle on olemas.

Käesoleva magistritöö eesmärkideks on:

1. Erinevate allikate läbitöötamine (trükiteosed, diplomijaotised, ajakirjandused ja Interneti ressursid), mis seonduvad õpitarkvara prototüübi loomisega.
2. Kunstiõpetajate ja õpilaste ootuste ja vajaduste väljaselgitamine eesti kunsti ajaloo teemalise õpitarkvara loomiseks.

Töös püstitatud ülesannete täitmiseks tuli:

- Tutvuda vastavasisuliste materjalidega.
- Kasutada andmekogumimeetodit - viia läbi sihtgruppidele küsitlused.
- Koostada õpitarkvara esimene ja teine prototüüp.

Magistritöö on jagatud viieks osaks:

1. Probleemi analüüs ja hetkeolukorra kirjeldus.
2. Õpitarkvara loomise teoreetilised lähtekohad.
3. Õpitarkvara prototüüp.
4. Õpitarkvara prototüübi hindamisetapid.
5. Hinnangud ja plaanid tulevikus.
Edaspidi on prototüübi põhjal valmiva õpitarkvara edasiarendamiseks mitmeid võimalusi:

- Lisada õpitarkvarale teemasid ja teste. Käsitelda varasemad perioodid enne 1860. aastat kui ka Eesti kaasaegset kunsti, tutvustada erinevaid kunstivoolusid jne.
- Luua kasutajatele keskkond, kus toimub iga kasutaja tuvastamine. Vajadus selleks võib olla testide koostamine olemasolevatest küsimustest ning testiküsimuste andmepea täiendamine kasutajate endi poolt.

Magistritöö sisaldab 52 joonist ja tabelit, lehekülgede arv on 150 ja kokku on kasutatud töös 66 allikat.

Autor avaldab tänu magistritöö sisulisele juhendajale, TPÜ Kunstiajaloo õppetooli juhatajale, prof. Kaalu Kirmele ja tehnilisele juhendajale Jaagup Kipparile. Lisaks soovib autor tänada ja ära nimetada kümme kunstiõpetajat, kes andsid õpitarkvara prototüübile eksperthinnangud:

Jüri Mäemat – Pelgulinna Gümnaasiumi kunstiõpetaja (Kunstihariduse Ühingu juhatuse esimees),
Tiiu Esnar – Pelgulinna Gümnaasiumi kunstiõpetaja (Kunstihariduse Ühingu juhatuse liige),
Anu Tuulmets – TPÜ kunstiosakonna õppetjöud, eriala peametoodik; Tallinna Saksa Gümnaasiumi kunstiõpetaja (Kunstihariduse Ühingu juhatuse liige),
Viive Tüür – Pärnu Raeküla Gümnaasiumi direktor, kunsti- ja joonestamisõpetaja.
1 PROBLEEMI ANALÜÜS JA HETKEOLUKORRA KIRJELDUS

1.1 Probleemi püstitus

Arvutialased koolitusprogrammid hõlmavad igas vanuses inimesi. Veelgi olulisem on aga koolides ainetundide läbiviimisel kasutada arvutite võimalusi õppeprotsessi paremaks läbiviimiseks. Eestikeelset õpitarkvara on vähe ja see on üheks komistuskiviks noortel “teise kirjaoskuse “ omandamisel.

Kuna kõige suurem puudus õpitarkvara osas on kunsti- ja muusikaõpetuse valdkondades, siis magistritöö raames loob autor eesti kunsti õpetamisel vajaliku õpitarkvara prototüübi, millest edaspidi on võimalikarendada vastavasisuline täismahus õpitarkvara.
1.2 Probleemi põhjusted

Miks on eestikeelset õpitarkvara vähe ja väga erineva kvaliteediga, seisneb autori arvates alljärgnevat põhjustes:

1. Eestikeelse tarkvara arendamine on suhteliselt algusjärgus, kuna siiani tegeldi koolides põhiliselt tehniliste vahendite muretsemisega, ei ole olnud ka otseselt laialdast võimalust kasutada õpitarkvara.

2. Õpetajate kaader kasutab õppeprotsessi läbiviimisel harjumuspäraseid meetodeid ja riiklikul tasandil ei ole läbi mõeldud kooli juhtkonna motiveerimine, et ainetundidesse tuua sisse arvutikasutus. Järelikult puudub ka otsene nõudlus õpitarkvara järele.

3. Turg õpitarkvarale on väike ja seetõttu ei ole ka tarkvaratootjad firmad sellest huvitatud.

Tiigrihüppe Sihtasutuse projektijuhi Aimur Liiva sõnul on eestikeelse õpitarkvara turg äärmiselt väike ja suurem osa tarkvaraprogramme valmib ühekordse projekti korras nii öelda põlve otsas. Tarkvara loomine on aga väga kallis lõbu, kuna vaja on head ideed, mis peab sobima õppekavaga ja kogu selle ilu loomiseks on vaja tervet hulka inimesi — sisu autor, digididaktik, kujundaja, programmeerija jne. Kui kujundajate ja programmeerijate leidmisega saab Liiva sõnul veel hakkama, siis atraktiivne sisu ja ainedidaktiline pool on tõsine probleem, kuna vastavald spetsialiste Eestis praktiliselt pole. Samas on midagi teisiti teha üsna keeruline — valik on kas üldse loobuda eestikeelse õpitarkvara tegemisest või üritada kõige kiuste ikkagi midagi teha (Puidet).

Uuringus esitati õpetajatele selline küsimus: Mis omadused peavad olema heal õpitarkvaral? Õpetajad tõid üksmeelselt välja eelkõige vastavuse õpempavaga. Sellele lisandusid kasutajalihtsust, kvaliteetne sisu ja eakohasus (Marandi, Luik jt 2003).

Nimetatud on kaks kitsaskohta:

Läbitöötatud allikate põhjal arvab autor, et õpitarkvara turg jääb Eestis ka tulevikus väikeseks. Tekkinud probleem õpitarkvara osas ei lahene veel nii saja.

1.3 Sihtrühmad

Sihtrühmade loetelu tähtsuse järjekorras:

1) eemalde eemalde õpilased;
2) ülikoolide õpilased;
3) kunstikoolide õpilased;
4) põhikoolide õpilased;
5) õhtukoolide õpilased;
6) täiendkoolitus;
7) iseõppijad.

1.4 Pakutavad lahendused

Kuna eesti kunsti ajaloo õpetamiseks Eesti haridussüsteemis puudub nii õpik kui ka elektroonilised materjalid, siis on kaks lahendust:

1) koostada õpik;
2) koostada õpitarkvara.

Elektroonilise õpitarkvara olemasolu muudaks õpetamismetodid kaasaegsemaks ja käepärasemaks kõikidele sihtrühmadele, kellel on arvutite kasutamise võimalused. Kuna üldine suund Eesti haridussüsteemis on võetud selline, et ainetundides leiaksid arvutid üha enam kasutust, siis arvab autor, et õpitarkvara tootmine on efektiivsem kui õpiku väljaandmine, kuna:

- Muudab õpiprotsessi kaasaegseks ja huvitavamaks.
- Soodustab "teise kirjaoskuse" väljakujunemist üldhariduskooldes.
- Võimaldab kasutada elektroonilisi materjale õpikute asemel hoides kokku kooli materiaalseteid vahendeid.
1.5 Eesti kunsti ajaloo õpetamisest Eesti koolitussüsteemis

1.5.1 Gümnaasiumi õppekava

Magistritöös (vt lisa 1) toob autor välja olulised kohad õppekavast lisa 19.1. peatüki, kus on kirjas kunstiõpetuse üldalused ja 5. peatükist selle osa, kus on õppe-eesmärgid, õppetegevus, õppesisu, mis on seotud Eesti kunsti ajaloo õpetamisega ja õpitulemused (Põhikooli ja gümnaasiumi riiklik õppekava).

Tutvudes erinevate koolide kunstiõpetuse õppekavadega, selgus et enamus koolides oli kunstiõpetuse õppekava võetud üle riiklikust õppekavast ilma muutusteta. Erinevused seisnesid ainult selles, millisel õppeperioodil eesti kunsti ajalugu käsitleti ning mitme tunni ulatuses. Võimalusi oli kaks: kas II ja III kursusel või siis ainult III kursusel. Näitena on toodud ülevaade eesti kunstiajaloo osast Tallinna Saksa Gümnaasiumis kunstiõpetuse õppekavas (Tallinna Saksa Gümnaasium), kus aluseks on võetud “Põhikooli ja gümnaasiumi riiklik õppekava”.

11. klassis käsitletakse teiste kunstiõpetuse teemade hulgast eesti kunstiajaloo õpetamisel järgnevaid teemasid:

1) EESTI RAHVAKULTUUR JA RAHVAKUNST. Rahvapärane ehituskunst, sisustus, tarbeermedel, rahvaröömad. Rahvakunsti kogumine. Eesti Rahva Muuseum.
2) BALTI-SAKSA KUNST EESTIS. EESTI RAHVUSLIKU KUNSTI SÜND (Köler, Weizenberg, Adamson).

12. klassis käsitletakse teiste kunstiõpetuse teemade hulgast Eesti kunstiajaloo õpetamisel järgnevaid teemasid:

1) EESTI KUNST 20 SAJANDI ALGUSES. Sajandi alguse ehituskunst (teatrihooned), kujutav kunst (Laikmaa, Kr. Raud, Triik, Mägi).
5) 1990. AASTATE KUNST EESTIS.
6) NÜÜDISKUNSTI UUSIMAD AVALDUSED.

Kokku võtvalt võib öelda, et koolide õppekavades on kunstiõpetuse õpetamisel järgitud riiklikku kunstiõpetuse ainekava. Omapoolseid täiendusi, muudatusi kunstiõpetuse tavaõppes koolid oluliselt teinud ei ole. Erandi moodustavad siin kunstikallakuga koolid, kus kunstiõpetuse maht on märksa suurem.

1.5.2 Kutseõppeasutuse õppekava

Võrreldes gümnaasiumi ainekavaga, käsitletakse kutseõppeasutustes kunstiõpetust väiksemas mahu, kuid eesti kunsti ajaloo teemad on ka kutseõppeasutustes ainekavas kindlalt esindatud.

1.5.3 Ülikoolide õppekavad

Eesti Kunstiakadeemia bakalaureuseõppes on samuti mitmel erialal humanitaar- ja sotsiaalteadusainete loetelus õppeainena eesti kunsti ajalugu (Eesti Kunstiakadeemia).

1.6 Ülevaade kunstialastest trükistest ja elektroonilistest materjalidest

1.6.1 Kunstialased elektroonilised materjalid maailmas

Internetis on mitmeid ingliskeelseid veebilehekülgi, kus käsitletakse kunstiteemaid. Siinkohal toob autor välja mõned näited, mis andsid eeskuju prototüübi loomisel:

- Veebilehekülg **Cuber Art Learning** URL aadressiga http://www.cyberartlearning.com/ on huvipakkuv selle poolest, et sellel lehel on võimalik õppida joonistamise interaktiivse instruktori abil, kes annab selgitusi. Lisaks sellele on leheküljel palju näiteid ja lihtsaid juhiseid, kuidas mida joonistada. Leht on kasutajasõbralik ja illustreerivate materjaliid rohkuse tõttu arusaadav ka vähese inglise keele oskuse juures.

- Veebilehekülg **Create Composition width Carl Rungius** URL aadressiga http://www.wildlifeart.org/Rungius/intro1.html annab võimaluse vaadata multimeediaesitlusi erinevatest joonistamisalastest teemadest ning sisaldab materjale kompositsiooniõpetusest.

- Veebilehekülg **Art History** URL aadressiga http://www.indiana.edu/~wfiu/ethergame/trivia/newquiz_arthist.htm on näide sellest, kuidas teha veebikeskkonnas harjutustesti, mis annab tagasisidet lahendajale.

- Veebilehekülg **Explore & Learn** URL aadressiga http://www.metmuseum.org/explore/justforfun.asp on väga mahukas materjal maailma kunstiajaloo õppimiseks.

- Veebilehekülg **Microsoft Encarta** URL aadressiga http://www.microsoft.com/products/encarta/ProductDetails.aspx?pid=002# saab tutvuda Microsoft Encarta Encyclopedia Deluxe 2005 tootega (vt joonis 1), mis on

Joonis 1. Microsoft Encarta Encyclopedia Deluxe 2005 õpitarkvara.

Joonis 2. The Art Millenium õpitarkvara esilehekülg.
Sisukorras on seitse linki:

- **Artists**
 Lingile klikates saab edasi minna järgmisele lehele, kus on võimalik teha valik, millise tähe alt tähestikus soovite kunstniku leida. Seejärel klikates valitud tähel, saab lehele, kus on järjestatud kunstnikud, kelle perekonnanimid algavad valitud tähega. Edasi tuleb klikata kunstniku nimele ja uues avanevas aknas on kunstniku elulugu, pilt ja üks teos (vt joonis 3).

 ![Artists](image)

 Joonis 3. The Art Millenium õpitarkvara kunstniku Pierre-Auguste Renoir lehekülg.

- **Styles**
 Selle valiku alt on võimalus liikuda lehele, kus on kõik kunstnikud grupeeritud vastavalt sellele, millist kunstivoolu keegi esindab. Klikates kunstivoolu nimetusele, tuleb järgnevalt leht, kus on nimekiri vastavate kunstivoolu esindajatega. Ka sellel lehel on võimalik klikata kunstniku nimele ja seejärel lugeda elulugu.

- **20th Century**
 Sellele sisukorra lingile klikates saab tutvuda täiendavate materjalidega kahekümnnenda sajandi kohta.

- **Explorations**
 Lehel on valik erinevaid teemasid kunstiajaloo kohta.
• Collections
 Sellele lingile klikates saab lehele, kus on omakorda kunstiteemad grupeeritud. Näiteks on võimalik valida GRAPHICS, SELF-PORTRAITS jne.

• Dictionary
 Leheküljel on jällegi materjal grupeeritud erinevalt. Näiteks, eraldi link on BIBLIOGRAPHY, kus saab samuti kunstnike alfabeetilise nimekirja juurde.

• Site Map
 Leheküljel saab kasutaja ülevaate veebimaterjalide üldisest struktuurist.

Entsüklopeedia tugevateks külgedeks peab autor:
1. Kuigi veebileht on mahukas, on hea struktuuri tõttu võimalik vajalik teema kyllalt kiiresti leida.
3. Illustratsioon on palju.

Nõrgad küljed on:
1. Entsüklopeedia kasutamisel ilmnes mõningaid ebamugavusi lehe struktuuris. Näiteks, kui on soov kunstniku eluloo lehelt liikuda tagasi alfabeetilisse nimekirja, kus oli nimekiri valitud tähaga kunstnikest, siis ei saa kasutaja sellele lehele, vaid ainult üldisesse nimekirja.
2. Sellise mahuga entsüklopeedia puhul võiks lehel olla otsingumootor vajaliku materjali kiireks leidmiseks.
3. Esilehe suurus on 181 KB, mis on liialt suur esilehe jaoks, kuna lehekülg peab kasutaja arvutisse võimalikult kiiresti kohale jõudma (soovitatav suurus on kuni 50 KB).
4. Tekst on valget värvi ja mustal taustal, mis on pikema teksti lugemisel ebamugav ja väsitab liialt silmi.

1.6.2 Kunstialased trükised ja elektroonilised materjalid Eestis

Gümnaasiumi klassidele on õppekirjanduse osas välja antud kaks õpikut:

Nendele raamatutele toetudes on võimalik õpetada maailma kunstiajalugu gümnaasiumi klassides.

aastal, puudusteks loevad kunstiõpetajad, et tekstid on liiga kuivad ja sisaldavad liialt fakte. Reproduktsoonid on väikesemõõdulised ja neid on vähe. Õpetajate arvamused selle raamatu kohta pärinevad küsimustiku vastustest, mille autor kunstiõpetajatele läbi viis.

Kokkuvõtteks võib öelda, et elektroonilisi kunstia laseid õppem aterjale, mida saaks eesti kunsti ajaloo õpetamiselt kasutada, ei leidu CD plaatidel ja ka Internetis on õppematerjalid vähe ning erineva kvaliteediga.

1.7 Tiigrihüppe Sihtasutuse roll eestikeelse õpitarkvara loomisel

2003. aastal on muutunud Tiigrihüppe Sihtasutuse rõhuasetused. Praegu sihtasutuse tegevuse aluseks olev programm Tiigrihüpe Pluss, keskendub rohkem sisule (õpetajate koolitus ja tarkvara) kui infotehnoloogia vahenditele, mis olid algselt Tiigrihüppe puhul väga olulised.

“Kahjuks ei ole kõik sellest rõhuasetuse muutusest aru saanud ning üritavad Tiigrihüpet endiselt samastada arvutite kooli viimisega,” nendib projektijuht Liiva. Nii tollal kui kohati ka täna pööratakse Liiva sõnul liiga palju tähelepanu tehnoloogiale ja liiga vähe inimestele ning aetakse taga statistilisi näitajaid (Puidet).

“Loengud Eesti kunsti ajaloost” õpitarkvara projekti eesmärgiks oli siduda ühte tervikusse Juhan Maiste "20 loengut Eesti kunsti ajaloost", täiendada tekstilist materjali fotode, videote, skeemide, animatsioonide ja audiomaterjaliga. Loengusari heidaks valgust eesti kunsti ajaloole uuemate uurimistulemuste valguses. Programm oli mõeldud gümnaasiumide vanemate klasside õpilastele, kunstikõrgkoolide üliõpilastele ja kunstikoolide õpilastele (Tiigrihüpe Sihtasutus).

Tiigrihüppe Sihtasutuse projektijuht Aimur Liivalt pärineva informatsiooni põhjal on hetkel toetatud ühte kunstiõpetuse alast projektit, mis käsitleb maailma kunsti ajalugu.

1.8 Arvutite kasutamine kunstiõpetuse tundides Eestis

Autori kogemused kunstiõpetuse läbiviimisega arvutiklassis on küllalt arvukad:

- Kunstiõpetuse tundide ja ringide läbiviimine algkooli ja põhikooli õpilastele.
- Arvutigraafika õpetamine gümnaasiumi õpilastele.
• Arvutigraafika õpetamine IT erialal kutseõppeasutuses.
• Kunstiõpetajate arvutialane koolitamine Tiigrituuri raames.

Kunstiõpetajatel on võimalik õpetundides arvuteid rakendada alljärgnevalt:
1) kasutada õpettöös Interneti võimalusi ja õpitarkvara;
2) anda õpilastele teadmisi arvutigraafika põhialustest;
3) õpetada õpilasi töötama programmidega Paint, MS PowerPoint, Corel, MS Publisher jne;
4) õpetada õpilasi töötama arvuti lisaseadmetega.

1.9 Hetkeseis ja üldised hoiakud

Magistritöö raames kunstiõpetajatele läbi viidud küsitluses, kus vastasid kümmekunstiõpetajat erinevatest Eesti koolidest, oli esimene küsimus “Kas peate oluliseks enda jaoks eesti kunsti ajaloo teemalise veebimaterjali kasutamisvõimalust?”. Kõik vastused sellele küsimusele olid positiivsed, millest järeldub, et huvi arvutivõimaluste kasutamiseks ainetundides on suur.

1.10 Probleemid

Probleemideks ja takistavateks faktoriteks arvutite kasutamisel kunstiõpetuse tundides võib lugeda:
1) tehniliste ja tarkvaraliste vahendite nappus koolides;
2) õpitarkvara vähesus;
3) õpetajate vähene motiveeritus, kuna tund arvutiklassis nõuab õpetajalt suuremaid pingutusi;
4) kooli direktsiooni toetuse puudumine või ükskõiksus sobiva tunniplaani koostamisel.

Kunstiõpetajatelt saadud küsimustiku vastuste põhjal oli ühel õpetajal probleem arvutiklassi kasutamisega ainetunnis. Teistel olid arvutikasutusoskused head ja tingimused selleks koolis olemas.
2 ÖPITARKVARA LOOMISE TEOREETILISED LÄHTEKOHAD

2.1 Ülevaade õpetamismeetoditest

2.1.1 Õpetamise teooriad

Peamiste õppimisprotsesside uurimine peab vastama reaale põhimõttelitele küsimustele:

- Millised on õppimise põhilised vormid ja kuidas me saame neid omavahel eristada?
- Milline on hüvituse ja karistuse osa õppimisel?
- Milline on mõtlemise osa õppimisel?
- Kuidas me saame formaalselt analüüsida käitumist ja kuidas see viib meid käitumise modifitseerimise ja kontrollimise tehnikateni?
Millised on mõned praktilised meetodid käitumise muutuste esilekutsumiseks nii teistel kui ka meil enestel? (Kapral).

Järgnevalt tutvustab autor valiku tänapäeval enam kasutatavaid õppimisteeoriaid nagu biheiviorism, konstruktivism, kognitivism ja ankurdatud õpetus, millest osad on rakendamist leidnud ka arvutikeskkonnas.

2.1.1.1 Biheiviorism

Biheiviorism on olulisim hariduse mõjutaja alates 1950. aastatest. On olnud väärtustatud nende poolt, kes ootavad koolilt teaduslike meetodeid ja “objektiivsust” ning ärimeeste poolt, kes ootavad nähtavaid tulemusi, efektiivsust ja ökonoomsust. Biheiviorismi juured on realismis (fookus loodusseadustele) ning positivismis (oluline on mõõdetav ja vaadeldav fakt).

