

Tallinn University

Institute of Informatics

Applying Agile Methodologies to

Design and Programming

Master Thesis

Author: Tatjana Pavlenko

Supervisor: David Lamas

Author Supervisor Head of the Institute

(name, date and signature) (name, date and signature) (name, date and signature)

Tallinn 2012

Applying Agile Methodologies to Design and Programming

2/90

Author's Declaration

I hereby declare that this thesis is my own work and effort and that it has not been

submitted anywhere for any other comparable academic degree. Where other

sources of information have been used, they have been acknowledged.

. .

(date) (signature)

Applying Agile Methodologies to Design and Programming

3/90

Abstract

This master thesis covers problems of applying Agile methodologies to design and

programming. The paper is focused on Company Sigma adopting the most

popular Agile framework – Scrum. The research addresses problems of

introducing Scrum in a small company which has never used any particular

methodology. Additional problems resulting from company specifics are the lack

of team self-organization and inability to manage designing process.

The purpose of this work is to design an effective Scrum approach for Company

Sigma, which can be easily adapted and passed to future employees. The

approach corresponds to company’s objective and fits the needs and skills of team

members.

The study has been conducted within the frames of design research, where the

designed artifact is implementation of Scrum into specific environment. Design

research consists of four implementation cycles and is enhanced with

ethnographic approach in order to receive reliable feedback from participants. The

research is based on theoretical overview of Agile methodologies. The strategy of

this study was inspired by literature covering design research.

The results reveal an effective Scrum approach that has a core idea to involve as

much team members as possible, keep tracking others and slack their resistance.

The list of methods applicable to Company Sigma environment is presented in the

end of the paper.

Applying Agile Methodologies to Design and Programming

4/90

Keywords

Agile, Scrum, design, programming, application, software, iterative, incremental, linear,

development, methodologies, management, user, interface, approach, team,

implementation.

Applying Agile Methodologies to Design and Programming

5/90

Contents

1. Introduction 11

1.1. Research Problem 12

1.2. Research Strategy 14

1.3. Methodology 15

2. Agile Software Development 18

2.1. Classification of Software Development Frameworks 18

2.2. Introducing a Buzzword 19

2.3. Does Agile Equal Scrum? 21

2.4. Core Principles of Scrum 22

2.5. Technical Practices 24

2.6. Guiding Values 25

2.7. Scrum in a Small Company 26

2.8. Design and Programming: Can Scrum Bridge the Gap? 27

3. Company Sigma Case Study 30

3.1. Company Background 30

3.2. Company’s Objective 31

3.3. Product Roadmap 32

3.4. Personnel Volatility 33

3.5. Infrastructure 33

3.6. Team Engagement 35

Applying Agile Methodologies to Design and Programming

6/90

3.7. Summing Up 37

4. Detecting Initial Problems 39

4.1. Team Members Identities 39

4.2. Weekly Meeting Episode 43

4.3. Revealed Problems 44

4.4. Turning Problems into Goals 45

5. Designing Effective Scrum Approach 47

5.1. Guidelines for Design Research 47

5.2. First Cycle: Meeting Room Enhancement 49

5.2.1. Implementation 49

5.2.2. Findings 50

5.2.3. Lessons Learned 51

5.3. Second Cycle: Facing Challenges 52

5.3.1. Implementation 52

5.3.2. Findings 55

5.3.3. Lessons Learned 56

5.4. Third Cycle: Moving to Kanban 56

5.4.1. Implementation 56

5.4.2. Findings 59

5.4.3. Lessons Learned 63

5.5. Fourth Cycle: Not Ideal but Effective 63

5.5.1. Implementation 63

5.5.2. Findings 65

5.5.3. Lessons Learned 67

5.6. Implementation Analysis and Feedback 68

6. Conclusion 72

7. Kokkuvõte 76

Applying Agile Methodologies to Design and Programming

7/90

Annex A. List of Codes Retrieved from Interviews 78

A.1 Codes from Interview with Designer 78

A.2 Codes from Interview with Product Owner 79

A.3 Codes from Interview with Junior Developer 80

A.4 Codes from Interview with Senior Developer 81

A.5 Codes from Interview with Software Architect 82

Annex B. Tag Clouds 83

B.1 Designer Tag Cloud 83

B.2 Product Owner Tag Cloud 84

B.3 Junior Developer Tag Cloud 84

B.4 Senior Developer 85

B.5 Software Architect 85

References 86

Applying Agile Methodologies to Design and Programming

8/90

List of Figures

Figure 1.1 Alterations in Company Sigma development process 12

Figure 1.2 Problem of fitting design into Scrum in Company Sigma 13

Figure 2.1 The percentage of implementing Scrum among other Agile

methods during the last six years (based on six annual surveys

by VersionOne, 2007-2012) 22

Figure 2.2 Sprint Cycle 23

Figure 2.3 Values of Agile Manifesto 26

Figure 3.1 Release chart for seven iOS applications. 33

Figure 3.2 Working environment of Company Sigma 34

Figure 3.3 Internal connections and responsibilities of team members in

Company Sigma at the moment of introducing Scrum. 36

Figure 3.4 Ideal model of Scrum for Company Sigma 37

Figure 4.1 One weekly meeting episode: conversation between Designer

(green), Senior Developer (blue), and Product Owner (red) 44

Figure 5.1 Meeting room filled with Scrum elements 50

Figure 5.2 Evolution of the Task Board 51

Figure 5.3 Report on testing User Stories 53

Figure 5.4 Scrum values presented on the wall of Company Sigma 54

Figure 5.5 Sprint Cycle Schedule that allows constant updating 54

Applying Agile Methodologies to Design and Programming

9/90

Figure 5.6 Unused paper prototypes moved from table to shelf 55

Figure 5.7 Two ways of application prototypes 59

Figure 5.8 Kanbanery project task management tool: main view 60

Figure 5.9 Kanbanery pie chart illustrates proportion of tasks according to

their types (Feature, Bug, Chore, Task Related to Story, Design

Issue, and undefined) 61

Figure 5.10 Kanbanery Cumulative Flow Chart for the period January 30 –

February 29, 2012 61

Figure 5.11 New connections: Usability Tester as a mediator b etween

Developers and Designer 62

Figure 5.12 Tag Cloud of concepts that could lead towards ideal working

environment in Company Sigma 64

Figure 5.13 Improvised application prototypes 65

Figure 5.14 New task tracking system looked exactly as online version of

Kanbanery 66

Figure 5.15 Internal connections and responsibilities of team members in

Company Sigma at the last cycle of implementing Scrum 70

Applying Agile Methodologies to Design and Programming

10/90

List of Tables

Table 2.1 – Principles of Agile Manifesto 25

Table 4.1 – Distribution of team members within three types of individual

disposition to change 43

Table 4.2 – Turning problems into goals 46

Table 5.1 – Constructs collected by RGT 58

Table 5.2 – The list of modifications done during the whole implementation

period 68

Applying Agile Methodologies to Design and Programming

11/90

Chapter 1

Introduction

A comprehensive manual for developing iOS applications starts with the

promising statement: „Everybody has an idea for an app‚ (Welch, 2011, p.3). On July

7, 2011 Apple Inc announced that over 15 billion applications have been

downloaded from App Store by more than 200 million iOS users worldwide. The

App Store offers more than 425 000 applications and developers have created over

100 000 native iPad applications (Apple, 2011). Companies that produce software

should adjust to these changes smoothly and fast.

This paper studies the case of Company Sigma1 that has been developing large

Windows software for specific target group since 1990s. Recently their product

became outdated due to extreme development of other software platforms.

Therefore customers requested the same functionality with better interface. An

ideal solution was to produce a set of iPad applications.

However, it appeared to be very challenging. The company had an idea but did

not have a corresponding strategy. Even though leading developers had twenty

years of experience in information technology, they have never done iOS

application programming before and have never spent much effort on designing

1 Company office is located in Tallinn (Estonia), but its business details remain confidental

throughout the research and no real names are used in this master thesis.

Applying Agile Methodologies to Design and Programming

12/90

user interface. To manage the situation, director of Company Sigma decided to

increase productivity by trying new sofwtare development methods.

Scrum was the most corresponding framework, which belongs to Agile type of

methodologies. According to annual survey The State of Agile Development

(VersionOne, 2012, p. 7), three top benefits obtained from implementing Agile are:

ability to manage changing priorities, improved project visibility, and increased productivity .

These results motivated Company Sigma to start being Agile too. However, this was

not a smooth and simple process: ‚transitioning to Scrum and other agile methods is hard

– much harder than many companies anticipate‛ (Cohn, 2010, p. 3).

1.1 Research Problem

This research is focused on Company Sigma adopting the most popular Agile

methodology – Scrum (VersionOne, 2012). As describe above, the company’s

problem is rooted into several layers: transforming outdated software into iOS

application, requiring new technical knowledge and new strategy. Our research is

focused only on the problems of adapting new strategy.

Figure 1.1 – Alterations in Company Sigma development process

As it can be seen from Figure 1.1, we are interested in the part contoured with

Transformed into

iOS application

Original

software

Outdated

software

iOS

application

Managed by Agile methodologies

Scrum framework

Applying Agile Methodologies to Design and Programming

13/90

dotted red line – process of applying Agile methodologies, Scrum in particular, to

design and programming of iOS application.

Not only acquiring technical knowledge of iOS development was problematic for

Company Sigma. Completing tasks according to methodology was not easy either.

And it is not the unique case of Company Sigma. Cohn (2010) confirms that

‚transitioning to Scrum and other agile methods is hard – much harder than many

companies anticipate‛ (p. 3). According to annual survey The State of Agile Development

(VersionOne, 2012, p. 5), 8% of companies using Agile said they do not plan to

implement these methodologies for future projects, 33% said they do not know. The

most common obstacles in adopting were: inability to change organizational culture,

unavailability of personnel with right skills, general resistance to change. Some of these

factors existed in Company Sigma as well.

Figure 1.2 – Problem of fitting design into Scrum in Company Sigma

Later there appeared the second problem: fitting design into Scrum, as illustrated

in Figure 1.2. Company did not have experience in designing graphical user

interface and hired a freelance designer to fill in the gap. However, the designer

Designing

iOS

application
Transformed into

iOS application

Managed by Agile methodologies

Scrum framework

Programming

Managed by traditional

methodologies

Applying Agile Methodologies to Design and Programming

14/90

expressed resistance to working iteratively. This made Scrum adaptation even

more challenging. And again, such problem is not the unique case of Company

Sigma. According to Cohn (2010), designers often have a legitimate concern with

adopting Scrum. This happens mostly because Scrum framework involves

working iteratively, which is not appropriate for designers who prefer working in

advance of the rest of the project. Additionally, the problem is that the origin of

Scrum lies in software engineering where visual appeal didn't really matter

(Arslan, 2012).

Thus Company Sigma has two major problems: (1) adapting Scrum and (1)

managing user interface design. However the research problem is slightly

different:

How to design an effective Scrum approach for Company Sigma

But in the end, it leads to solving company’s problems anyway.

1.2 Research Strategy

Based on the introduced problems, the following research strategy helps to

achieve sufficient results and satisfying solutions:

1. Study working environment of Company Sigma

2. Study what is preventing Company Sigma from following Scrum principles

3. Propose an effective Scrum approach

4. Implement the design of effective Scrum approach.

First of all, the designed approach allows passing it to new members of the

company, so that Agile methods can be sufficiently used in future. In addition, the

collected data may be helpful for other companies facing the same problems.