Põhimõtted:

- Inimesed on kõrgelt arenenud loomad, kes õpivad nagu teised loomad.
- Kasvatus on käitumise kujundamine. Väidavad, et kuna keskkond määrab, kes oleme, siis sobiva käitumise loomiseks tuleb kujundada keskkonda, stimuleerida meile sobivat käitumist ja vastupidid.
- Õpetaja peab looma efektiivse õpikeskkonna.
- Efektiivsus, ökonoomsus, täpsus on kasvatuse kesksed väärtused (Parman 2002).

2.1.1.2 Konstruktivism

Konstruktivistlik õppimisteeoriat (Constructivist Theory) on loodud J. Burneri poolt 60-ndatel aastatel. See õpetamise teooria on kaasajal eriti populaarne haridusuuenduste baasteorior. Põhiideeks on, et õppimine on aktiivne tegevus, kus iga õppija konstrueerib ise oma uusi teadmisi-oskusi toetudes oma eelnevatele teadmistele. Õpetaja põhiline roll on julgustada õppijat, avastamaks ise uusi asju. Õpetaja ülesanne on teisendada uus info sellisele kujule, mis sobib õppijale tema õppimistegevuses vastavalt tema eelnevatele teadmistele. Õppekava peaks olema ülesehitatud spiraalselt, nii et õpilane nagu laoks toimi omandatud teadmistest-oskustest. Teooriat on kasutatud metoodika väljatöötamineks nii matemaatikas, reaalteadustes kui keeleõppes ja sotsiaalteadustes.
Printsiibid:
1. Õpetus peab toetuma olemasolevate teadmiste kontekstile, õpilane valmidusele ja soovile õppida.
2. Õpetus peab olema struktureeritud, et õpilane saaks haarata ja täiendada oma teadmiste pagasit sobivate killukestega teadmistest.
3. Õppeprotsess peab toetama õppuri enda soovi uurida ja täiendada oma teadmisi (Villems 1999).

Konstruktivistid rõhutavad õppimist kui protsessi, mitte aga kui lõpptulemust. Tähtis on see, kuidas õpilane saab vastuse, mitte aga "objektiivselt tõese lahenduse" taastamine (Schapel).

1990-ndatel aastatel hakkas konstruktivism populaarsust koguma. Eristatakse kaks suunda:
- Õppimine kui individuaalne protsess.
- Õppimine kui sotsiaalsest vastastikust mõjustusest tingitud tunnetusprotsess.

Konstruktivism plussid ainetundide läbiviimisel arvutiklassis.
- Kõigepealt individualiseerimine. Kui õppe individualiseerimise printsiipi massikoolis realiseerida ei õnnestu, sest see käib õpetajale üle jõu, siis arvuteid ja Internetti kasutades osutub see võimalikuks. Muidugi on ka internetipõhisel õppel oma piirid. Kui õppijate arv ühe õpetaja kohta kasvab liiga suureks, ei suuda õpetaja anda neile rahuldavat ja arendavat tagasisidet.
Loomingulisus tähendab, et vabalt hõljuv tähelepanu kujundab iseseisvalt tee õppimiseni ja nendesse otsingutesse ei tohiks väljastpoolt sekkuda. Seda saab virtuaalse õpikeskkonna kujundamisel arvestada.

2.1.1.3 Kognitivism

Printsiibid:

1. Õppematerjal peab olema mitmekülgne, esitatud mitmest vaatepunktist.
2. Vältida tuleb olulist lihtsustamist ja toetada andmete esitamist koos kontekstiga.
3. Õpetus peab olema konkreetsetel näidetel baseeruv, rõhutama teadmiste konstruktsioonimist, mitte abstraktse info ülekannet.

Kognitivism – näeb õppimist sisemiste miniavastustena. Õpetajarolliks jääb olla taustal, õhusada õpilasi looma ja avastama, pakkuda mõtlemist avardavaid ülesandeid.

1970.a loodi *Seymour Papert* juhtimisel Massachusettsi Tehnikaülikoolis laste programmeerimiskeel LOGO. LOGO on avatud õpikeskkond (konkreetsete faktide ja automaatsete protseduuride selgeks õppimine on asendunud eksperimenteerimise ideede rakendamisega) (Klaos). Konkreetsete faktide või automaatsete protseduuride
selgeksõpetamise asemel arendatakse LOGO abil õpilastes loovat mõtlemist, probleemide lahendamiseoskust, algoritmide ja abstraktsete mudelite iseseisvat koostamist ja katsetamist (Laanpere, a).

2.1.1.4 Ankurdatud õpetus

Printsiibid:

1. Ôppimis- ja õpetamistegevused peavad olema konstrueeritud probleemi e "ankrut" kasutades.
2. Ôppekava materjalid peavad olema rikkad sisu poolest, võimaldama probleemi uurimist õppuri poolt (Villems 1999).

2.1.2 Erinevad mõtlemisviisid

Termin "mõtlemine" on kasutusel mitmes tähenduses:

- Induktiivne mõtlemine - osaleb üldistuste tegemisel informatsioonist.
- Deduktiivne mõtlemine - osaleb loovuses.
- Loogiline mõtlemine - korrastab ja selekteerib teavet.

27

Probleemi lahendamine võib koosneda järgmistest astmetest:

1) raskuse tunnetamine või sellise küsimuse tunnetamine, mida ei saa vastata praegu;
2) probleemi selgem identifitseerimine analüüsi käigus;
3) asjakohaste faktide kogumine;
4) võimalike hüpoteeside formuleerimine, s.o. võimalikud seletused või alternatiivsed lahendused;
5) hüpoteeside testimine;
6) lõppjärelduste tegemine – s.o. probleemi lahendamine (Kapral).

Välja on pakutud ka mitmeid konkreetsemalt õppimisega seotud stiile. Üldjuhul on need seotud ühe või teise õppimisstooriaga. Ühe näitena võib välja tuua Honey ja Mumfordi poolt esitatud käsitluse:

2.1.3 Tajueelistused

Ühingu IGIP (Ingenieur-Gesellschaft für internationale Planungsaufgaben mbH) aupresident Dr Adolf Melezinek oli 28. augustil 2003 Tallinnas loengul, kus ta ütles, et infotehnoloogia aitab kaasa inimese taju suurenemisele - üha aktuaalsemaks muutuvad probleemid, mis on seotud suurenendud tajuga ja virtuaalse reaalsusega. Inimese taju ja tunnetuse suurendamine on väga vajalik, kuna inimese tavaline taju ja tunnetus on väga limiteeritud. On leitud, et kui inimest ümbritsevas keskkonnas liigub info kiirusega ~ 10 astmel 11 bitti sekundis, siis inimene teadvustab sellest ainult ~ 16 bitti sekundis ning inimese püsimeällu salvestub ainult ~ 0,7 bitti sekundis. Kuna inimene on "surutud" niivõrd limiteeritud "infokanalisse", siis on kirelt areneval infotehnoloogial hindamatu perspektiiv inimese taju ja tunnetuse avardamiseks (Siirak).

Õpistrateegiad võib liigitada lähtudes inimese tajueelistustest:

1. **Vaataja** – tahab näha pilte, skeeme, jooniseid jne.
2. **Kuulaja** – õppimisel piisab kuulamisest.
3. **Lugeja/kirjutaja** – õpitu paremaks omandamiseks peab lugema või kuuldu ise kirja panema.

2.1.4 Õpiprotsessi osad

Gagne traditsioonilise käsitluse kohaselt seisneb õpetaja töö igas tunnis alljärgnevate õpisündmuste kavandamisel ja läbiviimisel:

1) õpielase tähelepanu köitmine;
2) õpeesmärkide teadvustamine;
3) varemõpitu meeldetuletamine;
4) uue osa esitamine;
5) iseseisev või rühmatöö;
6) õpitu rakendamine;
7) hindamine;
8) tagasiside;
9) õpitu kinnistamine ja rakendamine teises kontekstis (Laanpere, b 2003).

Valminud õpitarkvara prototüüp ei sisalda kõiki olemasolevaid õpisündmusi vaid osa eelpool loetletutest:
1) õpiesmärkide teadvustamine (sissejuhatavas tekstis on lühikeleavaade õpitarkvara olemusest ja võimalustest);
2) varemõpitu meeldetuletamine (õpilasel on alati võimalus korrata juba õpitud materjale);
3) uue osa esitamine (õpetajal on võimalus materjalide põhjal teha presentatsioon);
4) iseseisev töö (õpilasel on alati võimalus iseseisvalt õppida uusi osasid vabas järjestuses);
5) õpitu rakendamine (õpilane saab teha õpitu kinnistamiseks harjutusteste);
6) hindamine (õpilane saab teha kontrolltesti, kus antakse teadmistele hinnang).

2.1.5 Õpitegevused

Õppetöö läbiviimisel on võimalik kasutada järgnevalt õpitegevusi:
1) loeng;
2) presentatsioon;
3) nõustamine;
4) arutelu;
5) iseseisev töö materjaliga;
6) iseseisvad ülesanded;
7) rühmaülesanded;
8) rühmaarutelud;
9) hinnangu andmine.

- Õpilased eelistavad filmide, slaidide ja piltide vaatamist, õppetööd arvutiga ning õpetaja selgituste kuulamist. Küsides aga õpilaste käest, millised õptidegevused neile köige vähem meeldivad, siis on vastusteks iseseisva uurimistöö tegemine, õpetaja küsimustele vastamine ja viktoriinides osalemine.
• Kolm kõige kõrgemat hinnangut pälvinud õpitegevust on ühtlaselt positiivse arvamuse osaliseks saanud nii soolis-vanuselises jaotuses kui koolide lõikes.

• Vastajatele meeldivad need õpitegevused, mida iseloomustavad reaalsus, atraktiivsus, passiivsus, selgus, sotsiaalsus. Kõige vähem meeldivad õpilastele need õppimisviisid, mis võtavad aega, tekitavad hirmu, nõuavad aktiivsust, on rutuinsed või kus peab palju kirjutama.

• Kui analüüsida saadud tulemusi tänapäeval väga populaarse konstruktivistliku õppimisteooria valguses, siis paraku kaks kõige enam meeldinud õpitegevust eeldavad väga vähe aktiivsust, sotsiaalsust või loovat suhtumist õppetöösse. Samuti ei ole osad konstruktivistlike joontega õpitegevused veel koolides päris juurdunud (nt rollimäng, rühmatööd).

Vaatamata sellele, et õpilased eelistasid passiivseid õpitegevusi, on siiski märgata konstruktivistlike omaduste tõusu. Praegusel hetkel on jätkuvalt valdav veel õpetaja- ja õpikukeskne õppimine, kuid üha suuremat osatähtsust saavutavad rühmatöö, rollimäng jt loovust, aktiivsust ning sotsiaalsust arendavad õpitegevused, mis ongi konstruktivistliku õppimisteooria eesmärk (Pungas 2002).

2.1.6 Hindamisreeglid

Hindamisprotsess on oluline selgitamaks, millisel määral on õppeprogrammide eesmärke saavutatud.

Kuna kõige üldisemaks õppe-eesmärgiks on saavutada olulisi muutusi inimeses, õpilaste käitumismustrites, siis hindamine on protsess, mille käigus kättesaamise võimalik muutumise aste.

Hindamist on vaja, et leida:

• kas õppeprogramm reaalselt funksioneerib ja aitab õpetajat püstitatud eesmärkide saavutmisel;
• kui palju on saavutatud õppeprotsessis;
• tugevaid ja nõrku külgi;
• kasutatavate instrumentide efektiivsuse määra, mis suhtes õppeprogramm on efektiivne ja mis suhtes see vajab täiustamist.
Hindamisprotsess sisaldab kahte hinnangut:

- varases staadiumis;
- vaheetappidel, kus muutusi on võimalik mõõta.

Hindamise läbiviimise viisid:

- kirjalik testimine on kõige lihtsam viis hindamist läbi viia;
- intervjuu;
- proovimine on samuti hindamise põhivahendiks. Ei ole võimalik küsitleda õpilasi nende kogu teadmiste ulatuses. Selle tõttu tuleks anda õpilasele ülesanne, mille lahendamisel ta saaks rakendada õpitut.

Hindamistulemuste kasutamine

Hindamistulemuste kasutatakse tugevuste ja nõrkuste analüüsimiseks ja järelduste tegemiseks nende tekkimise kohta.

Kokkuvõtteks on hindamise eesmärkideks:

- leida, millised muutused on toimunud õpilastes,
- selgitada, kas oleme saavutanud eesmärgid, kas on vaja teha muudatusi õpitarkvara efektiivsuse suurendamiseks (Kapral).

2.1.7 Testid

Kordamine, kontroll ja tagasiside (hindamine) on oma individualiseerituse tõttu aeganõudvad protseduurid, sestap pole ime, et neid juba ammusest ajast on püütud automatiserida. Samas on enamik mittedigitaalsetest harjutus- ja kontrollivahenditest kadunud pedagoogikamuuseumisse: programmeeritavad õpikud, perfokaardid värviliste reiteritega, mehaanilised/elektrilised testimasinad.

Digitaalsetest harjutus- ja kontrollivahenditest aga puudust pole – eelkõige pakuvad seda võimalust lihtsamad nõnda nimetatud trenažööri (drill & practice) tüüpi õpiprogrammid. Omaette õpitarkvaraliik on testimisprogrammid (Laanpere, a).
Testide koostamiseks ja kasutamiseks infotehnoloogia abil on õppeprotsessis mitmeid võimalusi:

- ApsTest on eestikeelne testide moodustamise ning testidele vastamise programmisedüsteem.
- Kasutada IVA keskkonna testimisvahendeid, mis on Interneti kaudu toimivad. IVA testid võimaldavad esitada seitset tüüpi küsimusi (Laanpere, Kippar jt).
- Internetis luuakse õppekeskkond, mida õpetajad ja õpilased saavad kasutada. Siinkohal toob autor välja kaks näidet:

Selle öppekeskkonna loomisel oli aluseks õpik, mille põhjal koostati sisuline osa järgnevatel alalööikutest:

- kordamisküsimused,
- testülesanded,
- praktilised ülesanded,
- koostatud tunnid õpetajate pooll (“Minu arvutiöpik” ülesanded).

Selliselt koostatud harjutamiskeskkond Internetis, mis on õpikule lisaks tehtud, on õppeprotsessis efektiivne kasutada nii õpetajale kui ka õpilastele. Selles osas, kus õpetajail endil oli võimalik küsitlusi koostada, oli kasutajaid arv üle kahekümne. Arvata võib, et edaspidi hakkavad õpetajad sellelaadseid keskkondi Internetis üha enam kasutama.
Selles töös valminud õpitarkvara prototüüpile on kavandatud juurde keskkond, mis võimaldab õpilastel teha harjutust- ja kontrollteste. Näidistena on valminud:

1. **Harjutustest** mitmekülguga küsimustele vastamine. Õpilasel on võimalus korduvalt ühele küsimusele vastata. Osade küsimuste esitamisel on kasutatud sellist kordamistemoodi, et ühte ja sama asja küsitakse kaks korda, kui erinevast vaatenurgast. Õigete vastuste leidmiseks saab lahendaja õppemateriaalite tagasi minna.

2. **Kontrolltest** mitmekülguga Õpilane saab vastata igale küsimusele üks kord ja lõpus antakse ka teada tulemus.

Harjutustesti nr 2 koostamisel on tehtud katse integreerida kahe õppeaine: eesti kunsti ajalugu ja kirjandust. Küsimuste väljatöötamisel eeldab loomulikult eriala spetsialistide kaasamist õpitarkvara valmistamisel.

Näidisküsimustike tehniliseks teostuseks on kasutatud kliendipoolset programmeerimiskeelt JavaScript. Testid tuleb edaspidi koostada selliselt, et oleks võimalik kontrollida õppijate teadmisi nii algstaadiumis, vaheetappidel kui õppimise lõppfaas. Õpitarkvara arendamisel käsitsel on plaanis luua õpitarkvarale lisaks keskkond, kus õpetajal on võimalus ise küsimustepangast küsimused testiks kokku panna. See võimaldab õpetajal reguleerida testide raskusastet ja teemade valikuid.

Kuna vastavasüsteemist kunstiõpikut ei ole, siis testide loomisel tuleb kindlasti kaasata kunstieriala spetsialiste, et:

- määratleda testide raskusastmed,
- määratleda sisuline külg,
- leida tehniliselt parim lahendus testide keskkonnale.

2.2 Õpisüsteemi disaini mudelid

Õpidisain on õppetegevuse, õppematerjalide ja õpikeskkondade kavandamise süsteemilise protsess. Valdav osa õpidisaini käsitles test põhineb süsteemiteoorial ja keskendub elektrooniliste õppematerjalide või õpikeskkondade (õppevideo ja -audio, õpitarkvara, interaktiivsed ja virtuaalsed õpikeskkonnad) loomisele.
Traditsiooniliselt põhineb õpidisain konkreetsele õppimiskäsitusele rajatud tegevusmudelil ja sisaldab järgmisi etappe:

1) sihtrühma vajaduste analüüs;
2) õpieesmärkide sõnastamine;
3) õpetamise strateegiate valik;
4) õppesisu valik ja järjestamine;
5) õppematerjalide või õpikeskkonna valmistamine;
6) õppematerjalide või õpikeskkonna kvaliteedi hindamine.

Õpisüsteemide disain (instructional systems design) on haridustehnoloogia haru, mis keskendub üldjuhul mesotasandil õpetamisega ja õppimisega seotud terviklike süsteemide arendamisele (Laanpere, a).

2.2.1 Õpisüsteemi disaini mudelite liigitus

Tavaliselt on õpisüsteemi näol tegemist “standardiseeritud koolitustootega”, millesse tehtavad küllaltki suured investeeringud tasuvad end ära tänu korduvale rakendamiselle. Enamus õpidisaini mudelitest on kõige olulisemate komponentidena õpieesmärkide sõnastamine ja nende põhjal hindamisvahendite kavandamine.

1962 aastal kujundas R.Gagne enda klassikalise õpidisaini (instructional design) teooria, milles on keskel kohal tunni ülesehitus üheksa õppesündmuse ahelana:

1) köida õpilaste tähenepanu;
2) teadvusta õpilastele tunni eesmärgid;
3) meenuta varem õpitust neid teadmisi, mida võib seekord vaja minna;
4) esita uus osa;
5) juhenda õpilaste iseseisvat õppimist;
6) anna õpilastele võimalus oma uusi teadmisi demonstreerida või rakendada;
7) anna õpilastele tagasisidet nende soorituse kohta;
8) hindu õpilaste sooritust;
9) taga õpitu kinnistamine.
Kuni tänapäevani on traditsioonilisema stiiliga õpidisainerite seas selle tegevuse alusena tunnustatud Bloomi poolt juba 1956. aastal välja töötatud õpieesmärkide tasemete linearne (lihtsamalt keerulisemale) taksonoomia:

1) **teadmine** – õpilane loetleb, defineerib, tunneb ära, demonstreerib jne;
2) **mõistmine** – õpilane võtab kokku, kirjeldab oma sõnadega, tõlgendab jne;
3) **kasutamine** – õpilane rakendab, kasutab, muudab, seostab, lahendab jne;
4) **analüüs** – õpilane analüüsib, järjestab, eristab, võrdleb, süstematiseerib jne;
5) **süntees** – õpilane kombineerib, integreerib, korraldab ümber, loob jne;
6) **hinnang** – õpilane hindab, otsustab, valib, testib, mõõdab jne.

Bloomi teooria kohaselt tuleks õpilastele seada erineval tasemel eesmärke ja hinnata iga eesmärgi saavutatust just eelnevalt seatud tasemel vastavalt. Kõigil õpilastel pole ju vaja iga teema juures saavutada sünteesi ja hinnangu taset, paljude teemad puhul piisab ka teadmisest ja mõistmisest.

D.H. Jonassen on välja pakunud ühe sellise mudeli, mis on rajatud kolmele kontseptuaalsele sambale: nimelt tuleb kaasaegset õpikeskkonna kujundades pidada silmas, et see pakiks õpilastele:

1) tuge isikliku teadmuse “ehitamiseks” (*Construction*);
2) elulähedast ja tähendusrikast konteksti (*Context*);
3) suhtlemis- ja koostöövõimalusi kaasõppijatega (*Collaboration*) (Laanpere, b 2003).
Kui õpitarkvara on veebikeskkonnas, siis pakkus D.H.Jonassen välja kahte tüüpi modelleerimist:

- käitumismodelleerimine,
- kognitiivne modelleerimine.

Käitumismodeleerimine demonstreerib, kuidas sooritada tegevusi ja kognitiivne modelleerimine väljendab õppijate arutlust selle üle, millist tegevust pidada õigeks ülesande täitmisel.

D.H.Jonassen soovitas kasutada “autentseid probleeme”, et muuta õpilastele õppimine huvitavamaks ja tähendusrikamaks.

Tegevused õpiprotsessis:

1. Demonstreritakse õpilastele erinevad näited. Objektid, ideed või sündmused näidatakse koos üheaegselt erinevalt grupeerituna mitmeid kordi ja õpilane proovib need mällu jätta.
2. Vajadusel saab õpilane kasutada nuppu, millele vajutades saab abiinfot. Talle näidatakse visuaalset või animeeritud kujul sarnast näidet.
4. Kasutatakse mitmesuguste variantidega kordamist (näiteks ümbersõnastust), mis on palju kasulikum kui tavaline kordamine (Patsula).

Õpitarkvara tüübid

Õpitarkvara võib jagada erinevateks tüüpideks. Tootjad valivad reeglina ühe viiest õpiprogrammi tüübisõit vöi ka mitu (vt joonis 5).
Joonis 5. Õpitarkvara tüübid.