Additional goals involve company’s interests, such us improving the work

Applying Agile Methodologies to Design and Programming

15/90

process, making the development faster, settling productive working atmosphere,

and other small changes, resulting from the conducted research, which may lead

to increasing the business value.

1.3 Methodology

The study has been conducted within the frames of design research, where the

designed artifact was implementation of Scrum into specific working environment

of a Company Sigma. The research consisted of three constantly overlapping

phases: 1) highlighting the weak points of adopting Scrum 2) designing new

implementation of Scrum, and 3) evaluating the adopted implementation.

To reveal Scrum-related problems, design research was enhanced with

ethnographic approach, which allowed observing characteristics of the team in

Company Sigma. As far as the researcher is one of the team members, constantly

engaged in the observed activities, it was sufficient to use participant type of

observation (Cohen, Manion, and Morrison, 2007). The instruments employed to

collect data were:

1. open and semi-structured qualitative interviews

2. online conversations

3. card sorting games

4. personal constructs (repertory grid technique)

5. observations

6. photographing

Interviews were conducted with 5 team members selected out of 8 according to

their involvement in the current project. The most relevant people were Designer,

Applying Agile Methodologies to Design and Programming

16/90

Product Owner, Junior Developer2, Senior Developer, and Software Architect.

Interviews were audio-recorded and transcribed. The audio transcriptions can be

found on a CD enclosed to this master thesis. Online conversations are also

documented and filed there.

Interview types were taken from Patton (1980): an interview guide approach and

standardized open-ended interview. Basic open-ended questions were determined

in advance, however their wording and sequence was decided during the

interview. To define individual identities we asked: ‚What is your role in the

project?‛, ‚Describe your job as if you are speaking to a 6 year old‛, etc. For Scrum

evaluation, there were questions like: ‚To what extent does Scrum work according

to 100% scale?‚, ‚Do you think there is enough collaborative tools?‛, ‚What could

you do to keep Scrum going?‛ etc.

Such approach was suitable for our design research, because it guaranteed

conversational and situational style of the interviews, so that respondents have not

felt tension while speaking. We gave people freedom to express themselves. Even

though received information was massive and covered many aspects, the same

topics were easily detected within every interview. Interviews were thematically

coded according to typological classification system of Lofland (1950): settings,

acts, activities, meanings, participation, relationships. Settings (entire context)

remained the same within each interview and coded as following:

 Role in the project

 Attitude to Scrum

 Current situation

 Towards ideal situation

2 Junior Developer quit his job during the final phase of this research. As a result, interactions

slightly changed; the rest two developers (Senior and Chief) shared the tasks between each

other. Distantly working Chief Developer became more involved. Nevertheless, we count Junior

Developer as a team member, since he has been working most of the time during the research.

Applying Agile Methodologies to Design and Programming

17/90

The full list of codes is presented in Annex A. In addition, we used Tag Clouds for

visual representation of textual data. Those can be found in Annex B.

Traditional problem-solving approach helped to maintain the implementation

phases. Constant alterations were made within Company Sigma. During the

whole study period, Scrum technique was reshaped several times either by

managing director or by author of this research. New alterations had to be

implemented, nevertheless previous instruments still stayed unused. The

researcher’s interest was to separate alterations from each other. Those alterations

are objects of our design research. Evaluation was done by analyzing interviews,

personal constructs, and team’s overall productivity. Plus, several tables and

diagrams were used to track the workflow and observe any improvements.

A set of photos was made in the office to illustrate the work process and reveal the

attributes (Task Board, Burndown Chart, schedule etc.). The researcher took notes

during weekly meetings of the team, where every participant expressed his ideas,

problems, and suggestions for further development.

As a whole, 5 face-to-face interviews, 2 online interviews, 5 questionnaires, 9

weekly meetings, 27 pictures, and 31 pages of notes were collected and observed

since the research process has started. Three of five interviews were conducted in

native language of speakers, which is Russian. The codes for those interviews are

available in English. The type of gathered data was nominal. The whole research

period took ca 4 months and was split into overlapping stages: general

observations (generating concepts, literature review, sorting ideas – ca 2 months),

deeper analysis (defining what is working, what is not working and why – ca 2

weeks), constant implementing and evaluating the design (ca 1 month).

Applying Agile Methodologies to Design and Programming

18/90

Chapter 2

Agile Software Development

This chapter highlights Agile methods of software development and their

differences from each other. First, we give an overview of classical methodologies

and continue with introducing an Agile approach. After that, paper will focus on

Scrum, one of Agile methodologies. The main issues for discussion are: which

techniques are covered with Agile framework, is Agile a synonym to Scrum, can

Scrum bridge the gap between designers and programmers.

2.1 Classification of Software Development

Frameworks

Classically there have been three types of methodological frameworks: linear,

iterative, and combination of both. The term 'linear' means “progressing from one

stage to another in a single series of steps‛ (The New Oxford American Dictionary,

2010). This exactly describes the methodology. The most common linear

framework is Waterfall, proposed by Royce (1970), where projects consist of

sequential phases with acceptance of some overlap. Each step in a waterfall

process must be completed before moving on to the next (Sims & Johnson, 2011).

The customer can see the product as soon as the last stage is over. Additionally, as

proposed by Royce (1970), there should be ‚quite a lot‛ of documentation (p. 332).

Such linear methods are also called 'plan-driven' because they need a set of

Applying Agile Methodologies to Design and Programming

19/90

requirements predefined from the start. The requirements should be precise, clear,

and relatively static (Williams, 2007).