1. **Simulatsioonid** – esitlevad sündmuste seeriat, et luua virtuaalne keskkond, milles lahendada probleem.
2. **Mäng** – õppimine käib läbi mängimise.
3. **Drill ja praktika** – võimaldavad harjutamist: kasutatakse enamasti alg- ja keskastme alguses:
 - eesmärgiks baasteadmiste omandamine automaatsuseni;
 - mõeldud individuaalseks harjutamiseks, teadmiste (läbitud materjali); kinnistamiseks ja praktiseerimiseks (matemaatika, füüsika, keemia jne.);
 - programm peab vastama õpilase lugemisoskusele.
4. **Probleemlahendus** – pakuvad stsenaariumit, millele õpilane peab leidma lahenduse:
 - kasutatakse keskastme ja gümnaasiumiklassides;
 - sobivad **paarikaupa töötamiseks** arvuti taga;
 - mõeldud teatud **probleemide lahendamiseks** nii reaal- kui ka humanitaarainetes (kuidas jõuda teatud ajaga teatud kohta?) (Klaos).
5. **Juhendavad (Tutorial-programmid)** – pakuvad samm-sammulist lähememist:
 - programmi sisuks on mõistete või oskuste lahtiseletamine samm-sammult;
 - arvestatakse õpilaste iseärasustega ja erinevate õpistilidega: peab olema mõeldud nii kiirematele kui aeglaseematele õppijatele, nii nõrkadele kui tugevatele õpilastele.
Õpitarkvara tüüpide mudelite struktuurid

Alljärgnevalt tuuakse välja ja kirjeldatakse simulatsiooni, mängu ja Tutorial-programmi õpitarkvara tüüpide mudelite struktuure.

- **Simulatsioon**

 Esmalt valitakse õpitav teema, siis muudetakse parameetreid ja programm reageerib ja annab tagasiside. Lõpus tehakse kokkuvõte (vt joonis 6).

![Joonis 6. Simulatsiooni tüüpi õpitarkvara.](image)

- **Mäng**

![Joonis 7. Mängu tüüpi õpitarkvara.](image)
• **Tutorial-programm**

![Diagram](image)

Joonis 8. Tutorial-programmi tüüpi õpitarkvara (Marandi).

Nagu näha, on õpisüsteemi disaini mudelite struktuure mitmeid. Õpitarkvara prototüüp on üles ehitatud **Tutorial-programmi** struktuurist lähtuvalt ja koosneb järgnevast osadest:

- tiitelleht, sissejuhatus;
- õppematerjalide esitamine;
- harjutamine – küsimine, vastamine;
- kontrolltestid – küsimine, vastamine, tagasiside, hindamine.

2.2.2 Õpitarkvara arenduse mudelid

Metoodika on süsteemaline viis millegi tegemiseks (näiteks tarkvara arendamiseks). Mõned metoodika omadused:
• detailsus (rangus, täpsus, ...) – kui rangelt tegevust kirjeldatad;
• skoop – kui suurt ulatust kogu protsessist, rollidest, tegevustest metoodika katab;
• elemendid, mida kirjeldatad (rollid, tehnikad, protsess, tehised jne) (Otsason, a).

Õpisüsteemide disain (ISD – instructional systems design) on haridustehnoloogia haru, mis keskendub üldjuhul mesotasandel õpetamisega ja õppimisega seotud terviklike süsteemide arendamisele (Laanpere, b 2003).
Järgnevalt tuuakse välja mõned enam kasutust leidnud tarkvara arenduse mudelid nagu koskmudel, spiraalmudel, ADDIE mudel ning võelda arenduse metoodikad ja põhimõtted.

2.2.2.1 Koskmudel

Projektid, mis hääta on sattunud koskmudelit järgides, on tihti näidanud järgmisi sümptomeid:

- **Pikaleveniv eelnevalt kodeeritud süsteemiosade integreerimine ning selle käigus ja selle tõttu hiline algse arhitektuuri kõrvaljäätmine.** Tüüpine on näidanud järgmisi sümptomeid käik:
 - Ajal, mil projekteeritakse ja koostatakse põhjalikke (sageli liigagi põhjalikke) juhendeid, kulgeb projekt edukalt.
 - Koodi kirjutatakse elutsükli hilisemas etapis.
 - Ettenägematute teostusküsimuste ja liideste mitmetimõistetavuste tõttu rängad probleemid integreerimisel.
 - Tuntakse rasket eelarve ja ajagraafiku survet pikaleveniva integreerimise ja testimise ajal.
 - Toimuvad hilised ajal mooduse tõttu ilm projekteerimiseta ebaoptimaalsed parandused.
 - Hapra ja raskesti hallatava toote hilinenud tarnimine.

- **Liiga hiline riskide lahendamine.** Töölinine koskmudeliga seotud probleem on see, et puudub varajane riskide lahendamine. See tuleb sellest, et koskmudeli korral on tarkvara elutsükli alguses fookus paberartiklidest (paper artifacts), kus tegelikud projekteerimise, teostuse ja integreerimise riskid on veel suhteliselt raskesti ainumatud.

- **Osapooltevahelised vääritamisvõimalikud.** Konventsiooniala prosess on nõuete spetsifitseerimise raskuste ja tehnilise informatsiooni vastavas vormis kirjelduse ainult paberdokumentidena vahetamise tõttu osanik (stakeholders; isik, keda süsteemi väljund materiaalselt huvitat) kalduvus teineteisest pidevalt valesti aru saada. Täpse sümboolika puudumise tulemusel on läbivaatused subjektiivsed ja informatsiooni
vahetamine valikuline. Tüüpine lepingulise tarkvaraarenduse sündmuste ahel on klassikalises protsessis järgmine:

- Lepingu täitja valmistab ette tarnelepingu dokumendi ja annab selle kliendile kinnitamiseks.
- Kliendilt saab lepingu täitja tagasi kommentaarid (tüüpiliselt 15 kuni 30 päeva jooksul).
- Lepingu täitja liidab need kommentaarid lepingusse ja esitab (tüüpiliselt 15 kuni 30 päeva jooksul) lepingu viimase versiooni kinnitamiseks.
- Selline ühekordse läbivaatusega paberite vahetamise protsess on tarkvaraarenduse tegelike eesmärkide saavutamiseks äärmiselt väikese kasuteguriga, et mitte öelda kahjulik.

2.2.2.2 Spiraalmudel

![Joonis 10. Spiraalmudel (Kaljula 2004).](image)

44
Mudel koosneb neljas kõrgtaseme etapist, mis omakorda jagunevad etappideks. Körgtaseme etapid on:

1. Planeerimine ja eesmärkide määratlemine – toote defineerimine, äriobjektide ja piirangute püstitamine.
2. Valikute hindamine – riskianalüüs ja prototüüpimine.

Teist väljalaset nimetatakse lõplikuks. Tegelikult võib väljalaskeid olla rohkem – täpselt nii palju, et tellija jääb süsteemiga rahule. Spiraalmudeli puhul on rohkem võimalusi tellija kaasamiseks kui koskmudeli puhul.

2.2.2.3 ADDIE mudel

On olemas palju ISD muduleid, kuid ADDIE (*analyze, design, develop, implement, and evaluate*) mudel on põhimudel, mis hõlmab tõesti kõiki õppimise tüüpe, sealjuures ka veebipõhist õppimist (*The ADDIE Instructional Design Model*). Teisisõnu ADDIE on arvutil põhinev (brauseri kasutajaliidesega ja rõhuasetusega multimeedia kasutamisele) hariv mäng, mis on kujundatud Internetis õpetavas keskkonnas (Strickland 2002). ADDIE mudel koosneb alljärgnevalt esitatud faasidest (vt joonis 11):

1) analüüsisfaas (*Analyze*);
2) disainisfaas (*Design*) – süsteemi kujundamine (disain);
3) arendamisfaas (*Develop*) – süsteemi loomine e arendamine, mis põhineb analüüsi ja kujundamise faasil;
4) rakendamisfaas (*Implement*) – süsteemi rakendamine;
5) hindamisfaas (*Evaluate*) – kõigi projekti faaside hindamine (*The ADDIE Instructional Design Model*).
2.2.2.4. Välede metoodikad

Viimastel aastatel on suurt populaarsust kogunud väle (agile) lähenemine tarkvara arendusele ning tarkvaraarendajate huviorbiiti on kerkinud mitmed välede metoodikad. Väle (agile) lähenemine tähendab:

- kergekaalulist arendusprotsessi;
- muutustega kohandumist;
- inimestele orienteeritust.

See on üks võimalik viis, kuidas tarkvara luua. Olemas on mitmeid erinevaid välede metoodikaid. Välede arenduse põhimõtted:

1. Kõige tähtsam on rahuldada klienti, tarnides varakult ja pidevalt väärtust loovat tarkvara.
2. Muutuvate nõuetega tuleb arvestada, isegi kui need ilmnevad hiljem. Me kasutame muutuvaid nõudeid ära kliendile konkurentsieelise loomiseks.
3. Töötava tarkvara üleandmine peab toimuma tihiti – paari nädala kuni paari kuu tagant, eelistades lühemat aega.
4. Äriinimesed ja arendajad töötavad kogu projekti jooksul igapäevaselt koos.
6. Efektiivseim viis info edastamiseks kliendi ja arendajate ning arendajate endi vahel on vahetu suhtlus.
7. Töötav tarkvara on peamine edukuse mõõdupuu.
10. Lihtsustamine e. kunst suurendada mittetehtava töö hulka, on hädavajalik.
11. Parim arhitektuur, nõuded ja disain saavutatakse iseorganiseeruvates tiimides.
12. Tiim peab regulaarselt tehtule tagasi vaatama; mõtlema, kuidas olla veel efektiivsem ning oma käitumist vastavalt muutma.

Väledate metoodikate loetelu:
- Rationali unifitseeritud protsess (RUP).
- Ekstreemprogrammeerimine (XP).
- Erisus-juhitud arendus (FDD).
- Adaptiivne tarkvaraarendus (ASD).
- Dünaamiline süsteemiarendusmeetod (DSDM).
- Crystal Clear.
- Kulusäästlik arendus (LD).
- Scrum (Otsason b).

Ülevaade RUP mudelist

Programmi elutsükkel koosneb paljudest tsüklitest. Üks tsükkel on ühe konkreetse programmiversiooni valmistamine. RUP jagab ühe arendustsükli neljaks faasiks (vt joonis 12):

Joonis 12. RUP mudel

Iga faas lõpeb *verstapostiga (milestone)* – Konkreetne ajahetk, mil on vaja langetada strateegiliselt tähtsaid otsuseid edaspidise tegevuse kohta (Järviste).

2.2.2.5 Metoodikate kasutatavus

Cutter Consortium uuris erinevate metoodikate kasutatavust 2001. aastal. Uuringus osalejad olid 200 IS/IT juhti üle maailma (s.h. 33% Põhja-Ameerikast, 20% Euroopast) nii tarkvarafirmadest (39%) kui ka muudest firmadest, kes tarkvara oma tarbeks arendavad erinevate aastakäivetega: nt. 37% alla $5M, 13% üle miljardi dollari. Ühe metoodika kasutamine ei välistanud teist. Kahjuks pole selge, mida mõeldi kasutamise all. Lisaks väledatele metoodikale uuriti ka CMM (27%) ja ISO 9000 (26%) järgmist tarkvara loomisel. Enim oli kasutatud *oma metoodikat*, mis kooskõlas väleda arenduse põhimõtetega (vt joonis 13).

Erinevate metoodikate kasutatavust Eestis ei saa öelda, kuna uuringut ei ole tehtud. Teada on, et on kasutatud:
- RUP,
- XP,
- RAD,
- enamusel oma metoodika, mis tihti koskmudeli modifikatsioon (Otsason, c).
2.2.2.5 Loodava õpitarkvara arenduse mudel

Tutvunud tunnustatud tarkvara arenduse mudelitega, koostas autor valmiva õpitarkvara arenduse mudeli, võttes eeskujul spiraalmudelist (vt joonis 15):

Joonis 15. Loodava õpitarkvara arenduse mudel.

Loodava õpitarkvara arenduse etapid:

1. Analüüsifaas, nõuete kogumine ja valikute hindamine.
Analüüsifaasi käigus tehakse selgeks, mida tarbija loodavalt süsteemilt ootab ning selle alusel töötatakse välja nõuete spetsifikatsioon. Tuleb leida vastused küsimustele:

- Kes on sihtrühmad?
- Millises mahus ja järjestuses peavad sihtrühmad materjali omandama?
- Millisel kujul materjal esitada, milliseid vahendeid kasutada sihtrühmade huvidest lähtuvalt?
- Millised piirangud, takistused võivad ette tulla?
- Milline struktuur valida veebipõhisele tarkvarale?

Nõuete spetsifikatsioon:

1) toote eesmärk – luua veebipõhise tarkvara prototüüp, mis pakub Eesti kunsti ajaloo õppimisel senisele alternatiivset lahendust ja sisaldab endas Eesti haridussüsteemis nõutud kunstiõpetuse teemasid;
2) sihtrühmad – gümmaasiumide õpilased, ülikoolide üliõpilased, kunstikoolide õpilased, põhikoolide õpilased, õhtukoolide õpilased, täiendkoolitus, iseõppijad;
3) ainevaldkond – eesti kunsti ajalugu 1880-1940;
4) funktsionaalsed ja andmete nõuded – elektroonilised õppematerjalid, pildigalerii, harjutustestid, kontrollptestid, otsingumootor, materjalide lisamisvõimalused;
5) kasutatavuse nõuded – on lihtsa disaini ja struktuuriga, mugav kasutada, abiinfo võimalus;
6) tehnilised nõuded – kasutatav veebikeskkonnas alates versioonist 4 Internet Explorer-i ja Netscape programomitega.

2. Toote arendamine.
Toote arendamise faasis toimub süsteemi kujundamine, kus on olulised järgmised aspektid:
 7) süsteemi korraldus, protsessid ja struktuur;
 8) süsteemi info kulgemise aspekt;
 9) vormiline disain.

3. Esimese prototüübi testimine.
Kunstiõpetuse õpetajad (eksperdid) annavad esmasele prototüüble omapoolse hinnangu ja esitavad ettepanekud parandusteks ja täiendusteks.

Täiendused ja parandused tehakse esmases prototüübis ekspertide hinnangute ja ettepanekute analüüsi põhjal.

5. Teise prototüübi testimine.
Õpilased ja õpetajad vastavad ankeetküsitlustele, mis puudutavad õpitarkvara kvaliteeti ja kasutusmugavust.

6. Analüüsifaas ja toote arendamine – täienduste, paranduste tegemine.
Täiendused ja parandused tehakse teises prototüübis sihtgruppide – gümnaasiumi õpilaste ja kunstiõpetajate hinnangute ja ettepanekute põhjal.
7. Toote lõplik disainimine ja tarbijale/tellijale toimetamine.
Kui on valminud kaks prototüüpi ja neid on testitud ning täiendused sisse viidud, järgneb toote lõplik valmimine oma ala spetsialistide koostööna ning tarbijale kättesaadavaks tegemine või tellijale toimetamine.

2.2.3 Hindamisetapp

2.2.3.1 Hindamise mõiste

Hindamine on seotud informatsiooni kogumisega toote (süsteemi) kasutatavusest (või potentsiaalsest kasutatavusest) selleks, et parandada olemasolevat või disainida parem süsteem.

Hindamisel on kaks põhieesmärki:
- määrata kasutusel oleva toote efektiivsust;
- leida soovitusi toote parandamiseks.

2.2.3.2 Hindamise põhjused

Hindamise põhjused võib jagada nelja suurde gruppiga:
- reaalse maailma mõistmine, kuidas kasutajad rakendavad testitavat produkti tööks;
- arendusvariantide võrdlemine;
- sobivus kindlale sihtgrupile, kas produkt on kõikalt hea;
- vastavus standarditele.

2.2.3.3. Hindamise aeg

Hindamine võib esineda kõikides toote (näiteks õpitarkvara) arenguetappides. Üldiselt võib hindamisi jagada kaheks:

Näiteks kvaliteedikontroll on kokkuvõtlik hinnang.
Esimestes arendamise etappides on hindamise eesmärkideks tavaliselt:

- ennustada toote kasutatavust või mõnda selle aspekti;
- kontrollida arendajate arusaamist kasutaja nõudmistest;
- kiiresti testida tekkinud ideid.

Hiljem liigub hindamisel rõhk sellistele asjadele nagu:

- identifitseerida kasutaja raskused nii, et täiendatud toode (süsteem) arvestaks paremini kasutaja vajadusi;
- muuta uus versioon paremaks.

2.2.3.4 Hindamise meetodid

Hindamise meetodid jagatakse viide kategooriasse:

1. Analüütilised hinnangud - dokumentatsiooni põhjal.
2. Eksperthinnangud – kasutatakse selliste inimeste abi, kes toetudes oma kogemustele annavad oma hinnangu toote efektiivsusele ja kvaliteedile.

Olenemata hindamismeetodist tuleks arvestada:

- Hinnangul osalevate kasutajate omadusi (näiteks: eelnevaid kogemusi, vanust, sugu jms).
- Tegevuste tüüpe, mida kasutajad teevad (või teha). Need varieeruvad eelnevalt kindlaksmääratud tegevustest kuni kasutaja täieliku vabaduseni.
- Keskkonda, kus hindamine toimub.
- Hinnatava objekti tüüpi (Kapral).
Järgnevalt tutvustatakse lähemalt, mis on eksperthinnang ja küsimustel põhinev hinnang, kuna neid hindamismeetodeid kasutatakse käesoleva õpitarkvara prototüübi hindamissetappides.

Eksperthinnang

See meetod on üsna edukas, kuna:

1. Väike arv eksperte suudab tavaliselt tuvastada suure hulga kasutajal tekkivaid potentsiaalseid probleeme juba peale ühekordset tootega tutvumist.
2. Eksperdid pakuvad sageli välja üsna radikaalseid muutusi tootes. Tüüpilised kogemusteta kasutajad aga suudavad pakkuda lahendusi ainult üksikutele probleemidele, muutes terviku tihti veelgi hullemaks.

Eksperthinnangud on tavaliselt odavamad kui reaalsete kasutajate kaasamine toote arendustöösse, kuid on ka mitmeid miinuseid:

- Ekspertidel on sageli tugevalt väljakujunenud oma arvamused ja eelistused.
- Heaks eksperthinnanguks peavad eksperdid muretsema suurel hulgal informatsiooni kasutajate kohta.
- Eksperthinnangud ei suuda kirjeldada reaalse tavakasutaja käitumist. Algajad kasutajad võivad teha paljusid väga ootamatuid asju.

Küsimustel põhinevad hinnangud

Kasutatakse intervjuusid ja küsimustikke, et teada saada kasutaja subjektiivseid arvamusi tootest. Intervjuud nõuavad hoolikat planeerimist, et esitatavate küsimuste jada oleks seotud hinnatava objektiiga:

1. Struktureeritud intervjuu – sisaldab hulga ettemääratud küsimusi.

Küsimustike tegemisel tuleks meelestidada, et:

- Küsimused peavad olema selgelt sõnastatud (tuleks teha vajadusel eeluuring).
- Hindamisskaalad ei tohiks ankeedi sees erineda.
• Soovitav on teha pikast ankeedist ka lühem versioon, kasutajatele kellel ei ole küllaldaselt aega/viitsimist pikka ankeeti täita.
• Ankeedi täitmise ja tagasitoimetamine tuleb teha võimalikult lihtsaks

2.2.3.5 Kvantitatiivne ja kvalitatiivne informatsioon

Kvantitatiivne informatsioon koosneb andmetest või suhtumistest, mida saab hinnata arvuliselt, haarab palju erinevaid aspekte. Hindamine selle informatsiooni alusel võib osutuda täpsustamata tööülesande korral lõputuks protsessiks.

Kvalitatiivne informatsioon koosneb ülevaadetest ja arvamustest, mida saab kuidagi kategoriseerida, aga mida ei saa hinnata konkreetsete arvudega (Kapral).

2.2.4 Öpitarkvara hindamine

Öpitarkvara hindamisel on kaks põhilist aspekti:
• programmi korrektne funktsioneerimine ja kasutamisprobleemid;
• ainealane correksus ja didaktiline kvaliteet.

Juba öpitarkvara koostamisel arvestas autor öpitarkvara kvaliteedi hindamise skeemiga, kus programmi soovitatakse läbi vaadata seitse korda, iga osa jaoks eraldi.
1. Keel ja grammatika.
2. Kasutajaliidese üldküsimused.
4. Muud pedagoogilised probleemid.
5. Nähtamatu osa programmist.
6. Öpetatav materjal.
7. Lisamaterjalid.

1. Keel ja grammatika. Õppematerjалиde keel peaks olema eriliselt hea, peab vastama keerukuselt kasutaja tasemele.
• Lugemistase:
 o Kas tekst sobib antud klassi õpilastele?
o Kas teksti tase on ühtlane nii ainetekstidel kui programmi kasutamise juhil?

- Kultuurikeskkond:
 o Kas näited on arusaadavad meie õpilastele?

- Terminoloogia ja žargoon:
 o Erialateksti vahekord õpikuga.
 o Arvutiterminoloogia vastavus õpilaste tasemele.
 o Kas on õpilastele tundmatuid lühendeid ja žargooni?

- Õigekiri

- Teksti paigutus
 o Kas on kasutatud ühtseid reegleid?
 o Kas jaotus ekraanideks on mõistlik?

2. Kasutajaliidese üldküsirused.

- Ekraanipilt:
 o Ekraanil ei tohi olla liiga palju informatsiooni.
 o Kas pilt on esteetiline?
 o Kas oluline info paistab hästi välja?
 o Kas kõige väljapaistvam on oluline?