Iterative development is quite opposite. Unlike plan-driven linear methods, it

excludes initial planning but focuses on constant changes, and stimulates

continuous revision and improvement of software. The work is broken up into

small pieces that are developed over some period and finally put together when

they are ready (Cocburn, 2008). An example of pure iterative framework is

Prototyping (Centers for Medicare and Medicaid Services [CMS], 2008). Iterative

frameworks can be also used in combination with linear methods, setting up such

frameworks as Incremental, Spiral, Rapid application development (RAD), and

Extreme Programming.

Researchers Larman and Basili (2003) have studied iterative development together

with incremental development and treated them as a whole (IID). Cockburn (2008)

supports this idea and believes these two branches ‚fit well with each other‛ (p. 28).

Incremental approach improves development process, iterative approach increases

product's quality.

Comparing to linear process, iterative incremental development is far more

popular and widely applied in software companies today. Its main advantage is

flexibility, which is very important in terms of extremely developing software

industry and software technologies (Williams, 2007). Customers’ expectations are

moving quickly and become unpredictable, that is why sticking to a static plan, as

suggested by Waterfall method, may lead to frustrating results.

2.2 Introducing a Buzzword

Until now, we have not yet mentioned Agile. It is important to understand the

chronology of developing Agile methods. Before the word 'agile' became so

Applying Agile Methodologies to Design and Programming

20/90

widely used in software industry, several iterative and incremental methodologies

have been already practiced since 1970s. Scrum was launched in 1986, Rapid

Application Development (RAD) in 1994, Extreme Programming (XP) in 1996

(Larman & Basili, 2003).

Agile is an umbrella term that covers Scrum, RAD, XP, and other 'lightweight'

methodologies, such as Crystal, Lean, Kanban, Feature Driven Development, etc.

The term 'agile' was introduced in 2001 when seventeen enthusiastic software

developers, interested in further promotion of quick and easy techniques, created

a movement opposed to classic linear Waterfall method. They formed an Agile

Alliance and wrote an Agile Manifesto (Sims & Johnson, 2011).

Since then, Agile has been awaking high interest among IT companies. It is indeed

a very popular iterative and incremental approach to software development. Some

teams came across it accidentally; some were intentionally searching for a new

strategy. Both ways, Agile brings success if adapted properly. There are plenty of

online groups and communities for practicing Agile methods; special events and

presentations are organized in order to meet in person and share the experience

(e.g. Agile Saturday in Tallinn and Riga). Teams want to be Agile.

At the same time, it remains unclear what 'agile' is all about and how its

methodologies are different from each other. At some point 'agile' sounds like a

'buzzword', something very important and constantly heard, but difficult to

understand since there is no common meaning for it (Jensen, 1998). There is no

lack of books, manuals, educative videos, slideshows, and training courses

regarding Agile, but this diversity makes it harder to find a unique interpretation.

However, in terms of Agile, various interpretations may and should coexist.

According to Cohn (2010), if someone has read a book about Agile and thinks he

found the right approach for his company, he is wrong. In reality, there is a special

way for each organization to become Agile.

Applying Agile Methodologies to Design and Programming

21/90

2.3 Does Agile Equal Scrum?

It is quite common to say 'agile' in reference to Scrum, and vice versa. Agile

experts also interchange these terms, for example, Cohn (2010) or Rasmusson

(2010). Cohn treats Agile and Scrum as comparable concepts in his book Succeeding

with Agile: Software Development Using Scrum. Rasmusson's guide Agile Samurai

includes many Scrum strategies (i.e. compare to Sims & Johnson, 2011). Also, if we

type 'scrum' into Google Books, the following titles will be displayed: Agile Project

Management with Scrum, Agile Software Development with Scrum, Agile Game

Development with Scrum. In practice, Agile and Scrum may be confused. During the

interviews, enclosed to this paper, one respondent has wondered whether these

terms can be used as synonyms. There is a recent online discussion in a blog

(Pledgerwood, 2012) where the author claims: ‚...it’s very annoying when people

assume that everything I say or do or put on a profile regarding Agile is actually about

Scrum‛.

There is no surprise for such substitution, because Scrum is the most used Agile

methodology by 2011. This tendency remains stable during the last six years (see

Figure 2.1). Figure 2.1 is based on six annual surveys, conducted by VersionOne,

The State of Agile Development. It also shows that Scrum has been practiced together

with Extreme Programming since 2007, which makes it even more overwhelming.

As discussed before, Agile is a much wider concept than Scrum, it is a set of values

and principles, whereas Scrum is one particular methodology based on those

values and principles. However, Figure 2.1 illustrates how big the proportion of

companies using Scrum is, comparing to other Agile methods. Therefore, if

someone says Scrum instead of Agile, or vice versa, the mistake is relatively small,

for in most cases these terms are indeed equal.

Applying Agile Methodologies to Design and Programming

22/90

Figure 2.1 – The percentage of implementing Scrum among other Agile methods

during the last six years (based on six annual surveys by VersionOne, 2007-2012)

Of course, we cannot literally replace them without knowing the difference. In this

paper we refer to Scrum as a sub-term of Agile and do not interchange them.

Moreover, there are practices and instruments relevant only to Scrum, which

cannot be generalized.

2.4 Core Principles of Scrum

What singles out Scrum among other Agile methodologies is that it is not a strict

methodology, not a system of methods, but rather a team-based framework, which

relies on self-organizing cross-functional teams (Mountaingoatsoftware, 2012). It is

very important to select the right members and maintain teamwork sufficiently.

That is why Scrum is concentrated on introducing new roles and shaping the old

ones (Cohn, 2010). In order to make team self-organized, the process should be

supported by flexible schedule, useful artifacts, and shared terminology. Figure 2.2

shows the development process of Scrum framework, which is usually called

Sprint Cycle.

Applying Agile Methodologies to Design and Programming

23/90

Figure 2.2 – Sprint Cycle

Sprint is an iteration, or development period, that lasts no longer than 1 -4 weeks.