- Esitusviis:
 o Kas teksti, pilti, heli kasutatakse asjakohaselt?
 o Kas värvi ja fonte, suuruste varieerimist jms kasutatakse õigesti?

- Teksti kvaliteet:
 o Kas aken on sobiva suurusega?
 o Kas font on sobiva suurusega?
 o Kui tekst on pikk, kuidas ta siis liigub?

- Sisend:
 o Kas alati kasutatakse sobivat sisendseadet ja –viisi?
 o Kas alati on selge, kuidas sisestada variandi valikut, täpitähti, erisümboleid?
 o Mis juhtub sisestusvigade korral, kas saab parandada?

- Alustamine ja lõpetamine:
 o Kas registreeritakse õpilase edasijõudmist?

- Menüüd:
 - Kas orienteerumine on lihtne?
 - Kas jooksev asukoht on ekraanil kujutatud?
 - Kas on selge, kuidas valida?
 - Kas ja kuidas saab eksliku valiku puhul tagasi?
 - Kas näidatakse, millised osad on juba läbitud?

- Küsimused:
 - Kas küsimused on sobiva sõnastuse ja raskusega?
 - Kas küsimused on olulise info kohta ja vastavad õppetüki eesmärgile?
 - Kas küsimused sundivad mitte ainult õiget vastust ära tundma, vaid ka meelde jätma, aru saama, rakendama, hinnangut andma, konstrueerima?
 - Kas on kasutatud erinevaid küsimuste tüüpe?
 - Kas küsimused asuvad õiges kohas materjali esitamisel?
 - Kas küsimustele sisu on üheselt mõistetav?

- Küsimustele vastamine:
 - Kas vastamisviis on selgelt arusaadav?
 - Kas on selge, kuidas saab sisestusviguliparamad enne vastuse hindamist?
 - Kas saab uuesti vastata?
 - Kas saab vastamata jätta?
 - Kas saab küsida abi ja õiget vastust?

- Tagasiside formaat:
 - Kas formaadivead eraldatakse valedest vastustest?
 - Kas tagasiside äratab piisavalt tähelepanu?
 - Kas antakse ka sisulisi hinnanguid?
 - Kas tagasiside kaob ekraanilt, kui ta pole enam vajalik?

- Tagasiside kvaliteet:
 - Kas tagasiside on arusaadav?
Kas tagasiside parandab tehtud vigu või ainult loeb valeks?
Kas toetab ise õige vastuse leidmist?
Kas reageeritakse tüüpilistele vigadele?
Kas vastuseid hinnatakse intelligentselt vöö ainult täht-tähelt?
Kas hinnangud antakse sobivas toonis?

4. Muud pedagoogilised probleemid.

- Üldised küsimused:
 - Kas arvuti on õige meedium selle materjali õpetamiseks?
 - Mille poolest ta on parem kui raamat, loeng jne?
 - Kas metoodika on sobiv?
 - Kas õpilastel on tegevust küllalt tihti?
 - Kas juhised tegevuseks on selged?
 - Kas uut infot antakse sobivate tükkide na?
 - Kas öppetüki suurus on sobiv?
 - Kas programmi poolt nõutav öpilase lõpptase on sobiv?
 - Kas öppetöö adapteerub öpilase järgi?

- Öpilase juhtimisvõimalused:
 - Kas öpilane saab määrata edasiliikumise kiirust?
 - Kas ta saab vaadata eespools olevat materjali?
 - Kas saab öppetükki pooleli jätta ja hiljem jätkata?
 - Kas juhised ja abiinfo on kättesaadavad?
 - Kas on selge kuidas kõiki asju teha?
 - Kas liikumine on lineaarne või vaba?
 - Las öpilane saab midagi pöördumatult rikkuda?
 - Kas öpilasel on ebasobivaid tegutsemisvõimalusi?
 - Kas andmed küsimuste ja vastuste kohta on kaitstud?

- Motiveerimine:
 - Kas programm on piisavalt mugav arvutihirmu vältimiseks?
 - Kas programm on piisavalt huvitav?
 - Kas suunatakse olulisil asju omandama?

- Interaktiivsus:
 - Kas on kasutatud erinevaid interaktsioone ja öpilase tegevusi?
• Animatsioon ja graafika:
 o Kas nad annavad ideid hästi edasi?
 o Kas neid kasutatakse oluliste asjade jaoks?
 o Kas kiirus, värvid jms on sobivad? Kas neid saab sobitada?

 • Tulemused ja andmed:
 o Kas õpilase töö tulemused salvestatakse?
 o Kuidas identifitseeritakse õpilasi?
 o Kas kogutakse sobiv komplekt andmeid?
 o Kas õpetaja saab andmekogumist juhtida?
 • Ligipääs andmetele:
 o Kas on kindlustatud õpilaste privaatsus?
 o Kas on kindel, et andmeid ei saa võltsida?
 o Milliseid osi andmetest ei tohi õpilastele kättesaadavaks jätta?
 • Liiga palju andmeid:
 o Mis juhtub, kui andmeid saab liiga palju?
 o Kas õpetaja saab hoiatuse?
 o Kuidas saab andmeid taastada?
 • Restart:
 o Mis juhtub, kui programmi töövägivaldselt katkestatakse?

6. Õpetatav materjal. Seda osa peaks uurima aineõpetaja.
 • Eesmärgid:
 o Kas eesmärgid teatatakse õpilasele?
 o Kas eesmärgid teatatakse nii õpilasele, et ta nad omaks võtab?
 o Kas eesmärgid on didaktiliselt õiged?
 • Info:
 o Kas pakutav info ja tegevus vastab eesmärkidele?
 o Kas antakse täielik informatsioon?
 o Kas detailsuse aste on sobiv?
 o Kas midagi on vananenud?
• Sisu rõhuasetused:
 o Kas tegeldakse asjadega, mis vastavad eesmärkidele?
 o Kas tegeldakse sellega, mis on raskemini omandatav?

• Materjali organiseerimine:
 o Kas järjestus on sobiv aine enda sisuga?
 o Kas toetutakse varasematele teadmistele?

• Juhendi üldkvaliteet:
 o Kas sisukord on olemas?
 o Kas index on olemas?
 o Kas nõuded riistvarale on kirjeldatud?
 o Kas hoiatused on arusaadavad?
 o Kas abisaamise kontaktandmed on olemas?

• õppetükkide funktsioneerimise kirjelduse juhend:
 o Kas õppetüki alustamine on kirjeldatud?
 o Kas juhised on korrektset ja selged?
 o Kas välditakse žargooni?
 o Kas arhiveerimine on kirjeldatud?
 o Kas õpetaja erivõimalused on kirjeldatud?

• Õppetükkide sisu juhend:
 o Kas on vajalik sissejuhatatav kirjeldus olemas?
 o Kas kirjeldus on korrektne?
 o Kas on sisu kokkuvõte olemas?
 o Kas leiduvad soovitused õppetööses integreerimiseks?
 o Kas leiduvad soovitused edaspidiseks tööks?

• Abimaterjalid:
 o Kas vajalikud abimaterjalid on kaasa antud?
 o Kas neid on lihtne kasutada/paljundada?
 o Kas töölehed ja tulemuste tabelid on kaasa antud?
 o Kas õpetajale mõeldud materjalid on kaasas?
 o Kas testide küsimustepank on kaasa antud?

• Muud ressursid:
Loodava õpitarkvara prototüübi hindamine

Hindamise aeg
Hindamist kasutatakse õpitarkvara arendusprotsessis kahel korral. Kui on valmis saanud esimene prototüüp, siis viiakse läbi küsitlus ekspertidele (kunstiõpetajatele) ja kui on valmis saanud teine prototüüp, siis tehakse ankeetküsitlus õpilastele ja õpetajatele.

Hindamise esimest etappi käsitletakse põhjalikult käsoleva töö 4. peatükis “Õpitarkvara prototüübi evalvatsioon”. Hindamise teist etappi tutvustatakse põgusalt, kuna see jääb magistritöö raames väljapoole.

Hindamismeetodid

- Eksperthinnangud – kasutatakse selliste inimete abi, kes toetudes oma kogemustele annavad hinnangu toote efektiivsusele ja kvaliteedile.

Küsitlused
Koostatakse kaks erinevat küsimustikku. Mõlemas küsimustikus oli kümme küsimust.

Küsimustike kirjeldused:
1. Esimene küsimustik saadetakse kahekümnele kunstiõpetajatele (vt lisa 4).
2. Teine ankeetküsitlus saadetakse kümnele õpilasele ja kümnele õpetajale.

Õpitarkvara esimesele prototüüble antud eksperthinnangute põhjal saadakse kvalitatiivne informatsioon, kuna küsimustele vastusteks saadud arvamusi ja ettepanekuid ei saa hinnata konkreetsete arvudega.

Õpitarkvara teisele prototüüble antud hinnangute põhjal saadakse kvantitatiivne informatsioon, kuna ankeetküsitluse vastuseid saab hinnata arvuliselt.
2.3 Öpitarkvara Interneti keskkonnas

2.3.1 Autoriõigused

Kuna öpitarkvara loomine eeldab mitmete arhiivi-, pildimaterjalide, trükiste kasutamist, siis tutvus autor maailmas tunnustatud autoriõigusseadustega ja Eestis kehtiva Autoriõiguse seadusega.

Autoriõigused maailmas

Iga Interneti kasutaja ja veebilehekülje autor peab teadma Internetis kehtivaid autoriõiguseid. Peaaegu kõik riigid omavad ühesuguseid õigusakte seoses autoriõigustega. Alljärgnevalt tuuakse välja üldised põhiteadmised, mis on universaalsed ja baseeruvad rahvusvahelisele autoriõiguste uurimusele:

- autoriõigus on automaatsne: kui töö on piisavalt originaalne, on ta kaitstud autoriõigustega. Autoriõiguse registreerimine ei ole nõutav;
- peamine reegel: autoriõiguse omanikul on ainuõigus teha oma tööst koopiaid ja ainuõigus seda publitseerida;
- autorõigus ei kaitse ideid, fakte või arvamusi. Autoriõigus ei väldi seda, et teised inimesed ei võiks autoikaitse all olevat tööd väljendada oma sõnadega;
- pole kunagi vale küsida töö autorilt lubamisel lubatud, mida tema on loonud;
- kui kasutate kellegi tööd Internetist, siis määrige alati ära autor ja URL aadress, kust te selle materjali saite;
- kui panete oma veebilehele lingi, mis viitab mõnele teisele materjalile, siis on see lubatud. Teistel juhtudel, kui suunate lingi mõnele objektile Internetis (pilt, muusikafail), peate küsima autoriilt selleks lubat;
- kui keegi paneb oma tööd Interneti üles, siis on teistel Interneti kasutajatel kõik õigused seda tööd lugega, vaadata, retseneerida ja kuulata. Tavaliselt on ka lehe printimine isiklikuks otstarbeks lubatud, kuid koopiate tegemine ja nende levitamine, avaldamine raamatuna või kopeerimine oma veebilehele ei ole lubatud. Sellisel juhul vajate luba autorilt (Korpela 1998).
Autoriõigused Eestis

Autoriõiguse seadust kohaldatakse teostele:

1) mille autoriks on Eesti Vabariigi kodanik või Eesti Vabariigis alaliselt elav isik;
2) mis on esmakordselt avaldatud Eesti Vabariigi territooriumil või mis on avaldamata, kuid asuvad Eesti Vabariigi territooriumil, sõltumata teoste looja kodakondsusest või alalisest elukoost;
3) mida tuleb kaitsta vastavalt Eesti Vabariigi välislepingule.

Välisriigis avaldatud teoste puhul kehtivad Eesti Vabariigi Autoriõiguse seaduse järgi järgnevad ettekirjutused:

Teostele, mis on esmakordselt avalikustatud välisriigis või mis on avalikustamata, kuid asuvad välisriigi territooriumil ja mille autoriks on isik, kelle alaline elukoht või asukoht on välisriigi territooriumil, ning millele ei laiene käsioleva paragrahvi 1. lõike punkt 3, kohaldatakse käsiolevat seadust ainult juhul, kui see riik garanteerib samasuguse kaitse Eesti Vabariigi autorite teostele ja teostele, mis on esmakordselt avaldatud Eesti Vabariigis (Autoriõiguse seadus, 2000, § 3).

Teose kasutamine autori nõusolekuta ja tasu maksmiseta on lubatud teose pealkirja (nimetuse) ning avaldamisallika kohustusliku äraniitamisega, kui õiguspäraselt avaldatud teost või selle osa kasutatakse illustreeriva materjalina õppe- või teaduslikel eesmärkidel nende eesmärkidega motiveeritud mahus ja tingimusel, et selline kasutamine ei taotle ärilisi eesmärke (Autoriõiguse seadus, 2000, § 19 punkt 2).

Autoriõiguse ajaline kehtivuse kohta ütleb Autoriõiguse seadus alljärgnevalt:

Autoriõigus kehtib autori kogu eluaja jooksul ja 70 aastat pärast tema surma, olenemata kuupäevast, millal teos on õiguspäraselt avalikustatud, välja arvatud juhtudel kui teose on loonud kaks või enam isikut oma ühise loomingulise tegevusega, kollektiivsele teosele on samuti omad reeglid jne (Autoriõiguse seadus, 2000, § 39-42).

Autoriõiguse kehtivuse tähtaja kulgemise algus algab autori surma-aastale järgnevalt aasta või teose õiguspärasele avalikustamisele või loomisele järgneva 1. jaanuarist (Autoriõiguse seadus, 2000, § 43).
Teost, mille suhtes autoriõiguse kehtivuse tähtaeg on lõppenud, võivad vabalt kasutada kõik isikud, järgides seda, et isiku konkreetse teose autoriks olemist (teose autorsust), autori nime ning autori au ja väärikust kaitstakse tähtajatult (Autoriõiguse seadus, 2000, § 45).

Täiendavalt sai uuritud veel kahe küsimust Kultuuriministeeriumi Meedia- ja Autoriõiguse osakonnast ja Eesti Autorite Ühingust.

Küsimused olid:

- Kui kasutada magistritöös kunstnike reproduktsioone ja tekstimaterjale erinevatest allikatest, kas see on lubatud autoritega kooskõlastamata?
- Kui taotleda Tiigrihüppe Sihtasutuselt või Eesti Kultuurkapitalilt toetust, et magistritöö arendada edasi veebipõhiseks õppematerjaliks tasuta kasutamiseks üldhariduskoolidele, kas siis on vaja õppematerjalis kasutatud illustreerivate piltide ja tekstimaterjalide autoritega kokkulepeid või piisab allikatele viitamisest?

Meedia- ja Autoriõiguse osakonnas arvati, selline tegevus on kooskõlas autoriõiguse seadusega ja täiendavaid kokkulepeid autoritega pole vaja sõlmida.

Eesti Autorite Ühingus selgitati, et õpikute kirjastamise korral on kindlasti vajalik kasutatud materjalide autoritega kooskõlastatus. Õpiotstarbelise veebimaterjali puhul, kus ei taotleta ärilisi eesmärke soovitati küsida siiski nõusolekut ka autoriteelt.

Sellest saab järeldata, et autoril on lubatud kasutada nii magistritöös kui ka veebipõhise õpitarkvara loomisel trükkiseid ja elektroonilisi materjale, kui kasutatud materjalidele viidatud. Võib kasutada nii tekste kui ka pildimaterjale, kuna seda ei tehta ärilistel eesmärkidel.

2.3.2 Veebilehtede esitamise head tavad

“Veebisisu käideldavuse juhised versioon 1.0”, kus on küsimustik, mis oli samuti autorile abiks veebipõhise õpitarkvara prototüübi loomisel.

Veebilehe planeerimine

Enne veebilehe tegemist tuleb leida vastused järgnevatele küsimustele:

1. Mis on selle veebilehe eesmärk?
2. Kes on sihtgrupp?
3. Millist informatsiooni tahate edastada?
4. Kuidas kavatsete informatsiooni lehel organiseerida?
5. Millega te esilehel äratate kasutaja tähelepanu?

Veebilehe tegemisel tuleb arvestada mitmete oluliste aspektidega (vt joonis 16).

Joonis 16. Olulised aspektid veebilehe tegemisel (Macdonald 2003: 21).

65
Valmis veebileht võib koosneda mitmetest erinevatest komponentidest:

- HTML;
- CSS;
- programmeerimiskeeles kirjutatud scriptid;
- andmebaas;
- graafika- ja helifailid.

2.3.2.1 Veebilehe struktuur

Avalehtede liigitus:

- Avaleht, mis on mõeldud vaid veebilehele sisenemiseks. Kasutatakse animatsiooni, palju graafikat, multimeediat, et äratada kasutajate huvi veebilehe vastu.
- Avaleht, mis vastab küsimustele: Kes me oleme? Mis sellelt veebilehelt on võimalik leida?

Tiitellehe soovitatav suurus on kuni 65 KB, kuna sellisel juhul laetakse avaleht kiiresti kasutaja arvutisse. Kasutaja ei ole tavaliselt nõus ootama üle 10 sekundi ja siirdub mõnele teisele lehele.

Tarkvara prototüübi loomisel arvestatakse, et avalehe suurus on alla 100 KB. Autor kaalus ka sellise avalehe koostamist, mis on mõeldud tiitellehena. Tiitellehe plussiks on see, et kui ta on teostatud multimeedia vahenditega ja hea graafikaga, siis mõjub see kasutajatele köitvalt. Kuid samas, kui õppematerjali sageli kasutada, hakkab selline avaleht häirim a, kuna ta ei mõju enam uudselt ja kulutab kasutaja aega.

Autor jäi valiku juurde, kus kasutajal on avalehel koheselt võimalus asuda materjale kasutama. Välistatud ei ole ka edaspidi mõne huvitava teostusega tiitellehe lisamine tarkvarale. Lähemalt tutvustatakse edaspidi avalhehekülge 3. peatükis “Õpitarkvara prototüüp”.

Veebilehe loomisel tuleb esmalt koostada veebilehe struktuur, kus on üldjoontes ära paigutatud lingid, pildid ja tekstid.
Veebilehtede erinevad struktuurid

1. Lineaarne struktuur
Kõige lihtsam viis on teha lehtedele lineaarne jutustav järjestus (vt joonis 17).

Joonis 17. Lineaarne struktuur.

2. Võrgustik
Paljud kastusjuhendid, ülikoolide kursused on organiseeritud võrgustikuna (vt joonis 18).

Joonis 18. Võrgustik.

3. Hierarhiline paigutus
See on üks parim viis paigutada informatsiooni veebilehel (vt joonis 19).

Veebi enda struktuur on kujutatud alljärgneval joonisel (vt joonis 20).

Joonis 20. Veebi struktuur.

Tarkvara prototüüb is on kasutusele võetud hierarhilise struktuur, mis on ka enamlevinud ja tunnustatud struktuur veebilehekülgede ülesehitamisel. Struktuur on esitatud edaspidi 3. peatükis “Õpitarkvara prototüüp”.

2.3.2.1 Failistruktuur

Kohe alguses on oluline teha plaan ka failistruktuurist, mida hiljem enam ei muudeta. Olulised aspektid:

- Pealehe fail peab alati olema nimega index. Ülejäänud failidele võib valida vabalt nimetused, kuid ningedes ei või kasutada täpitähti ja tühikuid. Failide laiendeid võib olla erinevaid: htm, html, php jne.
- Pildifailid on soovitav organiseerida eraldi kausta.
- Failnimed peaksid olema võimalikult lühikesed ja viitama nende sisule.

Tarkvara prototüübi loomisel on failinimed valitud lihtsad ja kajastavad nende tegeliku sisu. Eraldi on loodud kaustad piltidele, testidele, otsingumootorile, foorumile, lingikogule jne.
2.3.2.2 Info paigutus, suurus, kerimisribad

Paljud veebilehed on koostatud nii, et monitoril ei ole nähtav kogu lehekülg ja tuleb kasutada kerimisribasid (vt joonis 21).

Joonis 21. Ekraaniala resolutsioonil 600 x 480 pikslit.

- Mida vähem kasutaja peab kerimisribasid kasutama seda parem. Optimaalne on 600 pikslit arvestada lehe laiuseks.
- Vertikaalne kerimisriba on aktsepteeritav.
Veebilehe tähtsamad korduvad komponendid on pealkirjad lingid, menüüd, logod, teksttitulbad, pildid, andmed autori kohta jne (vt joonis 22).

![Diagram of web page elements]

Joonis 22. Veebilehe tähtsamad korduvad komponendid.

Veebilehele info paigutamiseks on üldiselt kaks võimalust:
- Ehitada leht üles raamidega.
- Ehitada leht üles tabelitega.

Enamus leht ei kasutavad siiski tabeleid, sest vanemate brauserite versioonid ei toeta raame. Raamid raskendavad ka väljatrükkim ist. Õpita prototüübis on kasutatud tabeleid, mis teeb küll veebilehe aeglasemaks, kuid annab garantii, et ka vanemate brauseritega on õppematerjalid käitumisalused.

2.3.2.3 Lingid

Veebilehel on nähtav tavaliselt ainult väike osa kogu informatsioonist. Järelikult on vajalik, et oluline info on nähtav kohe lehe avanemisel, mitte kerimisel (vt joonis 24).

Linkide kasutamise reeglid:

- Kasutada võimalusel traditsioonilisi linkide värve.
- Kontrollida, et kõik lingid töötaksid korrutlikult.
- Lingid peavad olema igal lehel ühesuguse välimusega, kasutajal oleks kerge orienteeruda.
- Navigatsioonisüsteem peab olema tehtud nii, et ilma TAGASI (*Back*) nuputa saaks vabalt veebilehel ringi liikuda.
Öpitarkvara prototüübis on linkide kujundused kirjeldatud CSS failis. Lingid on küll traditsiooniliselt allajooniitud, kuid öpitarkvara kujundusest lähtuvalt, on linkide värvideks valitud kollane ja hall.