Product Backlog is a set of business and technical functionality that has to be

developed or revised during the whole release period. It is constructed by Product

Owner and includes features, bugs fixes, documentation changes. Sometimes

Product Backlog is called 'backlog items'. Sprint Backlog is a set of business and

technical functionality selected by Product Owner from the product backlog for

the next sprint. Sprint Review is a meeting organized at the end of a sprint, when

the increment of working and potentially shippable software is presented.

Retrospective is also a meeting on the same day as sprint review, which involves

everyone discussing the strong and the weak points of the previous sprint in order

to improve the mistakes within the next sprint.

User Stories are building blocks of the product. They are expressed in a simple

language, as if the future users have told them. User stories are written during the

specially organized meeting by Product Owner and team members. Stories are

split into smaller tasks that should be completed during each sprint. Sprint

Burndown Chart shows the hours or points remaining to completed tasks for a

current sprint. Task Points are usually calculated during the Team Estimation

Game or Planning Poker. It makes easier to estimate different assignments and

prioritize them.

Scrum Master is a team member who also performs as a mentor or coach of the

team. His main responsibility is to keep Scrum working: reinforcing product

Applying Agile Methodologies to Design and Programming

24/90

iteration, goals, values, and practices. He coordinates Daily Scrum Meetings and

Sprint Reviews. Product Owner represents customers' needs, creates and prioritizes

Product Backlog, selects items for a Sprint. Product Owner and Scrum Master

should be two different people. All the rest are team members: developers,

designers, architects, testers, etc.

Basically, the whole Scrum is built upon two poles: team members and customers.

There is a product in between, which should be somehow delivered from one pole

to another. Scrum is responsible for that. Cohn (2010) notifies that introduction of

Scrum affects not only developing team but everyone involved in the project, even

the financial department. Of course, customers are also affected, since they

constantly receive an increment of working software, not the completed version

right away, as it traditionally was.

2.5. Technical Practices

The crucial difference between Scrum and linear Waterfall method is no

consequence in analyzing, designing, coding, and testing – they are applied

altogether to each increment of a product, as a set of mixed mini-Waterfalls. When

all the increments are complete, customer receives the final version. But before

that, he is able to monitor middle stages. Scrum is what makes software

production look transparent and visible. As a result, all mistakes and inaccuracies

can be noticed at an early stage, rather than in the end, when nothing can be

changed.

Scrum suggests using different technical practices for making problems even more

predictable and avoidable, these are: release planning, refactoring, project micro-

charter, test-driven development, pair programming, collective ownership,

continuous integration, and also methods, introduced by Cooper (2007), such as

user stories and paper prototypes.

Applying Agile Methodologies to Design and Programming

25/90

There is quite enough freedom for combining technical practices in Scrum. The

only assumption is that teams should definitely use at least some of them (Cohn,

2010). As long as teams are self-organized and well-directed by Scrum Master,

they can choose between various techniques according to company’s needs,

working environment, convenience, and their goals in general.

2.6 Guiding Values

Besides the technical part, there is also a set of values, which Scrum team should

appreciate and remember while coding and designing. Such values are taken from

Agile Manifesto, created by members of Agile Alliance.

1. Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with

a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support

they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity - the art of maximizing the amount of work not done - is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

Table 2.1 – Principles of Agile Manifesto

Applying Agile Methodologies to Design and Programming

26/90

Agile Manifesto includes twelve principles proposed for companies as a starting

point to Scrum (Sims & Johnson, 2011). These principles are published on the

website Agilemanifesto.org and listed as shown in Table 2.1.

In addition, there are 4 general values that can be illustrated as a concept map (see

Figure 2.3). The main idea is to work opposed to classical software development

based on planning, documentation, contracts, and tools. For a Scrum team, it is

more important to interact with each other and with customers, whereas the 'old'

tactics of negotiation should be remembered but not prioritized.

Figure 2.3 - Values of Agile Manifesto

2.7 Scrum in a Small Company

As discovered above, teamwork is very essential for adopting Scrum. However,

there are cases of having only one small team, which cannot be changed. As

demonstrated by VersionOne in The State of Agile Development (2007-2012) surveys,

Applying Agile Methodologies to Design and Programming

27/90

team size has never been the reason for failed Agile projects, which means that

there are barriers harder than having a small team

The case of a small company trying to adapt Scrum is thoroughly discussed in

Chapters 4-5. Before moving forward, it is necessary to discover the perspective of

adopting Scrum in a small company.

The minimal size of a Scrum team is five, excluding Scrum Master and Product

Owner. Different sources suggest nearly the same numbers, for example, Sims &

Johnson (2011) say there should be ‚seven, plus or minus two‛ (p. 71). Cohn (2010)

suggests five to nine people as an ideal team, but also proposes an approach used

by Amazon.com: ‚a team that can be fed with two pizzas‛ (p. 177). There is a much

wider discussion about geographically distributed teams than just small teams.

The only notion is done by Sims and Johnson (2011): ‚Fewer team member and the

team may not have enough variety of skills to do all of the work needed to complete user

stories‛ (p. 71). The most essential thing is experience and ability to follow Scrum

techniques, whereas quantity is the matter of individual performance.

To sum up, Scrum is suitable also for small companies; hence the challenge of

adopting it can be accepted. During the interviews, conducted in Company Sigma,

several members claimed that Scrum was impossible to run in their circumstances

(small company, distributed team). Such statements are not valid within this

research because the team of 6 members plus Scrum Master and Product Owner

cannot be treated as small. And having developers working in another country is

not a problem for Scrum (Cohn, 2010).

2.8 Design and Programming: Can Scrum

Bridge the Gap?