2.3.2.4 Värvid

Veebis arvestatakse juba 500 aastat kehtinud lihtsa reegliga trükimeediast: valge on kõige eredam värv, sellel paistab kõige kontrastsemanu must ja nende kahega harmoneerub hästi punane. Ka kõik teised värvid on lubatud, kuid mõistlikkuse piires. Internetis lisandub värvinaka sinine: vältida tasub kirjas sinise kasutamist, kui pole tegemist lingiga, sest see võib segadusse ajada ja panna lugeja arvama, et tegemist on lingiga.

Värvide kasutamise reeglid:

- Kasuta kuni viis värvi, mis sobivad kokku veebilehe teemaga.
- Tekst peab alati olema tagataustal hästi nähtav.
- Tagatausta värv peab olema kõikidel lehtedel samasugune.

Värvivalikul on prototüübi tegemisel kasutatud erinevat tooni sinist, erinevat tooni halli, valget ja sisukorra linkidel kollast ja sinist. Tekstide värv on must. Värvide valik on tehtud meelela tagasihoidlik, sest materjal ise sisaldab väga palju illustratsioone. Selline kujunduslik lahendus meeldis ka kunstiõpetajatele, kes prototüübiga tutvusid.

2.3.2.5 Tekst

Teksti kasutamise reeglid:

- Kui kogu tekst on samas kirjafondis on raske aru saada, mis on tähtis. Kuid ärge kasutage ka liialt palju kirjafonte – kaks fonti on piisav.
- Ärge kasutage allajoonitud teksti, sest see on sarnane lingitud tekstiga.
• Pikemate tekstide jaoks kasutage Times New Roman kirjafonti.
• Parandage õigekirjavead.
• Suurte tähtedega sõnu on märksa raskem lugeda, kuna muutub sõna tavapärane väline kuju.
• Graafika ja teksti paigutamiseks veebilehele kasutage tabeleid, et omada kontrolli nende üle.

Prototüübi kujundamisel on kasutatud kirjafonti Arial erinevates suurustes ja trükitähti on kasutatud ainult pealkirjade tekstides.

2.3.2.6 Graafika

Veebilehe kasutaja silm märkab esimesena lehel kujundeid ja lehel olevat kontrasti. Seejärel teisi elemente, pealkirju ja teksti. Üldiselt võib graafilisi kujutisi kasutada Interneti lehekülgedel kahel otstarbel:
 • taustakujutisena, millel asuvad kõik teised dokumendi põhielemmendid;
 • illustratsioonidena, mis asuvad dokumendis endas.

Põhilised graafilised elemendid veebilehel on:
 1) tagatausta pilt või värv;
 2) nupud;
 3) nummerdamine;
 4) vahepaneelid;
 5) logod (soovitatavad mõõdud 80 x 68 pikslit);
 6) pildid ja pildigaleriid.

Reeglid graafika kasutamiseks:
 • Kasutage värvi oluliste asjade esiletöstmiseks.
 • Kasutage graafilisi elemente, et saavutada lehe ühtne väljanägemine.
 • Pildid peavad olema sobivad ja piiratud mahus.
 • Kasutage üldtunnustatud pildiformaatte .jpg ja .gif. Teisi graafilisi formaatide (peale GIF ja JPG) www serverites praktiliselt ei esine, kuigi nende kasutamine on võimalik. Nende formaatide kasutamist ei soovitata järgmistel põhjustel:
o Ainult formaatidele GIF ja JPG on olemas enamuse lehitsejate sisseprogrammeeritud tugi (teiste formaatide kuvamiseks tuleb kasutaja arvutil käivitada lisatarkvara).

o GIF ja JPG formaatide struktuur on failide edastamiseks Internetis väga hästi sobiv ja on sõltumatu platvormist (Windows, Unix, Linux, Mac jne).

o Pildi reaalse laiuse ja kõrguse sisestamine HTML koodis võimaldab lõppkasutajal, kes töötab graafika keelurežiimis saada ettekujutust allalaaditavate piltide realsetest mõõtmetest tühja ristküliku järgi, mis kuvatakse siis illustratsiooni asemel. Samas kiirendab see ka dokumendi vormindamist ekraanil. Reeglina peavad lehitsejad alla laadima kõik kujutised enne, kui nad saavad kujundada teksti paigutust ekraanil. Kujutiste mõõtmete ette andmine võimaldab lehitsejal kujundada dokument juba enne graafikafailide täielikku allalaadimist. Kui mõõtmed ei ole ette antud siis kuvatakse sellise kujutise asemel algul väike ruuduke ja seega rikutakse kogu dokumendi kujundus, milles on arvestatud piltide realsete mõõtmetega.

- Graafikafailid peavad olema väiksed (näiteks 7 KB) (Kathy Hill Hough, 2000).

• Kui kasutate animatsioone, siis selliselt, et seda näidatakse ühel korral kasutajale ja siis lülitatakse välja.
• Ärge kasutage *pop-up* aknaid.
• Ärge kasutage pilti, mis võib kasutajale tunduda nupuna.
• Otsimissüsteemid ei indekseeri graafikat. Seepärast kui teie leheküljel asuvad vaid illustratsioonid ilma tekstiliste selgitustega, siis lugejad kasutades tänapäevaseid otsimissüsteeme selliseid lehekülgi ei leia.
• Paljud kasutajad töötavad Internetis graafika allalaadimiskeelu seadega, (lehitejas saab graafika allalaadimise ära keelata) selleks et kiirendada Internetist allalaadimise kiirust. Õsna suur osa kasutajatest kasutab siiiamaani ainult tekstipõhist lehitsejat. Mõlemal juhul jääb allalaaditavast dokumendist alles vaid tekstiosa, mis peab andma edasi info dokumendi sisulise osa kohta.
• Üheks tagi `` parametriks on parem ALT, mis võimaldab sisestada alternatiivset teksti. Alternatiivne tekst annab võimaluse mittegraafilise lehitsejate ja lehitsejate, kus on väljalülitatud graafika allalaadimine, kasutajatel saada HTML leheküljele sisestatud piltide kohta tekstinformatsiooni.

Tabel 25. E-Soft Inc. uurimuses pildiformaatide kasutamisest Internetis.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Sites</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIF Images</td>
<td>740,352</td>
<td>61.29%</td>
</tr>
<tr>
<td>JPG Images</td>
<td>554,431</td>
<td>45.90%</td>
</tr>
<tr>
<td>PNG Images</td>
<td>51,628</td>
<td>4.27%</td>
</tr>
<tr>
<td>Flash/Shockwave</td>
<td>113,603</td>
<td>9.40%</td>
</tr>
</tbody>
</table>

Õpitarkvara prototüübis on kasutatud graafikat nii üldkujunduses kui ka õppematerjalid ise sisaldavad suure hulga illustratsioone. Graafika kasutamist tutvustab autor edaspidi täpsemalt 3. peatükis “Õpitarkvara prototüüp”.

75
2.4. Tehniline teostus

2.4.1 Veebiserverid

Veebiserverid, mida kõige tihedamini kasutatakse:

- Microsoft IIS;
- Apache;
- Microsoft Personal Web Server.

Serverite tüüpilisemad laiendused:

- PHP;
- Python;
- Perl.

Joonis 26. Firma E-Soft Inc. uurimus veebiservertest kasutamisest juunis 2004 (E-Soft Inc.).

Joonis 27. Firma E-Soft Inc. uurimus veebiservertest populaarsusest aastatel 1999-2003 (E-Soft Inc.).

Õpitarkvara tehniliste vahendite valimisel lähtus autor maailmas levinud trendidest. Töö teostamiseks sai installeeritud koduarvutisse vabatarkvara Apache veebiserver, PHP ja

2.4.2 Brauserid

Veebibrauseri programmid on enamuses vabavara. Neid on võimalik oma arvutisse alla laadida Internetist URL aadressil http://tucows.ibs.ee/web95_default.html, kus asub veebilehekülg, mis sisaldab vabavara ja kommertsprogramme allalaadimiseks üle Interneti kasutaja arvutisse. Lisaks sellele:

- **Netscape** brauserit on võimalik alla laadida firma kodulehelt URL aadressiga http://channels.netscape.com/ns/browsers/default.jsp.
- **Mosaic** brauseri saab alla laadida kodulehelt URL aadressiga http://archive.ncsa.uiuc.edu/SDG/Software/Mosaic/NCSAMosaicHome.html.

Veebimaterjalide koostamisel peab alati arvestama, milline brauseri programm on valdavalt selle veebilehe kasutajate arvutites. Selleks tuleb uurida, milline brauser on
sihtgruppide arvutites, kes hakkavad õpitarkvara kasutama. On ka võimalus teha statistika
vaatlus. Näiteks autori poolt koostatud kooli õppetõös kasutusel olevate materjalide
avalehele (vt http://www.zone.ee/anukurm) on paigutatud lehe alla serva ZONE.EE
kaunter. Kaunter annab võimaluse tutvuda veebilehe külastajate kohta käiva statistikaga.
Kui uurida statistikat, milliseid brausereid on kasutatud veebilehe vaatamiseks alates
26.08.2003 – 10.07.2004, siis kõige enam on selleks olnud programm Internet Explorer 6
(vt tabel 28).

Tabel 28. Veebilehe külastajate poolt brauserite kasutamise statistika.

<table>
<thead>
<tr>
<th>Brauser</th>
<th>Külastusi</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 6</td>
<td>431</td>
<td>79.81%</td>
</tr>
<tr>
<td>IE 5</td>
<td>80</td>
<td>14.81%</td>
</tr>
<tr>
<td>Netscape 4</td>
<td>25</td>
<td>4.63%</td>
</tr>
<tr>
<td>Netscape 5</td>
<td>2</td>
<td>0.37%</td>
</tr>
<tr>
<td>Tundmatu!</td>
<td>1</td>
<td>0.19%</td>
</tr>
</tbody>
</table>

2.4.3 Veebilehekülgede loomise tarkvarad

HTML kirjutamiseks on loodud mitmeid erinevaid programme. Kõige lihtsam neist on
Notepade - tavaline tekstitöötlusprogramm, mis on kohe kaasas Windowsiga. See nõuab
aga ka häid teadmisi HTML-ist.

Macromedia DreamWeaverit peetakse väga heaks laiaarbetprogrammiiks, millega
kodulehekülgi koostada. Häid teadmisi HTML-ist ei ole vaja. Programmile on lisatud ka
teatud lisafunktsioon, mis kontrollib lehekülje kokkusobivust eri Interneti brauseritega. Kui
avastatakse HTML-koodis koht, mida mõni bauser ei toeta, antakse sellest märku.
Loetletakse vead ja ühilduvusprobleemid, mida tuleb parandada. Tänul sisseehitatud
liidesele on ka lehekülje võrku panemine lihtne. Programm on tasuline ja sellega saab
tutvuda firma kodulehel URL aadressiga http://www.macromedia.com/software/dreamweaver/. Inglise keeles võib leida Internetist
ka õpetusi programmi kasutamiseks. Näiteks URL aadressil

79

Veel võiks nimetada selliseid tuntumaid programme nagu Frontpage, Netscape Composer, MS Publischer, StarOffice, Adobe Pagemill, HTML Kit jne.

Tutvudes firma E-Soft Inc. poolt tehtud uurimuse statistikaga, mis tehti juunis 2004. aastal 243 532 veebilehe põhjal, siis oli kõige enam kasutatud veebilehe tegemisel programm DreamWeaver.

Veateateid andsid kõige enam veebilehed, mis olid tehtud programmiga Microsoft Frontpage, Adobe Golive ja ka Microsoft Word 97 (E-Soft Inc.). Kõige vähem veateateid esines veebilehtedel, mis olid tehtud programmiga Htmlpad.
Valminud õpitarkvara prototüüp on koostatud programmiga Notepad, kuna autor omab oskusi HTML keele kirjutamisel. Edaspidi tasus õpitarkvara loomisel kasutada ka DreamWeaver-it ja HTML Kit-i võimalusi.

2.4.4 HTML standard

Järgnevalt esitatakse kõige lihtsam HTML koodi kirjutamise näide koos selgitustega. Read on näites nummerdatud selleks, et anda iga rea kohta selgitus vastavalt rea numbrile.

Kood

```html
1  <HTML>
2  <HEAD>
3  <TITLE>kogu teksti pealkiri
4  </TITLE>
5  <META Name="Keywords" Content="Hypertext">  
6  </HEAD>
7  <BODY>
8  Lehekülje sisu
9  </BODY>
10 </HTML>
```
Selgitus

1. Deklareerib, et see on HTML-dokument (<HTML>).
2. Päise (<HEAD>) algus, seal on info dokumendi kohta.
3. Tiitel (<TITLE>), mida näidatakse brauseri tiitliribal, külastatud lehtede nimekirjades.
4. Tiitli (<TITLE>) lõpp.
7. Sisuosa (<BODY>) algus.
8. Kas ainult tekst või ka erinevad käsud dokumendi sisu näitamiseks.
10. Lõpetab HTML-dokumendi (</HTML>).

2.4.5 CSS

CSS (Cascading Style Sheets), on DHTML-i üks tähtsaim komponente. DHTML on HTML-i järglane. See on uus tehnoloogia, mis töötab juba Internet Explorer 4-s ja Netscape Navigator 4-s ning avab veebi arengule uue maailma. DHTML-i puhul ei ole tegemist iseseisva keelega, see on lihtsalt JavaScripti (ja Vbscripti), CSS-i (Cascading Style Sheets), DOM-i (document object module) ja HTML-i segu.

Mõned näpunäited:

- Tuleb jälgida, et ei oleks vigu, pisimgi viga võib kõik ära rikkuda.
- Tuleb ka jälgida, et erinevad brauserid käituvad CSS puhul erinevalt.

Valminud prototüüp on organiseeritud samuti CSS võimalusi kasutades. CSS laiendiga failis on kirjeldatud tekstide ja linkide kujundus. See teeb lehe kujunduses muudatuste sisseviimise lihtsaks, kuna CSS faili rakendamisel, on vaja teha muudatusi ainult selles failis (vt joonis 29).

![style.css - Notepad](image.png)

Joonis 29. CSS fail.

2.4.6 Veebprogrammeerimiskeeled

Veebprogrammeerimiskeele loetelu:

- HTML (Hyper Mark-up Language);
- DHTML (Dynamic Hypertext Markup Language);
- XML (Extensible Markup Language);
- SGML (Standard Generalized Markup Language);
- XFRML (Extensible Financial Reporting Markup Language);
- JavaScript;
- Vbscript;
- CGI (The Common Gateway Interface);
- ASP (Active Server Pages);
- PHP (Hypertext PreProcessor);
- CSS (Cascading Style Sheets);
- PERL (Practical Extracting and Report Language);
- SQL (Structured Query Language);
- ActiveX;
- VRML (Virtual Reality Modeling Language).

Serveri poolel on võimalik kasutada mitmeid erinevaid programmeerimiskeeli:

- Server-side JavaScript Netscape poolt oma Enterprise Serverile lisatud laiendamisvõimalus;
- ColdFusion HTML-ile sarnanev tagisid kasutav pseudo-programmeerimiskeel;
- PHP - vabalt saadav programmeerimiskeel paljude eri veebiserverite jaoks;
- Active Server Pages (ASP). Vabalt saadav programmeerimiskeelte baas Microsofti IIS (Internet Information Server) peal;
- Java Server Pages (JSP) Java ja JavaScripti kasutav laiendus (üldjuhul töötab Java Servleti baasil).
JavaScript

JavaScript on objekt-orienteeritud võimalusteega programmeerimiskeel, mille abil on lihtne luua interaktiivseid veebilehekülgi. Ta on interpretieeritav, mis tähendab, et erinevalt paljudest teistest programmeerimiskeeltest ei ole JavaScript-i koodi vaja eelinevalt kompileerida, skript käivitub koheselt veebilehekülje üleslaadimisel. Ta on brauserisse sisseehitatud ja töötab koos HTML-ga.

JavaScript-i keel koosneb kolmest osast:

- **tuum-JavaScript** (*core JavaScript*);
- **kliendipoolne JavaScript** (*client-side JavaScript*);
- **serveripoolne JavaScript** (*server-side JavaScript*).

Kliendipoolne JavaScript ja serveripoolne JavaScript kasutavad samu tuum-JavaScript-i programmeerimiskeele põhielemente (vt joonis 30).

![Diagram of JavaScript parts](image)

Joonis 30. Programmeerimiskeele JavaScript kolm osa.

kontrollida brauserit ja tema dokumendi objekti mudelit (DOM). Kliendipoolsete laienduste abil saab HTML vormi (*form*) lisada elemente ja reageerida kasutaja sündmustele nagu hiire klikk, vormi sisend (*form input*) ja lehe navigatsioon.

Tabel 31. Firma E-Soft Inc. uurimus kliendipoolsete tehnoloogiate kasutamisest.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Sites</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>JavaScript</td>
<td>654,624</td>
<td>54.19%</td>
</tr>
<tr>
<td>Frames</td>
<td>269,829</td>
<td>22.34%</td>
</tr>
<tr>
<td>StyleSheets</td>
<td>438,716</td>
<td>36.32%</td>
</tr>
<tr>
<td>Java</td>
<td>29,584</td>
<td>2.45%</td>
</tr>
<tr>
<td>IFrames</td>
<td>101,252</td>
<td>8.38%</td>
</tr>
</tbody>
</table>

Serveripoolne JavaScript kirjutatakse samuti HTML teksti. Dokumendis sisalduva serveripoolse Java-Script-i programmi täidab server ja saadab tulemuskirjeloomendi tagasi kliendile. Serveripoose JavaScript-i abil on võimalik suhelda relatsiooniliste andmebaasidega, saab jagada informatsiooni kasutajate vahel, on võimalik ligi pääseda serveri failisüsteemile. HTML leheküljed, mille sisaldavad serveripoolset JavaScript-i võivad sisaldada ka kliendipoolset JavaScript-i.

JavaScript töötab koos HTML-ga ning JavaScript-i kood tuleb lisada HTML dokumenti. Skripti koodi HTML dokumenti lisamiseks on seitse võimalust:

1. Märgendite `<SCRIPT>` ja `</SCRIPT>` vahel.
2. Välise failiga, mille tee on `<SCRIPT>` märgendi atribuudi SCR või ARCHIVE väärteks.
3. Sündmusekäsitlejas (*event handler*), kus skript on HTML atribuudi `onClick` või `onMouseOver` väärteks.
4. URL-i sisuna, mida kasutab skripti tõlgendav protokoll JavaScript.
5. *Style* osas, märgendite `<STYLE TYPE="text/javascript">` ja `</STYLE>` vahel.
7. Tingimuskomentaaris, mida tõlgendatakse HTML kommentaarina, kui antud JavaScript-i avaldise väärtus on väär (false).

Järgnevalt esitatakse kõige lihtsam näide sellest, milliste märgendite vahele tuleb JavaScript-i kood HTML-is paigutada.

Kood

```html
<HTML>
<TITLE>dokumendi pealkiri</TITLE>
<BODY>
Tavaline tekst
<SCRIPT type="text/javascript">
... JavaScripti kood ...
</SCRIPT>
</BODY>
</HTML>
```

Valik JavaScripti õpetusi ja ressursse URL aadressidelt:

- http://www.webteacher.com/javascript/
- http://www.w3schools.com/js/default.asp
- http://www.pageresource.com/jscript/
- http://javascriptkit.com/

Valminud õpitarkvara prototüübis on kasutatud kliendipoolset JavaScript-i programmeerimiskeelt harjutus- ja kontrolltestide koostamisel ja materjalide printimise võimaldamiseks. Alljärgnevalt on toodud näide JavaScripti programmeerimiskeele kasutamisest harjutustestide koostamisel õpitarkvara prototüübis.
Kood

```javascript
var nr_of_links = 2;
var lnk = new Array (nr_of_links)
var desc = new Array (nr_of_links)
var dsp = new Array (nr_of_links)
lnk[0] = "raud/vale_vastus.html";
lnk[1] = "raud/vale_vastus.html";
lnk[2] = "raud/oige_vastus.html";
desc[0] = "1895-1954";
desc[1] = "1905-1967";
desc[2] = "1865-1943";
dsp[0] = "";
dsp[1] = "";
dsp[2] = "";

var hits = 0;
while (hits < (nr_of_links + 1))
{
    rnd = Math.round(Math.random() * nr_of_links)
    if (dsp[rnd] == "")
    {
        dsp[rnd] = lnk[rnd]
        hits += 1
    }
}
```

PHP

PHP (Hypertext Preprocessor) on vahend HTML-i dünaamiliseks esitamiseks. PHP programmeerimiskeel teeb lihtsaks ka veebilehtede ehitamisel andmebaaside kasutamise. PHP kasutamiseks veebilehel on vaja, et serveris, kus asub veebileht, on installeeritud ka PHP. PHP abiga antakse serverile käsud, mida ja millal ta tegema peab. Server täidab need ja annab kasutajale valmis veebilehe.

Järgnevalt esitatakse lihtne näide sellest, kui on soov väljastada sõnad “Tere tulemast!” PHP tagide vahel, siis milliste tagide vahele tuleb PHP kood HTML-is panna.