First of all, the definition of design should be clarified. As noticed by experts on

Applying Agile Methodologies to Design and Programming

28/90

design research Koskinen, Zimmerman, Binder, Redstrom, and Wensveen (2011),

'design' is an ambiguous English term, because it means both 'planning' and 'form

giving'. The difference between outlook and functioning is quite pale: ‚a plan or

drawing produced to show the look and function or workings of a building, garment, or

other object before it is built or made‛ (The New Oxford American Dictionary, 2010).

However, designing interface and designing functionality is not about the same.

As stated by Apple (2011) in their iOS Human Interface Guidelines:

A user interface that is unattractive, convoluted, or illogical can make

even a great application seem like a chore to use. But a beautiful,

intuitive, compelling user interface enhances an application’s

functionality and inspires a positive emotional attachment in users (p.

21).

Norman (2002) underlines mutual nature of objects design, which is also

applicable to software:

If everyday design were ruled by aesthetics, life might be more pleasing to

the eye but less comfortable; if ruled by usability, it might be more

comfortable but uglier. […] Trouble occurs when one dominates all the

others (p. 153).

To sum up, it is quite important that both sides of the designing process (form

giving and planning) could overlap. As a result, a good cooperation between

programmers and designers is needed. The question is: how this cooperation is

managed in Scrum framework?

According to Arslan (2012), the challenge lies within combining engineering and

designing user interface. Designers are under the pressure whether to design an

up-front design one sprint in advance or wait for functionality to start building a

Applying Agile Methodologies to Design and Programming

29/90

visual solution for the interface. This challenge has been mentioned several times

within Web discussions about Agile methodologies (Manning, 2008). Developers

argue that one of the biggest challenges moving away from an up-front design

approach to an Agile (Scrum) approach is figuring out the best way to incorporate

the work of visual designers into the collaboration. And finally, Ambler (2010)

claims that the Agile approach to design is very different than the traditional

approach and apparently more effective too. However, there is no general rule

how to make designers work with Agile. Several solutions were introduced by

Cohn (2010) and Ambler (2010). The most common advices are that design should

be intentional but yet emergent and designers should iterate their work.

Nevertheless an extreme changing of IT industry requires new methods and

advices. Unfortunately even participants of Agile events pay little attention to this

problem. The recent Agile Saturday hold in Riga, Latvia (agilerigaday.lv) included

17 presentations covering various topics except for design. The impact of such an

absence of a set of guidelines can be quite noticeable. There are small and

inexperienced companies enthusiastic about introducing Agile to their teams. At

the same time they are not able to do it successfully because of unexpected

problems with designers who join the ongoing development. The research paper is

focused on one particular Company Sigma that meets the problem described

above.

Applying Agile Methodologies to Design and Programming

30/90

Chapter 3

Company Sigma Case Study

This chapter accurately describes the environment of Company Sigma, where our

design object is implemented. We evaluate what can and what cannot be changed.

The variables that cannot be modified, but should be observed, are: company

background, company’s objective, product roadmap, and personnel volatility. We

are not allowed to interpose in them, even if we could, since they are predefined

by company managing department. What we can modify during implementation

period is infrastructure and team engagement. However, all the factors discussed

in this chapter are interconnected and affect our research in a certain way.

3.1 Company Background

Company has been successfully developing software since 1990s. It produced and

maintained a large Windows based Sales Force Automation tool, which ended up

with an old-fashioned user interface. In addition, Company initiated a mobile

phone version of the same tool, which became outdated due to extreme progress

in technology production. As a consequence, Company decided to transform

Windows software into seven simple and handy iOS applications – up-to-date

products with high speed, user-friendliness and nice-looking interface. These

characteristics are beneficial for customers but rather challenging for developing

Applying Agile Methodologies to Design and Programming

31/90

team. Producing nice-looking but well-working iOS application requires

collaboration between designer and programmers. The company has never had a

designer for visualizing interface before. This condition has to be taken into

account while implementing Scrum, because designer should work incrementally

with other team members. It could be really challenging for a company that is

inexperienced in both fields: user-interface design and Scrum.

3.2 Company’s Objective

Company aims to produce seven user-friendly iOS applications with modern

design. With the new application company offers the enhancement of business

process and client meeting experience, speed and easiness, lifting customers'

reputation, minimizing transition costs from the old software.

Concerning technical part of the process, company aims to provide all the

distinctive features of high quality iOS applications. It is important for the

company to follow Human Interface Guidelines (HIG, 2011) provided by Apple:

‚aesthetic integrity, consistency, direct manipulation, feedback, metaphors, user control‛.

In order to accomplish this quite an extensive plan, company needs to attract

investors at an early stage of development, because they already had a negative

experience with producing mobile application that is no longer in demand. In this

case, Scrum seemed as a good solution to maintain the process since it allowed

presenting a potentially shippable product every certain period. In addition,

company’s managing director (Product Owner, according to Scrum terminology)

found Scrum framework well-documented and easy to understand for everybody.

The company has not had any formal methodology before, but has been working

‚relatively close to what is Scrum‛ (Annex A.1). Product Owner was attracted by

Scrum's way of defining roles and tasks. As a result, Scrum was applied and

supported by Product Owner:

Applying Agile Methodologies to Design and Programming

32/90

I don't think there is a huge enthusiasm but I don't think there is a big

resistance either, because the changes are not very big. It's just that we share

the information and we are a little bit formal about it (Interview with

Product Owner, p. 6).

However, Scrum was not working to its full extent and, therefore, several

modifications were needed. These modifications will be discussed further.