Kood

```html
<html>
<head>
<title>dokumendi pealkiri</title>
</head>
<body>
Tavaline tekst
<?php
echo "Tere tulemast";
?>
</body>
</html>
```

Selgitus

Kasutasime PHP funktsiooni echo teksti väljastamiseks brauseri aknasse. Sõnad peab jutumärkidesse panema.
Valik PHP materjalide URL aadresside:

- http://php.center.ee/
- http://www.php.ee/179;
- http://www.beginnersphp.co.uk/tutorials.php;

Õpitarkvara prototüübi koostamisel on PHP programmeerimiskeelt kasutatud:

- Failide efektiivsemaks organiseerimiseks. Näiteks päis, jalus ja sisukorra lingid, mis peavad olema igal lehel, on paigutatud eraldi failidesse ja PHP scripti abil väljastatakse nende failide sisu vajalike failide ja vajalikesse kohtadesse. See annab võimaluse väga lihtsalt sisse viia õpitarkvaras täiendusi ja uuendusi. Allpool tuukse koodi näide avalehe ülemisest osast, kus on näha, kuidas saab lehe paremkas organiseerimiseks kasutada PHP programmeerimiskeelt ja .txt laiendiga faili.

Kood

```html
<HTML>
<HEAD>
<TITLE>Eesti kunst</TITLE>
<LINK href="index_files/style.css" type=text/css rel=STYLESHEET>
</HEAD>
<BODY bottomMargin=0 vLink=#000000 aLink=#000000 link=#000000 bgColor=#ffffff
leftMargin=0 background=index_files/tst.gif topMargin=0 rightMargin=0
marginwidth="0" marginheight="0">
<CENTER>
<TABLE cellSpacing=0 cellPadding=0 width=780 bgColor=#ffffff border=0>
<TBODY>
<TR>
<TD vAlign=top align=middle><!--sisu-->
</TD>
</TR>
</TABLE></CENTER>
</BODY>
</HTML>
```
• Kuupäeva näitamiseks kasutajale, millal on lehte viimati uuendatud. Asub kõikidel sisukorras olevatel lehtedel paremas ülaservas.
• On kasutatud PHP scripti, mille abil kasutaja saab lisada veebilehele huvitavaid linke.
• On lisatud PHP scriptid, mille abil kasutaja saab teostada otsingud kõikide materjalide piires.
• On lisatud foorum, kus lehe külastajal on võimalus arutleda päevakorraliste probleemide üle ja neid ka ise tõstatada.
• On tehtud kirja saatmise vorm, kui kasutaja soovib veebilehe haldajaga ühendust võtta.

2.4.7 Andmebaasid

Andmebaas on infosüsteemi tuum ning arvutisüsteemi komponent, milles organiseeritakse infosüsteemi andmed.

Andmebaasisüsteemides enam kasutusel olevad tarkvarad:
• MySQL;
• PostgreSQL;
• Interbase;
Andmebaaside erinevad liigitused:

- Relatsioonilised andmebaasid.
- Navigatsioonilised andmebaasid.
- Tekstiandmebaasid.
- Objektiandmebaasid.
- Lokaalsed andmebaasid.
- Klient-Server andmebaasid.
- Hajuandmebaasid.
- Desktop andmebaasid.
- SQL andmebaasid.
- Multidimensionaalsed andmebaasid.

Relatsioonilises andmebaasis on andmed relatsioonilises baasis koondatud tabelitesse, mille hulk kokku moodustab relatsioonilise andmebaasi. Tarkvara, mis võimaldab selliseid andmebaase luua ja kasutada, nimetatakse relatsioonilisteks andmebaasisüsteemideks.

SQL (Structured Query Language) on tänaseks juba teenekas andmebaasikeel, millega juured ulatuvad esimeste relatsiooniliste andmebaaside tekkeni seitsmekümnendate keskel. SQL kuulub samasse põlvkonda Oracle-i, Ingres-i ja DB2 andmebaasidega ning standardiseeriti esmakordselt 1989. aastal Ameerika Rohusliku Standardiseerimisinstituudi (ANSI) poolt, muutudes vabaks, mitte ühelegi äriühingule kuuluvaks keelestandardiks. See on ilmselt taganud ka SQL-i pika eluea.

Uue töuke SQL-i arengule andis Interneti kasutamise järsk suurenemine dünaamilise veebi leviku näol. Kui alguses olid veebilehed sarnased raamatutega, siis ärirakenduste kiire areng tõi peagi välja veebipesüsteemid ja muud sarnased rakendused, kus veebileht ei esitanud vaid infot, vaid suhtles aktiivselt kasutajaga. Et HTML-standard oma puhtal kujul ei säilita olekuid, oli üheks täienduseks ka veebilehtede sidumine andmebaasidega.
(töötuse ja infovahetuse eest hoolitsesid alguses enamasti C-s ja Perl-is kirjutatud CGI programmid, hiljem võtsid suure osa sellest tööst üle PHP, Java, JavaScript, VBscript jt). Veebiandmebaasidest saavutasid suurima leviku uued vabatarkvaralised SQL teisedendid, millest levinumad on MySQL (vt joonis 32) ja PostgreSQL. Lisaks neile on raskema kategorioaria kommertsirakendustes suur tähtsus Oracle-il ja DB2-i, ka Microsofti MS SQL on küllaltki levinud (The Open Sourcery).

Joonis 32. Näide MySQL programmi akna osast.

Selgitus
Käsureaga `select * from isik2` saab andmebaasist väljastada ekraanile tabeli “isik2” sisu.

Autor uuris andmebaaside teostamise erinevaid võimalusi seoses kavatsusega edaspidi õpitarkvara edasiarendamisel kasutusele võtta ka andmebaas veebilehe paremale organiseerimiseks ja funktsioneerimiseks. Näiteks andmebaasi saab paigutada tarkvara prototüübis oleva lingikogu, pildigaleriis olevad pildid, testide küsimused ja vastused jne. Juhul, kui lisada õpetajatele võimalus ise koostada olemasolevast küsimustepangast harjutus- ja kontrollteste, siis on andmebaasi vajadus on kindlasti olemas. Hästi toimiva andmebaasi projektite tegemine eeldab suurt töö mahtu ja põhjalikku planeerimist. Läbitöötatud allikate põhjal kui ka autor on kogemustest andmebaaside õpetamisel, võib teha järelkutsuse, et kõige otstarbekam on valida andmebaasi tarkvara MySQL, mida saab kasutada koos programmeerimiskeeleega PHP.
2.4.8 Veebilehtede administreerimine

Administraatoril on võimalik logifailist teada saada erinevat informatsiooni kasutajate kohta, mis võimaldab välja selgitada, kui efektiivselt veebileht kasutajate jaoks töötab:

- Saab teada, kui palju kasutajaid lehte külastab ja millistel päevadel ja kellaaegadel.
- Kui kaua kasutaja veebilehel viibib.
- Saab teada, millist operatsioonisüsteemi ja brauserit kasutatakse veebilehe vaatamiseks.
- Kasutajate liikumise järgi veebilehel saab ka teada, milliseid vigu veebileht sisaldab.
- Millised lehti ja linke kasutaja kõige enam eelistab (MacDonald 2003: 158).

Teine võimalus on ise luua veebilehe juurde script, mida aitab veebilehe külastajate kohta informatsiooni koguda.

Käesoleva töö tarkvara prototüüble on lisaks tehtud PHP script, mis on paigutatud esilehele. TXT laiendiga faili (vt http://www.zone.ee/ekunst/info.txt) salvestatakse kasutajate kohta järgnevat andmed (vt joonis 33):

- fikseeritakse aeg, millal kasutaja esilehele tuli;
- registreeritakse, milline on masina number;
- registreeritakse, millist brauserit kasutatakse;
- registreeritakse, milliselt URL aadressilt kasutaja esilehele tuli.
Joonis 33. TXT laiendiga fail kasutajate kohta andmete kogumiseks.

Administreerimisvahendid on võimalik edadpidi täiendada, et informatsioon kasutaja kohta oleks täiuslik ning tehtaks ka statistikat kogutud andmete põhjal.

2.4.9 Veebilehtede testprogrammid

Lihtsamate veebilehtede puhul testitakse funktsionaalsust, töökindlust, efektiivsust ja kasutatavust. Veebi testimiseks on üle saja eri vahendi, sealhulgas ka vaba- ja jaosvara. Vahendid võib olla iseseisev või integreeritud arenduskeskkonda.

Funktsionaalsuselt võib testimise tarkvara klassifitseerida järgmiselt:

- Lihtne testimisvahend - toetat selliseid tegevusi nagu süntaksikontroll, puuduvate linkide otsing, laadimistestid jne.
- Eriotstarbelised, mitmesuguseid funktsioone realiseerivad vahendid, mis toetavad näiteks kaitset spämmimise (rämpspostituse) vastu, võimaldavad veebi omadusi parandada või testivad eritüüpi omadusi (puuetega inimeste juurdepääs); keerukas testimisvahend - võimaldab teha lisaks eelmistele ka koormus- ja muid teste.
- Turvalisuse testimisvahendid.

Hiljutine Fortune 100 hulka kuuluvate firmade veebilehtede audit näitas, et nende lehtede 292,357 HTML lehekülge sisaldasid kokku 84,302 puuduvat linki - üks puuduv link kolme-nelja lehekülje kohta. Ainult seitsme ettevõtte ettevõtte veebilehel vaadeldud grupist ei olnud ühtegi puuduvat linki. Samad lehekülged sisaldasid 3,683,974 HTML kodeerimisviga - igal
leheküljel seega üle tosina vea, kusjuures päris ilma kodeerimisvigadeta ei olnud ühegi firma veebilehte (Tepandi 2003: 35).

Vahendid, mis leiavad ainult HTML standardile mittevastavusi, võivad näidata arvukaid vigu, mis praktiliselt tegelikku tööd ei häiri. Järgnevas tabelis on toodud kahe vabavara testimisvahendi parameetrid (vt tabel 34).

Tabel 34. Veebilehekülgede testimisvahendid (Tepandi 2003: 36).

<table>
<thead>
<tr>
<th>Testimisvahend</th>
<th>WWW-aadress</th>
<th>Funktsioon</th>
<th>Kätte- saadavus</th>
</tr>
</thead>
<tbody>
<tr>
<td>W3C HTML Validation Service</td>
<td>http://validator.w3.org</td>
<td>Kontrollib vastavust W3C HTML ja XHTML kodeerimisstandarde</td>
<td>Saab kontrollida faili etteantud aadressi järgi või ka üleslaetud faili.</td>
</tr>
</tbody>
</table>

Valminud õpitarkvara prototüüpi on testitud eespool tabelis välja toodud testimisvahenditega.
3 ÕPITARKVARA PROTOTÜÜP

3.1 Struktuur

Õpitarkvara prototüübi struktuuri (vt joonis 35) loomisel on lähtutud järgnevatest põhimõtetest:

- Aluseks on võetud hierarhiline struktuur.
- Ülesehitus teha võimalikult lihtne, et oleks arusaadav kasutajale.
- Peab olema kerge lisada juurde nii sisukorra punkte kui ka tekstilist materjali ja illustratsioone, et tarkvara vajadusel täiendada.

Joonis 35. Õpitarkvara prototüübi struktuur.

3.2 Struktuuri osad

3.2.1 Esileht

Esilehe (vt joonis 36) ülesehitusel on sisukord paigutatud ülemisse ossa, kuna vastavasisuliste allikate läbitöötamisel selgus, et enamus veebilehtedel on sisukord paigutatud kas lehe ülaossa või ka vasakusse serva. Tähtsamad sisukorra punktid on esile tõstetud erksa kollase värviga, et kasutaja tähelepanu eelmõige nendele tõmmata.
Joonis 36. Esileht.

Esilehe kujundusvahendina on kasutatud tabeid, millede sisse on paigutatud nii tekstit kui pildid. Tabelite valiku otsustas autor seepärast, et võrreldes raamides koostatud lehtedega, on tabelitega organiseeritud lehed korralikult nähtavad ka vanemates brauserites. Tabeli laius on valitud 780 pikslit, kuna sellisel juhul on lehekülj korrektelt vaadatav ka resolutsiooniga 800 x 600 pikslit 17-tollise monitoriga. Tänapäeval on enamus koolides juba 17-tollised monitorid, mis on siis reguleeritud nii 800 x 600 kui ka 1024 x 768 resolutsioonile.

Esilehel on võimalik lugeda ka sissejuhatavat teksti, mis annab lühiülevaate teemadest ja struktuuri osadest. Teksti lõppu on paigutatud info allikate kohta, mida on õpitarkvara loomisel kasutatud.

Paremas ülaservas näeb kasutaja, millal on materjale viimati uuendatud.

3.2.2 Kunstnike elulood

Valides esilehel sisukorrast lingi “Kunstnike elulood” saab kasutaja edasi liikuda lehele, kus vasakusse ekraani osa tekst sisukord kunstnike nimeedega. Paremal on kõikide kunstnike kohta pildid (vt joonis 37). Klikates mõnele kunstniku nimele või ka pildile, saab kasutaja edasi liikuda valitud kunstniku elulugu tutvustavale lehele.
Joonis 37. Leht “Kunstnike elulood”.

Kunstnikud on jaotatud gruppideks järgnevalt:

- Maal ja graafika.
- Skulptuur.
- Arhitektuur.
- Tarbekunst.

Kunstnike üldine nimekiri:

MAAL JA GRAAFIKA

- Oskar Georg Adolf Hoffman (1851-1912)
- Johann Köler (1826-1899)
- Paul Raud (1865-1930)
- Kristjan Raud (1865-1943)
Ants Laikmaa (1866-1943)
Konrad Mägi (1878-1925)
Aleksander Promet (1879-1938)
August Jansen (1881-1957)
Roman Nyman (1881-1951)
Aleksander Tassa (1882-1955)
Nikolai Triik (1884-1940)
Johannes Greenberg (1887-1951)
Paul Burman (1888-1934)
Aleksander Uurits (1888-1918)
Peet Aren (1889-1970)
Günther Reindorff (1889-1974)
Villem Ormisson (1892-1941)
Oskar Kallis (1892-1918)
Ado Vabbe (1892-1961)
Arnold Akberg (1894-1984)
Nikolai Kummits (1897-1944)
Eduard Viiralt (1898-1954)
Eduard Ole (1898-1995)
Aleksander Vardi (1901-1983)
Karl Pärsimägi (1902-1942)
Adamson-Eric (1902-1968)
Johannes Võerahansu (1902-1980)
Kaarel Liimand (1906-1941)
Andrus Johani (1906-1941)
Hando Mugasto (1907-1937)
Eerik Haamer (1908-1994)

SKULPTUUR
August Weizenberg (1837-1921)
Amandus Adamson (1855-1929)
Jaan Koort (1883-1935)
Anton Starkopf (1889-1966)
Ernst Jõesaar (1905-1985)
ARHITEKTUUR
Välimaa arhitektid
Karl Burman (1882-1965)
Herbert Voldemar Johanson (1884-1964)
Olev Siinmaa (1884-1948)
Edgar Johan Kuusik (1888-1974)

TARBEKUNST
Eduard Taska (1890-1942)
Adamson-Eric (1902-1968)

1860-1940. aastatel tegutsenud kunstnike hulgast on tehtud valik. Algse nimetita
kunstnikest, kes võiksid õppematerjalis kajastud olla, tegi autor. Seda nimetita on
 täiendatud juhendaja prof. Kaalu Kirme poolt tehtud ettepanekute põhjal ja ka
kunstiõpetajate soovituste alusel.

3.2.3 Leheküljed kunstnike elulugudega

Valides vasakult sisukorrast kunstniku nimetuse, avaneb järgmisel lehel tekst kunstniku
eluloost koos illustratsioonidega. Lehe alumises osas on loetelu trükistest ja Interneti
aadressidest, kus on võimalik selle kunstniku kohta lisainfot lueda (vt joonis 38).
Joonis 38. Leht “Kristjan Raud”.

Õpitarkvara prototüübis on täielikult valmis tekstid ja illustratsioonid kolme kunstniku kohta:
- Johann Köler;
- Kristjan Raud;
- Ants Laikmaa.

Allpool esitatakse näide tekstist ja loetelu illustratsioonidest kunstnik Kristjan Raua kohta. Samasuguse üleehitusega esitatakse ka teistest kunstnike elulood ja teosed.

Tekst: Kristjan Raud (1865-1943)

Kristjan Raud (1865-1943) kuulub eesti kunstnike vanemasse tehendajavasse põlvkonda. Ta alustas õpinguid 1893. aastal Peterburi Kunstile Akadeemias ja seejärel Saksamaal, elas 1904-1914 Tartus ning seejärel Tallinnas. 1904 asutas ta oma kunstistuudio.

Tema loomingu, pedagoogilise ja muinsuskaitsega seotud erinevate maalikunstide ja teostega tegevusega on seotud enam kui pool sajandit eesti kunsti- ja kultuuriajaloos.
Olles Eesti Muuseumi Ühingu asutajaliige, oli Kristjan Raud ka üks Eesti Kunstimuuseumi rajajatest 1919. aastal. Ühtlasi on tal suuri teeneid eesti rahvakunsti ja ainelise vanavara kogumise organiseeriana.

Enamus Kristjan Raua loodud taimestest on pliiatsi- ja sõejoonistused, vähem õli- ja temperamaale. Tema joonistuste muinasmaalmas on esmakordselt nähtava kuju saanud kummised olendid, tondid ja kratid ning personifitseerunud loodusjõud, lood lendavatest järvest.

Nagu eesti folklooripärandiski, leidub ka tema joonistustes üsna vähe kergeid ja mängulisi toone.

Piltide loetelu:

- Kristjan Raua foto.
- Puhkus rännakul. 1905. Tempera.
- Ohver. 1935. Tempera, lõuend.
- Kalevipoeg kivi heitmas.
- Kalev kosjas.1933.
- Kalevipoeg põrgu väravas. 1935.
- Kalevipoja surm. 1935.
- Kristjan Raua Majamuuseumi ateljee foto.

Kunstniku iga teose kohta esitatakse järgnev informatsioon:

1. Teose nimetus.
2. Valmimise aeg.
3. Tehnika.
4. (Suurus).

Tekstide koostamisel ja piltide valimisel oli abiks juhendaja prof. Kaalu Kirme ja head nõuandsid ka kunstiõpetajad.

3.2.4 Kunstikultuuri sündmused

Valides esilehel sisukorrast lingi “Kunstikultuuri sündmused” saab kasutaja edasi liikuda lehele, kus vasakule ekraanile tekib sisukord teemadega (vt joonis 40).

Klikates mõnele teemale, saab kasutaja edasi liikuda lehele, kus asuvad selle teema kohta materjalid. Teksti sees on mõned nimed lingitud, et kasutajal oleks võimalus edasi lugeda lähemalt mõne kunstniku kohta, kellest ta tekstist antud hetkel luges. Teksti printimiseks A4 lehele on teksti paremas ülanurgas printeri ikoon, millele klikates on võimalik tekst välja printida.
Joonis 40. Leht “Kunstikultuuri sündmused”.

Teemade valik:

- 19. ja 20. sajandi vahetuse kunst;
- Kunst 1905-1919;
- Kunst 1919-1940;
- Muuseumid;
- Kultuurkapital;
- Kunstiühingud;
- Kunstnäitused;
- Tallinna Kunstõõstuskool;
- Kunstikool "Pallas";
- Rahvakunst.
Teemadest on näidisena valmis järgnev tekst.

19. ja 20. sajandi vahetuse kunst

Eesti rahvuslik kunst tekkis 19. sajandi keskpaigas. See oli eesti kodanliku rahvuse kujunemise aeg, rahvusliku haritaskonna tekkimise ja rahva iseteadvuse kasvu aeg. Baltisaksa kunstielust eraldi hakkas arenema eesti kunstielu.

Eestis võib mõranguks pidada seda, et lõpuks suudeti välja rabeleda ühekülgsest Düsseldorfi ja Peterburi akadeemiate mõjuväljast ning märgata muutusi Euroopa kunstis. Uusaegse kunstielu tähtsamates osades on näitusetegevus, muuseumid, kunstiharidus, kunstnikke organiseerumine ja kunstikriitika.

Teksti koostamisel oli abiks juhendaja prof. Kaalu Kirme.
3.2.5 Galerii

Õpitarkvara hakkab sisaldama ka galeriid (vt joonis 41), kus on võimalik kunstnike loetelust valida kunstniku nime järgi, kelle maalide reproduksioonidega soovitakse tutvuda.

Joonis 41. Pildigalerii.

Pildigalerii kasutusvõimalusi saab samuti edasi arendada:

- võimalus teostada pildiotsingut kunstiteoste liikide järgi;
- võimalus teostada pildiotsingut erinevate teemade järgi (autoportreed, kompositsioonid jne);
- võimalus teostada pildiotsingut tehnikate järgi (süsi, pliiats, õli jne);
- pakkuda kasutajale võimalust piltide lisamiseks galeriisse.

3.2.6 Testid

“Testid” teema all õpitarkvara prototüübis on võimalik tutvuda kolme näiditestiga ja saab lugeda testide kasutusjuhendit.
Õpitarkvarasse on planeeritud harjutustestid ja kontrolltestid. Harjutusteste on kahte liiki:

- iga teema kohta üks harjutustest;
- harjutustestid, mis hõlmavad mitut teemat.

Näidistena on valminud kaks harjutustesti, mida on võimalik ka välja printida. Üks test on kunstniku Kristjan Raua kohta (vt joonis 42) ja teine test käsitleb kunstialaseid laiemalt. Harjutustestides on võimalik küsimust vastata mitu korda ja pöörduda tagasi õppematerjalide lugemise juurde.

Joonis 42. Harjutustest kunstnik Kristjan Raua kohta.

Ühe võimaliku ideaena on arendada keskkond, kus kasutaja saab ise koostada teste. Valmistatud testid jääksid Interneti üles ka teistele lahendamiseks. Kas sellise võimaluse rakendamine on otstarbekas, selgub öpitarkvara prototüübi edaspidise testimise käigus.

3.2.7 Lingid

Lingid lehel (vt joonis 43) on igal kasutajal võimalus lisada juurde linke, mida ta tahaks ka teistele soovitada. Kui linke tekkib palju, on administraatoril võimalus edaspidi lingid teemade järgi jaotada.

Joonis 43. Leht “Lingid”.

3.2.8 Kasutusjuhend

Kasutusjuhend (vt joonis 44) on mõeldud selleks, et kasutaja saaks ülevaate öpitarkvara erinevatest osadest. Igat osa on juhendis eraldi kirjeldatud.
3.2.9 Otsing

Joonis 45. Programmi Zoom Search Engine akna näidis.

Kuna õpitervara materjalid on mahukad, siis tuleb kasutajale anda võimalus sooritada otsingut märksõna järgi, et ta leiaks võimalikult kiiresti üles teda huvitava materjali. Selleks ongi lisatud õpitervarale otsingumootor, mis sooritab otsingu õpitervara piires.

3.2.10 Foorum

Õpitervara prototüübile on lisatud ka fororum (vt joonis 46), mis annab kasutajatel võimaluse omavahel suhelda. Iga kasutaja võib fororumis tõstatada mingi probleemi ning teised saavad sellel teemal kaasa rääkida.
Joonis 46. Foorum.

Kas foorumit ka reaalselt kasutama hakatakse, seda näitab tulevik. Internetis on olemas lehekülgi, kus foorumeid vähe kasutatakse, kuid on ka vastupidiseid näiteid.

3.2.11 Saada kiri

Kui veebilehe kasutamisel tekib küsimusi või omapoolseid ettepanekuid, saab saata kirja veebilehe haldajale (vt joonis 47).
Joonis 47. Leht “Saada kiri”

3.2.12 Kasutajaliidese kujundus

Üldises kujunduses (taustad, taustapildid, tekst) on valitud tagasihoidlikud värvid, kuna kasutatakse palju illustratsioone, siis on selline valik on õigustatud. Samal arvamusel olid ka kunstiõpetajad, kes küsimustikule vastasid. Kujunduses on kasutatud taustapilte, mis on tehtud programmiga CorelDRAW 10. Programmiga on töödeldud kahte pildifaili kahe kunstniku maalidest, mida lehe üldises disainis kasutatakse:

Joonis 48. Kristjan Raua teos “Viru vanne”.

115
Joonis 49. Töödeldud pilt.

2. Avalehel ja mõningatel teistel lehtedel on kasutatud kujunduses pilti Ants Laikmaa maalist “Talutüdruku portree” (vt joonis 50), mida on arvutis töödeldud (vt joonis 51), et täiendada üldist lehe kujundust. Eesmärk töötlemisel oli, et pilt ei oleks domineeriv.

4 ÕPITARKVARA PROTOTÜÜBI HINDAMISETAPID

4.1 Esimene etapp

4.1.1 Küsitlus ekspertidele (kunstiõpetajatele)

Esimeses hindamise etapis viidi läbi küsitlus kunstiõpetajatele kui ekspertidele, kes õpitarkvara esialgset prototüüpi oskavad hinnata, leiavad puudujääke ja annavad soovitusi edaspidiseks prototüübi täiendamiseks.

Eksperdi võib lugeda sellist isikut, kes omab vastavaid teadmisi ja kogemusi. Eksperdid ei anna ainult passiivset hinnangut, vaid saavad pakkuda ka lahendusi.

Eksperthinnangute eesmärkideks oli selgitada välja:
- programmi vastavust õpetajate vajadustele;
- hinnata õpiprogrammi efektiivsust ja kasutajasõbralikkust;
- hinnata õpiprogrammi üldkujundust;
- hinnata harjutustestide lahendamise jõukohast.

Tulemuseks on saada tagasisidet esialgse prototüübi sobivusest reaalsele kasutajale, leida puudujäägid ning parandada need.

Esimene etapp koosnes järgnevastest tegevustest:
1. Autor koostas õpitarkvara esialgse prototüübi, kus oli võimalik saada ülevaade, millistest osadest ja millise struktuuriga materjal koosnema hakkab ning teostas ka õpitarkvarale üldkujunduse.
2. Koostatud sai küsimustik kümne küsimusega (vt lisa 4), kus eksperdid keskenduvad prototüübi üldstruktuurile, erinevatele õpitarkvara osadele ja hinnangu andmisele kujundusele ning ettepanekute tegemisele.

Hindamisküsimuste liikidest on kasutatud:
- Normatiivseid küsimusi (kas väljundid on otsete ja kaudsete eesmärkide osas piisavad?)

117
• Ennustavad küsimused (kas kavandatavad/rakendatavad meetmed toovad kaasa soovitud/soovimatuid efekte?)
• Kriitilised küsimused (mismoodi saab rakendatavaid meetmeid tõhustada? Milliseid alternatiivseid meetmeid kasutada?) (Kaldmaa)

4.1.2 Küsitlustulemuste analüüs

Kahekümnest väljavalitud eksperdist, kellele e-mailiga saadeti küsimustik, vastas kümme. Nende kümme vastuste põhjal on koostatud analüüs. Vastuseid on analüüsitud küsimuste kaupa:

1. **Küsimus:** Kas peate oluliseks enda jaoks selleteemalise veebimaterjali kasutamisvõimalust?

 Kõik kümme vastust olid positiivsed.

 Ühel õpetajal, Edda Teearul Koidula Gümnaasiumist oli praegusel hetkel veel probleeme arvutiklassi kasutamisega:” Kahjuks puudub mul see võimalus, sest kunstiklassis puudub arvuti. Arvutiklassi kasutamine ei tuleks samuti kõne alla, kuna õpilaste arv klassis on 30- 40 vahel ja me lihtsalt ei mahuks sinna. Loodan, et tulevikus asi siiski paraneb ja ma saan õpilastele kunstnike töid suurel ekraanil näidata. Iseseisva või ka kodutööna saaks õpilased seda kindlasti kasutada, eriti reprodega tutvumiseks.”

 Võib järeldata, et õpitarkvara on kunstiõpetajate seas oodatud abimaterjal kunstitundide läbiviimisel.

2. **Küsimus:** Kui vaatate veebimaterjale lehel “TEKSTID”, siis millise sisuga tekste on Teie arvates vaja juurde lisada (praegu on ainult teatud perioodide lühitutvustused)?

 Õpetajate soovitused olid järgmised:
Julgelt võib palju põhjalikumalt avada kultuuriloolist ja ka ühiskondlik-politiilist tausta. Mis toimus teistes kultuurivaldkondades, kuidas need üksteist mõjutasid.

Ajastu lühitutvustused peaksid olema väga konkreetsed ja arusaadavad.

Ei ole mainitud Riigi Kunsttööstuskooli.

Kui räägime põhikooli õpetusest, siis võiks neile lihtsaid seletusi olla, (näit. mis on realism, mis impressionism jms).

Kui nimetad autoreid, siis võiks olla nende alla peidus link tema pikemale kirjeldusele. Lastel on ka lihtsam kui inimeste nimed on täielikult välja kirjutatud. Muidu teataksegi et E. Osast ja E. Wiiraltit.

Võib olla tuleks kasuks üldise ühiskondliku olukorra sidumine kunsti- ja kultuurilooga. Sellisel juhul toimub Eesti kunst paljuski seotud naabermaade arenguga ja käisid seal õppimas ja töötamas.

Midagi huvitavat, n. ajalehe tekste sellest perioodist, mis kajastavad tolle aegset suhtumist, kunstisündmusi jne, et anda paremini edasi ajastut.

Baltisakslased XIX saj.

Eesti kunst teelahkmel (st kes mida valis 1940.a ja II m/s sündmuste käigus).

Eesti kunst 40-50.aastatel.

Eesti kunst 60-70.aastatel.

Eesti kunst 80-90.aastatel.

Välis - Eesti kunst pärast II m/s.

Siit võib järelkäia, et õpitarkvarasse oleks vaja lisada teemasid, mis on seotud kunstikultuuri ajalooga.
Huvitavad olid veel ettepanekud, kus soovitati käsitleda õpitarkvaras veel varasemat ja hilisemat perioodi eesti kunsti ajaloost ning anda selgitusi kunstivoolude kohta. Kuna õpitarkvara käsitleb kindlat perioodi 1860 – 1940, siis need soovitused jäävad edaspidiseks. Õpitarkvara ongi koostatud nii, et teda on võimalik alati täiendada.

3. **Küsimus:** Kui vaatate veebimaterjale lehel “KUNSTILOOJAD”, siis millise kunstniku lisaksite veel sellesse nimekirja (praegu on valmis materjalid Kristjan Raua ja Ants Laikmaa kohta)?

Ekspерdid soovitasid lisada olemasolevate kunstnike nimekirjale juurde kunstnikud Karin Luts, Eduard Ole, Gori, Paul Luhtein, Johannes Võerahansu ja lisada juurde tarbekunstnike. Kunstniku nime “Karin Luts” ja “tarbekunstnike” soovitasid kaks eksperti, teisi nimetusi soovitati ühel korra. Üldiselt jäädi praeguse kunstnike valikuga õpitarkvaras rahule.

4. **Küsimus:** Kui vaatate veebimaterjale lehel “KRISTJAN RAUD” ja “ANTS LAIKMAA”, siis mida arvate teksti mahust, piltide arvust ja valikust, piltide ja teksti paigutusest (väiksele maali pildile klikates saab näha seda ka suurelt)?

Õpetajate soovitused:

- Piltide juures peaks olema info originaali suuruse kohta.
- Tekst võiks reprodega seotud olla.
- Pilte võiks rohkem olla.
- Fotosid kunstniku ühiskondlikust tegevusest tegevusest võiks olla.

Lisaks nendele soovitustele oli palju otseseid soovitusi tekstide sisu osas. Üldise teksti- ja pildimaterjali paigutuse ja mahuga jäädi rahule.

Järeldusena võib öelda, et tekstid ja pildivalikud vajavad kindlasti koostööd oma ala professionaalide poolt.

5. **Küsimus:** Kui vaatate veebimaterjale lehel “GALERII” (valmimisel), siis mida arvate, kuidas võiks olla piltide paigutus ja kas on vajalik ka OTSINGU lisamine,
et mõnda pilti kiiresti leida? Kas peate vajalikuks võimalust, et ka õpetajad ise saaksid omalt poolt galeriisse pilte juurde lisada?
Kõik õpetajad arvasid, et otsinguvõimalus galeriis on vajalik. Kümnest õpetajast seitse pidas ka piltide lisamise võimalust kasutaja poolt heaks mõtteks. Kolm vastajat jäi kõhklevale seisukohale, kuid otseselt ei laitnud seda ideed maha.

6. **Küsimus**: Kui vaatate veebimaterjale lehel “TESTID” (valmimisel), siis on Teil võimalus proovida kahte näidistesti? Millisel kujul õpilaste testimisvõimalust sooviksite Teie kasutada?
Öpetajate soovitused;
- Testimisel võiks olla mingi variant stiilitunnuste leidmisele maalidel, joonistustel.
- Testid on liiga lihtsad
- Kontrolltesti tagasiside võiks olla leebem.

Arvamust, et testid on liiga lihtsad esines kahe õpetaja vastuses. Ülejäänud soovitused ei kordunud.
Järeldusena võib öelda, et valmistestide olemasolu peetakse vajalikuks. Testid tuleb teha koostöös kunstieriala spetsialistidega.

7. **Küsimus**: Kas proovisite ise testi teha, saite juhistest aru? Milliseid võimalusi testide ise koostamiselt juurde sooviksite?
Järeldusena võib öelda, et testide ise koostamisel õpetajad eriti aktiivsed ei olnud.
See võis olla seotud ka asjaoluga, et küsimustiku vastamise ajal puudus selleks otsene vajadus.

8. **Küsimus:** Kui vaatate veebimaterjale lehel “KASUTUSJUHEND”, siis kas on kõik arusaadav? Kas lisaksite veebilehele veel mõne osa juurde või jätaksite mõne osa päris välja?

Soovitused õpetajatelt:
- Katsetada teistsuguseid rubriiginimetusi, ennekõike leida parem sõna „tekstid” asemel.
- Kasutatud allikad võiks anda traditsioonilisi kirjete reegleid kasutades. Alati kõigepealt dokumenti v lehekülje nimi, siis koht, kust selle leida võib.
- Lisada võiks kohta, kuhu õpetajad saaks lisada õpilaste õnnestunud esitlusi kunstnikest - nii saaks ka teised neid näha.
- Kasutusjuhend on veebilehel ülearune, kuna veebilehe struktuur on niigi hästi arusaadav.
- Pigem peaks arvestama võimalusega võimalusega, et edaspidi midagi ikka juurde lisada.
- Õpetajale võiks süsteemi kasutamiseks olla lisaleht, kus kõik on keerulisemalt ja põhjalikult lahti kirjutatud, kui selle jaoks on vajadus.
- Kas foorumil on mõtet? Kunstihariduse listis on foorum ja keegi ei kasuta seda, kahjuks.

Üldiselt oli kasutusjuhend kõikidele vastajatele arusaadav. Üks vastaja arvas, et kasutusjuhend ei ole üldse vajalik, teised pidadsad seda osa siiski vajalikuks. Ükski antud soovitustest ei kordunud.

9. **Küsimus:** Andke hinnang veebimaterjali üldkujundusele. Mis võiks olla teisiti piltide ja tekstile osas – suurus, värvid, paigutus?

Soovitused õpetajatelt:
• Kas peab nimekiri vasakul (kunstiloojad, galerii) kogu aeg näha olema, ikkagi 1/3 pinnast on nende all (sedu on liiga palju!).
• Avalehel oleva vasakul asetseva võiks pildi koondada alt väiksemaks umbes alumise käe keskelle, siis ei tõmba allaosa nii palju tähelepanu või vahetada mõne teise pildi vastu

10. **Küsimus**: Kas veebimaterjalide kasutamine oli lihtne ja arusaadav? Kas Teil on ettepanekuid muutmiseks, täiendamiseks!

Soovitused õpetajatel:
• Võiks mõelda, mis veel oleks võimalik veebikeskkonnas, st mille poolest erineb see trükitud raamatust
• Baltisaksa kunst võiks olla enama mahuga, see oli suhteliselt huvitav periood.
• Võiks jätta võimalusi täiendamiseks. Esiteks, modernistlik kunstiajaloo käsitlus jätab meil vaeslapseossa kunsti rakenduslikuma poole, aga tegelikult võiks olla nüüd juba ka see osa palju põhjalarmalt sees. Näiteks moekunst - kuipalju see elevust tekitab, kui panna see maalikutule juurde. Ja siis, miks mitte talurahva teemaliste malide loomiseks? Öpitarkvara prototüübi kasutamine oli õpetajatele lihtne ja arusaadav. Anti palju häid omapoolseid soovitusi sisulise osa täiendamiseks. Lõpetuseks soovisid eksperdid autorile edu mahuka materjali koostamisel.

4.1.3 Prototüübis tehtud muudatused ja täiendused

Ekspertihinnangutele tehti analüüs ja prototüübis viidi sisse järgnevalt kirjeldatud muudatused.

Muudatused struktuuris
Üldises struktuuris suuri muudatusi tehakse vaja ei olnud.

Muudatused:
• Sisukorras asendati sõna “Tekstid” sõnadega “Kunstikultuuri sündmused”.
• Sisukorras asendati sõna “Kunstiloojad” sõnadega “Kunstnike elulood”.
• Kunstnike loetellu on lisatud mõned nimed juurde ja mõned ära võetud.
• Kunstikultuuri sündmuseid kajastavaid tekste oli kolm. Juurde lisati seitse teemat.
• Tekstides on teises prototüübis kasutusel ka viited.

Muudatused sisus
• Tekstide sisud on korrigeeritud ja täiendatud. Lisatud on printimisvõimalus.
• Teste on sisuliselt täiendatud ja tehtud raskemaks.

Muudatused kujunduses
• Taustapiltide mahtu KB-des on vähendatud.
• Töödeldud on esilehel vasakus servas olevat servas olevat pilti.

4.2 Teine etapp

Likerti skaala (*Linkert Scale*) on kategoriaalne, mitte-võrdleva skaala tüüp, mis määrab ära vastajate nõustumise astme teatud väidetega, mis on seotud mingi hoiaku hindamisega/mõõtmisega (TNS Emor).

Hindamise kriteeriumiteks on:
• üldine arvamus õpitarkvarast;
• kasutatavus/õpitavus;
• informatiivsus;
• teenuste interaktiivsus;
• rakendatavus (Vidgen 2002: 114)

- Õpilased leidsid kergesti otsitava materjali.
- Õpilased kasutasid aktiivselt otsingut, foorumit ja linkide lisamise võimalusi.
- Õpilased olid rahul tagasihoidliku kujundusega. Ei soovitud erksaid värve, reliefefekti, animatsioone.
- Tekstid soovitati teha suurema kirjasuurusega.

Tehtud järeldused:

- Hoida õpitarkvara struktuur ja kujundus võimalikult lihtne.
- Testid teha raskemad.
- Muuta tekstide kirjasuuruse suuremaks.
- Selles vanuses õpilasi köidab aktiivne suhtlemise ja eneseväljendamise ka Interneti keskkonnas.
5 HINNANGUD JA PLAANID TULEVIKUS

5.1 Hinnang valminud prototüübile

Õpitarkvara arenduse mudeli järgi, mis oli välja töötatud, on jõutud teise hindamisetappi (vt joonis 52).

Joonis 52. Õpitarkvara arenduse mudel.

Õpitarkvara prototüübi tugevad küljed:

1. Vastavus riiklikule õppekavale.
3. Võimaldab kasutada erinevaid õpetamismetoodikaid.
4. Õpitarkvara on kättesaadav Internetis, mis annab hea juurdepääsu materjalidele.
5. Prototüübile on tehtud eksperthinnangud ja esialgset prototüüpi on täiendatud ja parandatud.

Õpitarkvara prototüübi nõrgad küljed:

1. Testide keskkond vajab edasiarendamist.
2. Kuna tegemist on Tutorial-programmiga, siis võib õpitarkvara olla mõne õpilase jaoks väärib köitev.

126
5.2 Hinnang prototüübi realiseerumisvõimalustele

Tarkvara prototüübi edasiarendamiseks tuleb käivitada projekt, kuna töö on mahukas ja vajab mitmete oma ala spetsialistide koostööd.

Tarkvara sisulise kvaliteedi tagamiseks:
- Viiakse läbi teine hindamisetapp.
- Kaasatakse õpitarkvara sisulise osa koostamisel kunstiõpetajaid, kunstiteadlasi.
- Luuakse juurde teste.
- Arendatakse edasi õpitarkvara kasutusvõimalusi Interneti keskkonnas.

Tarkvara tehnilise teostuse kvaliteedi tagamiseks
- Jälgitakse üldiseid standardeid ja sihtgruppide arvutikasutusvõimalusi.
- Konsulteeritakse arvutigraafikute, veebprogrammeerijate ja andmebaasi spetsialistidega.

Materiaalsed võimalused
Siin näeb autor lahendusena esitada projekt Tiigrihüppe Sihtasutusele ja Kultuurikapitaile, kuna:
- Kultuurikapitali kujutava ja rakenduskunsti sihtkapital toetab jääva väärtusega kunstipublikatsioonide väljaandmist. Taotluse esitamine on võimalik aastal 2004 20. novembril (Eesti Kultuurikapital).

Valmis tarkvara rakendamise võimalused ja ohud
Vöimalus, et õpitarkvara hakatakse aktiivselt kasutada, on suur, seda näitas ka ekspertide huvi valmiva õpitarkvara vastu. Õpitarkvara on võimalik kasutada nii õppetunnis kui väljaspool kooli. Samuti on enamus koolides olema arvutiklassid, kus kunstiõpetajad saavad õppetööd läbi viia. Õpitarkvara abil on võimalik õpetajal teha ka esitlus, kui klassis
on arvuti, projektor ja Interneti ühendus. Kuna puudub vastavasüline õpik, siis tarkvara aktiivse rakendamise võimalust peab autor suureks. Ohuks rakendamisel peab autor seda, kui eesti kunstiajaloo osa tulevikus riiklikus õppekavas vähendatakse.

5.3 Plaanid tulevikus

Tarkvara sisulised täiendamisvõimalused

- Lisada juurde teemasid.
- Lisada juurde teste.
- Lisada juurde aktiivse suhtlemise ja õppetöö vorme (viktoriinid, referaatide lisamisvõimalus õpetajate poolt, kus hindajateks on õpilased, testide koostamise keskkond kasutaja poolt jne).
- Lisada multimeediat (õpitarkvara tiitelleht, iga kunstniku eluloo juurde lisada ühe tuntuma teose multimeediaesitlus jne).

Tarkvara tehnilised täiendamisvõimalused

- Lisada andmebaas.
- Arendada välja testimiskeskkond.
- Täiendada üldkujundust.
KOKKUVÕTE

Magistritöö eesmärgiks oli läbi töötada materjalid, uurida erinevaid seisukohti ja aspekte, mis on vajalikud eesti kusti ajaloo teemalise õpitarkvara prototüübi loomiseks ning luua õpitarkvara prototüüp “Eesti kunst aastatel 1860-1940”.