3.3 Product Roadmap

Company’s current project is focused on the first application from a set. It was

launched in November 2011 and should be released in fall of 2012, which makes

the development cycle exactly one year long. Forty percents of the application is

ready by April 2012, therefore the first project is running in time. The rest projects

will be developed consequently, either by current team or involving more

distributed teams from abroad. Figure 3.1 demonstrates the roadmap of releasing

all seven applications. There is a gap in the first quarter of 2013, since this time is

predefined for developing the corresponding back office. This is quite a long

development period, which means that Scrum should be implemented in a way

that it would still work far in the future. There also exists an accelerated version of

roadmap in case if Company Sigma finds more investors and hires an additional

distributed team in order to speed up the development process.

Applying Agile Methodologies to Design and Programming

33/90

Figure 3.1 – Release chart for seven iOS applications.

3.4 Personnel Volatility

Unfortunately, personnel volatility cannot be predicted. Managing director may

decide to break contracts with some employees or hire the new ones. Those

changes will certainly affect implementing the design, because new members

should be taken into consideration, while the old ones might behave differently.

And that is what happened during this research. One of the team members quitted

his job at Company Sigma during the middle phase of the research. However, that

person was highly important because of being active and interested in our design

object – Scrum. Therefore, after leaving the position, he was still interviewed

several times and was treated as part of the team.

3.5 Infrastructure

Infrastructure means the basic organizational facilities needed for the operation of an

enterprise (The New Oxford American Dictionary, 2010). Scrum itself is a part of

infrastructure. It introduces new artifacts and new roles, and reshapes the old

ones.

Applying Agile Methodologies to Design and Programming

34/90

Team works in the office where each member has his own room, MacBook, and

iPad for professional purposes. There is also a big meeting room with a rounded

table, whiteboard, and bookshelves. Sometimes developers practice Pair

Programming there. But mostly this room is used for weekly meetings where

people share ideas, discuss further plans, and analyze current problems. Remotely

working members can communicate with each other face-to-face during these

meetings. Whiteboard is used time to time for noting important issues. Figure 3.2

illustrates the working environment in Company Sigma.

Figure 3.2 – Working environment of Company Sigma

Company uses several online tools for spreading information. Developers use

GitHub for sharing the code. TestFlight is used for releasing an improved version

of iOS app and sharing it with other team members. Dropbox is used for sharing

design elements, such as icons, buttons, backgrounds, etc. In general, there is

enough tools for Scrum framework.

Applying Agile Methodologies to Design and Programming

35/90

3.6 Team Engagement

There are eight people involved in the current project. According to Scrum, all

participants, except for Product Owner and Scrum Master should be called

'developers' and treated the same (Cohn, 2010). Therefore, we have six developers

in Company Sigma, which might seem quite an ideal 'two-pizzas-team'. However,

in scope of the project, their responsibilities and their input are different. In frames

of this research we specify the roles of the participants in this way3:

1. Managing Director / Product Owner

2. Chief Developer

3. Senior Developer

4. Junior Developer

5. Software Architect

6. Designer

7. Usability Tester / Scrum Master

8. Customer Support Specialist

The connections between team members, at the moment when Scrum started to be

implemented, can be seen from Figure 3.3. Even though, the roles were distributed

properly, situation still did not answer all standards of Scrum, since there were

few interconnections between team members and low self-organization.

Employees reported directly to Product Owner, although Product Owner should

have treated team as a whole system, where nobody is responsible for concrete

achievements or mistakes. As suggested by Cohn (2010), ‚there is no ‘my work’ and

‘your work’ on a Scrum team; there is only ‘our work’‛ (p. 201). However, Company

Sigma worked in a different way when they started adapting Scrum. Figure 3.3

indicates cooperation between Junior, Senior and Chief Developers. Chief

3 Henceforth we write names of the team member with capital letters, meaning concrete people but

not revealing their names.

Applying Agile Methodologies to Design and Programming

36/90

Developer works in different geographic location, so the conversations were

usually held via Skype. Their cooperation was entirely caused by technical issues,

with no relation to Scrum activities. Generally, there was low connection between

members working outside the office.

Figure 3.3 – Internal connections and responsibilities of team members in a

Company Sigma at the moment of introducing Scrum.

To compare this situation with an ‘ideal’ one, that is highly recommended by

Scrum, we designed another concept map as in Figure 3.4. This shows that team is

equally responsible for the product, and that each member does not report to

Product Owner separately but does it together on the meetings through Scrum

Master who further provides results to Product Owner.

Applying Agile Methodologies to Design and Programming

37/90

Figure 3.4 – Ideal model of Scrum for Company Sigma

CmapTools application allows analyzing the number of ‘links in’ and ‘links out’. In

both concept maps, the greatest amount of ‘links in’ are towards Functionality and

Interface, which is right, because that is what team develops. However, the most

‘links out’ in the real model are coming from Senior Developer. Senior Developer

is a full-time employee who works in the office every day and has the biggest

number of tasks. In the ideal model, ‘links out’ are equally distributed, because

nobody is overloaded.

3.7 Summing up

To sum it up, company’s objective can affect our design in a very positive way.

Company aims to produce high-quality interactive iOS Apps, which involves user-

centered and goal-directed design approaches proposed by Cooper (2007). As we

know, Scrum recommends the same techniques, so both tactics really match each

other. However, some factors ensuing from the company background can affect

our design negatively. Company does not have experience in designing iOS

Applying Agile Methodologies to Design and Programming

38/90

interface and using formal methodologies. It is quite hard to maintain two novel

fields at a time without sufficient knowledge of both. Product roadmap is quite

acceptable within Scrum framework. However, there is a risk of losing enthusiasm

of delivering something potentially shippable every sprint. It is important to

notice that Scrum requires not to ‚do a great deal of additional work at the end of

each sprint‛ (Cohn, 2007, p. 265) but to find breakpoints and split work intro parts.

And finally, personnel volatility is obviously the most unpredictable factor.