Töö käigus:
- Selgitati välja üldine olukord Eestis õpitarkvara turul ning Tiigrihüppe Sihtasutuse seisukohad tarkvara tootmisel.
- Tutvuti autoriõigusseadustega.
- Selgitati välja koolide tehnilised võimalused õpitarkvara kasutamiseks.
- Uuriti õpetajate ja õpilaste üldisi seisukohti õpitarkvara kasutamisel õppeprotsessis ja kunstiõpetuse tundides.
- Tutvuti kutsekoolide, gümnaasiumide ja ülikoolide õpkekavadega.
- Tutvuti erinevate õpetamismeetoditega ja nende kasutusvõimalustega õpitarkvara loomisel.
- Tutvuti tarkvaraarendusmudelitega ja töötati välja loodava õpitarkvara arendusmudel.
- Tutvuti tarkvara hindamismeetoditega.
- Loodi õpitarkvara esimene prototüüp.
- Koostati küsitlusleht, viidi läbi küsitlus kunstiõpetajate (ekspertide) seas ning sooritatud vastuste analüüs.
- Loodi õpitarkvara teine prototüüp.
- Analüüsiti valminud prototüübi valmimis- ja rakendamisvõimalusi.
- Tehti ettepanekud tarkvara täiendusteks tulevikus.

Õpitarkvara prototüüp vastab riiklikule õppekavale. Prototüübile on tehtud ekspertihinnangud ja esialgset prototüüpi on täiendatud ja parandatud. Edaspidi valmiv õpitarkvara annab põhjakli ülevaate koos illustratsioonidega eesti kunsti ajaloo aastatel 1860-1940. Õpitarkvara sobib kasutada nii ülikoolides kui ka iseseisval õppimisel ja on üles ehitud selliselt, et saaks kasutada erinevaid õpetamismeetodikaid. Õpitarkvara on kättesaadav Internetis, mis annab hea juurdepääsu kõigile asjast...

Magistritööd teostades omandas autor uusi teadmisi õpetamismetoodikate ja tarkvara arendusmudelite kohta. Täiendavalt on uuritud veebiserverite ja andmebaaside võimalusi.

SUMMARY

The theme of the Master’s thesis is “Web-based software prototype creation that handles Estonian art history in 1860-1940”. The author is Anu Kurm and tutors were prof. Kaalu Kirme and Jaagup Kippar.

The length of the thesis is 150 pages, 52 figures and tables are included. 66 resources of literature and Web links are referenced to. The thesis is written in Estonian.

The author chose creating a web-based software prototype about Estonian art history, because in nowadays we must clear up following:

- How to make learning more efficient?
- What role could computers and Internet play in our education system?
- What kind of software could increase the quality and speed of learning?

The piece of work is actual because:

- Programs used in EU (e-Europe+, especially e-Europe 2005) have marked clear aims that are supposed to be achieved in year 2005.
- The priority for Tiigrihyppe Foundation is to support development of software that handles Estonian language, culture, history and nature. The software in development must be suitable for using in schools as a teaching material.
- There are very few electronic materials handling Estonian art history.
- The art-teachers have mentioned that a web-based software is needed.

The aim is:

1. To process materials, that have connection to the web-based software creation.
2. Finding out, what the students and teachers expectations and needs are.
3. Creating a of web-based software prototype “Estonian Art in 1860 –1940”, that would give a detailed overview about this period.

The work is divided in to five parts:

1. Analysis of the state of affairs and its description
2. Theoretic base to create software
3. Prototype of the software
4. Evaluation of the software prototype
5. Final analysis and plans for future

In the process the main state of affairs was cleared up in Estonian software market and the positions about creating such software. Copyright laws were read through. Technical compatibility in schools was clarified. Common standpoints of students and teachers were also defined. Completely were the curricula in upper secondary schools, trade schools and university’s examined. Also were different teaching-, development- and appraisal methods examined and a design model of software was created. Thereafter the first prototype was created and a questionnaire was sent to experts (art teachers) and the suggestions were analysed. Thereafter the second prototype was created. Finally the possibility of ripening and effectuation was analysed and new recommendations were made for future. During the research the author acquired knowledge about methods of teaching and design models of software’s. Additionally the author examined thoroughly the chances of the web servers and databases. The goals and aims were achieved. It has been confirmed that such software is needful.
KASUTATUD ALLIKAD

Marandi, T. IKT koolis. Ülddidaktika. [PPT].

Prank, R. Õpitarkvara sobivuse hindamine. 1999. [Loengukonspekt].

The Rep-Com Homesite. Website Building Menu. 2003 [WWW]

Tiigrihüppe Sihtasutus. Projektikonkursid. [WWW]

Tiigrihüppe Sihtasutus. Valminud öpitarkvara. [WWW]

Tuulmets, A. Koolielu. Millega räägivad Koolielu portaalis olevad kunstiõpetuse

(24.06.2004).

Vilgota, A. Mudelipõhine tarvaraarendus. Tartu Ülikool Matemaatika-
Informaatikateaduskond Arvutiteaduse instituut. Tarkvarasüsteemide õppetool. Tartu,
2004. [Bakalaurusetöö].
http://www.egeen.ee/u/vilo/edu/Students/Andres_Vilgota/Andres_Vilgota_MDSD.pdf
(08.07.2004).

Villems, A. Õppimisteooriad. 1999. [Loengukonspekt].
LISAD

Lisa 1. Väljavõte Põhikooli ja gümnaasiumi riiklikust õppekavast

1.peatükk
ÜLDALUSED

1. Kunstiõpetus põhikoolis ja gümnaasiumis

1.2. Põhikooli kunstiõpetuses on peamine praktiline tegevus, töine sisseelamine loominguprotsessi mitmesuguste tehnikate vahendusel ja sealjuures algupärast eneseväljenduse säilitamine. Õpitakse ohutuid ja otstarbekaid töövõtteid, materjali säästlikku kasutamist ning kunstialaseid õisteid, hakkavad kujunem väärtushinnangud. Põhikooli lõpetajal on üldine ettekujutus kunsti- ja tehnikakeelest ning ta on suuteline ise valima, mida ta sellest praktiselt või teoreetiliselt tundma õppida soovib. Õppeülesanded lahendatakse loovtööödena.

1.3. 1.–3. klassis on esikohal lapsede loomingulise algatusvõime areng ja leidurivaistu kujunemine, kuid oluline on ka käeliste oskuste ja vilumuste treenimine. 4.–9. klassi kunstiõpetus on juba oma olemuselt integratiivne, sisaldades elemente kujutavast ja kujundavast kunstist, arhitektuurist ja disainist, käsitööst ja rahvakunstist, kunsti- ja kultuuriajaloolist, foto-, kino- ja videoõpetusest.

1.4. Gümnaasiumi kunstiõpetuses õpetatakse süstemaatiliselt tundma ja väärtustama maailma ja eesti kunstipärandit ning püütakse tunnetada kunstiojekste kui rahvuslikke või rahvusvahelisi kultuuriväljundeid.

139
1.5. Äratatakse huvi kunsti analüüsimise ja hindamise vastu, ergutatakse mineviku ja nüüdiskunsti vastandamist kitsile ning suunatakse hea maitsele vastavate eelistuste kujundamist, millest peaks lähtuma ka kunstriobjektide kaitse.

5. peatükk
KUNSTI AINEKAVA GÜMNAASIUMILE

1. Kunstiõpetus gümnaasiumis

1.1. Gümnaasiumi kunstiõpetuses õpitakse tundma kunstikultuuri arengut kunstiajaloolisest aspektist, arendatakse kunstiteostesse empaatilise sisseelanamise võimet, äratatakse huvi pidevalt uueneva kunsti vastu.

1.2. Äratatakse huvi kunsti ning selle analüüsimise ja hindamise vastu. Suunatakse hea maitsele vastavate eelistuste kujunemist.

1.3. Kunstiretseptsiooniõpetuses õpitut kinnistatakse praktiliste valikülesannete kaudu, mis tutvustavad erinevaid kujutamise ja kujundamise tehnikaid ning kompositsiooni seaduspärasusi.

2. Õppe-eesmärgid

Gümnaasiumi kunstiõpetusega taotletakse, et õpilane:

• omandab teadmisi kunstiliikidest ja nende arenguloolist;
• õpib tundma visuaalsete kunstide väljendusvahendeid;
• õpib vaatama ja hindama kunstiteoseid, kujundab kunstimaitset;
• edendab loovust, algatusvõimet ja katsetamisjulgust;
• arendab kujundilist, ruumilist ja abstraktset mõtlemist ning kujutlusvõimet.
3. Õppetegevus

3.1. Gümnaasiumi kunstikursustes tutvutakse mitmete kultuuripiirkondade kunstiväärtuste ja ajaloolises arengus, analüüsitakse kunsti olemust, õpitut kinnistavad õpilaste praktilised loovtööd.

3.2. Õppetöös tuleks kasutada mitmekesiseid töövõtteid (vestlused, diskussioonid, märksõnade väljakirjutamine, ajastust kronoloogilise raamistiku loomine, referaatide ja uurimustööde koostamine, arvamuste ja esseede kirjutamine). Tuleks leida võimalusi viia õpilasi kokku originaalteostega, korraldada õppekäike ja ekskursioone, õppetunde muuseumides. Õpilased võivad kirjutada näituste arvustusi ja arutleda kunstikriitikute artiklite üle, arendamaks oskust rääkida kunstist.

3.3. Kogemustega kunstiõpetaja võib eirata kronoloogilist lähenemisviisi ja valida muu õpilastele sobiva ja kunsti olemust süvitsi lahtimõtestava õpetamisviisi.

4. Õppesisu (välja on toodud ainult eesti kunsti ajaloo osa)

4.1. I kursus

4.2. II kursus

4.2.7. BALTI-SAKSA KUNST EESTIS. EESTI RAHVUSLIKU KUNSTI SÜND (Köler, Weizenberg, Adamson).

4.3. III kursus

4.3.7. EESTI KUNST 20. SAJANDI ALGUSES. Sajandi alguse ehituskunst (teatrihooned), kujutav kunst (Laikmaa, Kr. Raud, Triik, Mägi).

4.3.11. 1990. AASTATE KUNST EESTIS.

4.3.12. NÜÜDISKUNSTI UUSIMAD AVALDUSED.

5. Õpitulemused

Gümnaasiumi lõpetaja:
• teab olulisemaid kunstimõisteid ja oskab neid kasutada kõnes ja kirjas;
• oskab määratleda visuaalse kunstikultuuri arenguloo perioode, stiile ja kunstivoole ning teab silmapaistvamaid esindajaid;
• omab ülevaadet kunstigeograafiast;
• oskab analüüsi kunstiteoseid väljendusvahendite alusel;
• oskab suhesta eesti kunstinäiteid maailma visuaalse kultuurilooga;
• oskab hinnata heatasemelist kunsti;
• oskab oma kunstiloomingus käsitseda töövahendeid, tehnikaid ja materjale;
• tunneb huvi kunstikultuuri väärtuste säilitamise ja kaitsmise vastu.
Lisa 2. Väljavõte üldharidusainete ainekavast põihihariduse baasil kutsekeskharidust andvatele kutseõppeasutustele

16. peatükk

KUNST

1.1. Kunstiõpetuse kohustuslik maht on 1 õppenädal.
1.2. Ainekava sisu on võimalik käsitleda ka laiendatult (2 õppenädalat). Sellisel juhul käsitletakse põhjalikumalt kunstikultuuri ajalugu (1 õn), praktiliste tööde teostamiseks kavandatakse 1 õn.
1.3. Kooli kunstiõpetuse ainekava koostamisel lähtutakse ainekava kohustuslikust mahust ning õpetatava kutse-eriala omapärast.

2. Õppe-eesmärgid

Kunsti õpetusega taotletakse, et õpilane

• omandab teadmisi kunstiliikidest ja nende arenguloost;
• õpib tundma visuaalsete kunstide väljendusvahendeid;
• õpib vaatlema ja hindama kunstiteoseid, kujundab oma kunstimaitset;
• arendab kujutlusvõimet, vaatlusvõimet ja abstraktset mõtlemist;
• arendab ruumilist, kujundilist ja abstraktset mõtlemist käelise tegevuse kaudu;
• arendab loovust ja katsetamisjulgust.

3. Õppetegevused

3.1. Kutseõppeasutuse kunstikursustes tutvutakse kunstikultuuri ajalooga, sh Eesti kunsti ajalooga, kunsti ja keskkonna kunstilise kujundamisega, analüüsitakse kunsti olemust.
3.2. Õpitut kinnistavad praktiisid loovtööd, mille põhirõhk on suunatud värv- ja kompositsiooniülesannele seostatult õpitava erialaga.
3.3. Õpilastele tutvustatakse võimaluse korral originaalteoseid, korraldatakse õppekäike ja ekskursioone, õpetunde muuseumides.
3.4. Õpilased võivad kirjutada näituste arvustusi ja arutleda kunstikriitikute artiklite üle, arendamaks oskust rääkida kunstist.
4. Õppesisu

5. Õpitulemused

Õpilane:

- tunneb kunsti liike ja teab olulisemaid kunstialaseid mõisteid;
- teab visuaalse kunstikultuuri arenguloo perioode, stiile ja kunstivoole;
- teab silmapaistvamaid Eesti kunstnikke;
- tunneb huvi kunstiloomingu vastu;
- oskab kunstiloomingus kasutada elementaarseid töövahendeid, tehnikaid ja materjale;
- tunneb huvi kunstikultuuri väärkustute säilitamise, kaitsmise ja edasiarendamise vastu.
Lisa 3. Osalone väljavõte dokumentist, kus kirjeldatud Eesti avalike riigiasutuste veebilehtede ülesehitamise üldisi printsiipe

- Leheküljed peaksid olema varustatud viimase muutmise kuupäevaga.
- Üldpõhimõtteks on vältida mittestandardseid ja mitteavalikke formaate. Reeglina on laialdasem ja kindlaim toetus formaatidele, mida toetavad võrgulehitsejad - HTML, text, gif, jpeg jne.
- Nn plug-inide ja enamike lehitsejate poolt mittekiitumatu formaatide kasutamist tuleks üldjuhul vältida, välja arvatud erijuhud heli ja video jaoks ning tekstide puhul Rich Text Format (.rtf) ja Adobe Acrobat (.pdf) formaadid.
- Leheküljed ei tohiks sisaldata suuremahulisi pilte, kui see pole otseselt hädavajalik. Viimasel juhul peaks nende pilti minema eraldi viidad.
- Lehekülgede kujundus olgu lihtne ja selge. Lehekülgedel ei tohiks esineda värelavaid, vibreerivaid, vilkuvaid või ülemäära kirjusid kujunduselemente (ebasobivad on näiteks vilkuv kiri, mitmevärvilised või mustrilised tagapõhjad, animeeritud ikoonid).
- Piisavateressursside olemasolu korral võib ehitada ja sisse seada avaliku otsimootori omaenda dokumentidele Internetis. Selline mootor on kasutaja jaoks reeglina palju mugavam ja täielikum, kui ülemääilmsed, universaalsed otsimootorid.
- Võrgulehekülgede süsteemi struktuur ja kujundus olgu põhiosas ühesugune kõigi antud konkreetsete võrgulehekülgede jaoks.
- Kui võrgulehekülgede süsteem koosneb paljudest eraldi lehekülgedest ja/või viitadest väljapoole, siis: ehitatakse süsteem selge hierarhilise struktuuriga.
- Võrgulehekülgedel ei sobi kasutada ebaharilikke ja/või eriliselt efektsid kujundus ja esitusvõtteid, samuti mitte selliseid tehnoloogiaid, mida mõned laiemalt kasutusel olevad võrgulehitsejad ei toeta. Leheküljed peaksid olema kergesti navigeeritavad, lihtsas ja selge struktuuriga.
- Kõigil HTML-keelsetel võrgulehekülgedel peaks olema määratud lehekülje tiitel tagiga <TITLE> lehekülje tiitel </TITLE>.
- Lehekülgedel tuleks menüüriba eraldamisega osast kasutada kas alati tabeleid või alati raame. Ei ole soovitav antud asutuse võrgulehekülgedel kasutada mõnes kohas menüü eraldamiseks raame, mõnes aga tabeleid; lehekülg ei tohiks olla jaotatud enam kui neljaks kontseptuaalselt erinevaks osaks.

145
• Viitamisel tuleks arvestada:
 o viidad väljapoole antud asutuse lehekülgi ei tohiks avaneda raame sisse, vaid peaksid alati kas täitma terve lehitseja-akna või avama eraldi lehitseja-akna;
 o menüüsid sisaldavatel võrgulehekülgedel peaks olema viit asutuse võrgulehekülgede süsteemi esileheküljele.
• Tekstiline kuju:
 o igal graafilisel elemendil olgu lisatud alternatiivne teksti tagi ALT;
 o navigeerimine olgu võimalik ka juhul, kui brauseril on graafiliste elementide sisselugemine keelatud;
 o juhul kui graafiline element kannab sisulist infot, peaks ALT-tag seda kordama, soovitavalt ka lahti seletama. Täppidel ja joontel ei tohiks olla ALT-tagi.
• Graafikaelemendid:
 o kõikidele graafikaelementidele peaks olema lisatud dimensioon (HEIGHT ja WIDTH tagid), ning see peab vastama pildi tegelikule suurusele pikslites;
 o graafikaelemendid olgu kas .gif või .jpg formaadis;
 o igal pildil peaks olema tekstiline ALT tag;
 o pildimaterjale ei tohiks ületada ühe lehe kohta 50K, välja arvatud juhul, kui tegu on ühe konkreetse suuremahulise pildiga, mis kannab vajalikku informatsiooni.
• Optimeerida on soovitav ekraaniresolutsioonile 800x600;
• Värvilahendused:
 o teksti all ei tohiks kasutada kirjusid ja mustrilisi taustu;
 o mahukam tekstihulk peaks olema alati must, sinine, hall või valge. Värviline tekst on lubatud pealkirjades ja erilise tähelepanu juhtimiseks mõnele sõnale või lõigule;
 o Kõik värvid peaksid jääma standardse veebi värvpaleti 216 tooni piresse, so RGB-komponendid peaksid omama väärtusi 00, 33, 66, 99, CC või FF (ehk 0,51,102,153,204,255 kümnendsüsteemis). Fotodel ja joonistustel võib kasutada lisaks ka teisi toone;
• Kirjafont:
• Menüüdes, pealkirjades, navigatsioonielementides ja lühikirjeldustes ning -
 infos on soovitat kasutada fonte Arial ja Helvetica.
 o Fondi suurus määaratakse suhteliselt (FONT SIZE="-1", FONT SIZE="+1"
 jne);
 o Pikemas või spetsiaalselt kujundamata tekstis märgitakse pealkirjad
 soovitavalt tagidega <h1> kuni <h5>, ja mitte ise koostatud
 formaadikirjeldusega.
 • Java ja dünaamiline HTML
 o Leheküljed olgu kasutatavad ka ilma Java ning javascripti toeta;
 o analogiliselt tuleb suhtuda dünaamilisse HTML-i: navigeerimiseks ja
 olulise informatsiooni edastamiseks, peab alati olema antud alternatiiv
 navigeerimiseks ja/või info hankimiseks ilma dünaamilist HTMLi
 kasutamata (eriik).
Lisa 4. Küsimustik ekspertidele (kunstiõpetajatele)

Lugupedd kunstiõpetaja!
Materjal on valmimisjärgus, kuna ootab kunstiõpetajate kui praktikute arvamust, et materjalide lõppkuju anda. Veebileht hakkab sisaldama vajalikke teemasid, mis on gümnaasiumi õppekava ja ka palju lisamaterjale.
Eesmärgiks on, et veebileht vastaks kunstiõpetajate nõudmistele ja vajadustele Eesti kunsti õpetamisel.

Küsimused.
1. Kas peate oluliseks enda jaoks selleteemalise veebimaterjali kasutamisvõimalust?
2. Kui vaatate veebimaterjale lehel “TEKSTID”, siis millise sisuga tekste on Teie arvates vaja juurde lisada (praegu on ainult teatud perioodide lühitutvustused)?
3. Kui vaatate veebimaterjale lehel “KUNSTILOOJAD”, siis millise kunstniku lisaksite veel sellesse nimekirja (praegu on valmis materjalid Kristjan Raua ja Ants Laikmaa kohta)?
4. Kui vaatate veebimaterjale lehel “KRISTJAN RAUD” ja “ANTS LAIKMAA”, siis mida arvate teksti mahust, piltide arvust ja valikust, piltide ja teksti paigutusest (vääkle maali pildile klikates saab näha seda ka suurelt)?
5. Kui vaatate veebimaterjale lehel “GALERII” (valmimisel), siis mida arvate, kuidas võiks olla piltide paigutus ja kas on vajalik ka OTSINGU lisamine, et mõnda pilti kiiresti leida? Kas peate vajalikuks võimalust, et ka õpetajad ise saaksid omalt poolt galeriisse pilte juurde lisada?
6. Kui vaatate veebimaterjale lehel “TESTID” (valmimisel), siis on Teil võimalus proovida kahte näidestesti? Millisel kujul õpilaste testimisvõimalust soovite Teie kasutada?
7. Kas proovisite ise testi teha, saite juhistest aru? Milliseid võimalusi testide ise koostamisel juurde soovite?
8. Kui vaatate veebimaterjale lehel “KASUTUSJUHEND”, siis kas on kõik arusaadav? Kas lisaksite veebilehele veel mõne osa juurde või jätksite mõne osa päris välja?
9. Andke hinnang veebimaterjali üldkujundusele. Mis võiks olla teisiti piltide ja tekstide osas – suurus, värvid, paigutus?
10. Kas veebimaterjalide kasutamine oli lihtne ja arusaadav? Kas Teil on ettepanekuid muutmiseks, täiendamiseks?
Lisa 5. Ŷpitarkvara prototüüp CD plaadil