Infrastructure is suitable for implementing Scrum. However, the meeting room

might be used more frequently, and be filled with Scrum elements, such as Task

Board, Sprint Burndown Chart, meetings schedule, etc. Whiteboard can serve as a

tool for distributing ideas. Team members can spend more time together and share

the work rather than sit in their rooms doing only their part of the job. Their

engagement can be also turned towards positive direction; more internal

connections can be made.

Applying Agile Methodologies to Design and Programming

39/90

Chapter 4

Detecting Initial Problems

This chapter is fundamental for our research because it reveals problematic factors

of Company Sigma. These will be further improved by implementing Scrum. The

main problems are related to human resources. There is low interaction between

certain members and lack of mutual understanding. To reveal such problems, an

ethnographic approach was applied, which included observations, interviewing,

card sorting, and personal constructs.

4.1.1 Team Members Identities

The very first stage of our research started with general observation of company

members. During this stage, data was collected as a set of notes and short

conversations. Putting together comments and observations, the identities of 8

team members were described as presented below.

Product Owner or managing director represents the customers, meets with them

and knows their needs. He is responsible for program logic. Product Owner was

the one who decided to implement Scrum methodology and asked Usability Tester

to provide tools for doing Scrum, bought the books and found educational

material in the Internet. He has a huge poster in his office with the list of

customers and important information about them. Product Owner has many ideas

Applying Agile Methodologies to Design and Programming

40/90

and sometimes just comes to Junior Developer or Usability Tester and tells about

the new feature which should be implemented. During the weekly meetings on

Mondays he chaotically writes notes on the whiteboard. Also, he comments the

design and always wants everything to be improved, seeking for the stage when

„nothing can be improved‚. He is almost every day in the office except for

business trips which happen ca 3 times per month.

Chief Developer programs business objects and deals with synchronization. He is

interested in producing a good quality code, likes to do things which are not clear

and need to be solved. He develops software which was never developed before.

He is also the author of the very first product, has many practical ideas and

solutions. Chief Developer is one of the oldest employees. He works more like a

consultant, comes to an office every second Monday and stays until Tuesday, if his

assistance is needed. Sometimes he chats with Junior Developer and Senior

Developer via Skype. He belongs to the company, but his main workplace is not in

the same office. He rarely uses shared online tools, does not use paper tools (such

as Task Board). He is not interested in design at all.

Senior Developer does the maintaining part, is responsible for synchronization.

When synchronization is done, he can move to account lists and embedded

content in HTML5 (for a web-based version of a product), together with Chief

Developer. The takes part in weekly meetings, makes suggestions considering

design and usability. But most of the time he sits in his room completing a large

number of tasks. One of the oldest employees; works full-time every day,

sometimes stays longer; posts online; also likes discussing things orally.

Junior Developer is developing user interface via Xcode SDK using

storyboarding. About 60% of his duties are related to design. Using the Interface

Builder component of Xcode, Junior Developer drags and drops view controllers

onto a canvas and designs user interface of each view. Junior Developer’s work is

Applying Agile Methodologies to Design and Programming

41/90

about trying new methods and experimenting (no preferences are proposed by

Product Owner). In addition, he is responsible for functional part. Formally, he is a

part-time employee but actually works every day plus on the weekends and at

night. Junior Developer is very excited about the product but disappointed about

the slow tempo of other team members. Likes Scrum and is upset that the team

does not follow it; puts his tasks on the Task Board, actively posts on Kanbanery.

Software architect is also a system administrator who works in collaboration with

Chief Developer. He discusses programming, holds a server, and creates company

e-mail accounts for new employees. Everyone treats him as a specialist. He no

longer works in the company but still has his own room and comes when called.

Participates in weekly meetings, uses online tools but posts nothing there. He was

presented an iPad before leaving the company, so that he can still come and be a

part of the developing team.

Designer creates visual part of user interface. Since there was no layout, he

designed it himself relying on his own competence. Later on, this design was

taken as a standard for further developing. According to his design, application

includes elements, which are hard to develop and require more effort from

programmers’ point of view. In spite of all this, split view is not essential for this

type of App. Designer works distantly, comes once a week for a Scrum meeting

and always disagrees with changes. It is always hard to reach him. In the

beginning he shared only .jpg and .png files of an App screens design, hence all

the buttons, labels, frames, and other elements were parts of entire image. As a

consequence, Usability Tester had to do the ‚dirty job‛ and cut out all the

elements.

Usability Tester ’s initial duties were black-box testing of an interface and (later)

assisting the Designer. Since there was not much to test in the beginning (the first

working piece of iOS application was ready only in 2 months), Usability Tester

Applying Agile Methodologies to Design and Programming

42/90

was involved into management process and became a Scrum Master. He created

Scrum instruments, including Task Board, Fibonacci Numbers for tasks

estimation, Sprint Burndown Chart, Agile Manifesto printed version etc;

visualized database tables (on the wall); proposed Paper prototypes; made

Keynote prototypes as suggested by Product Owner. He does testing and

documenting, posts results to Kanbanery. Usability Tester works as a mediator

between Junior Developer and Designer, providing Junior Developer with missing

elements, which Designer forgets to send (or create). He works every day, part-

time.

Customer Support Specialist solves customers’ problems, talks to customers,

answers their questions etc. He is currently responsible for smooth working of an

existing program (large Windows-based application). He works distantly,

sometimes comes to office and works every day during the whole week. Does not

take part in weekly meetings but is required when customers’ needs are discussed.

He never collaborates with Developers or Designers, works closer to Product

Owner and financial department.

It might be quite a challenge to engage some of the team members into Scrum. To

predict the resistance we can use classification, introduced by Discovery Learning,

Inc. of Greensboro, North Carolina (2003), which assumes that there are three types

of individual disposition to change: conservers, pragmatists, and originators. The

majority always belongs to pragmatics group (50%), others are either conservers

(25%) or originators (25%). We grouped Company Sigma team members using

these categories (see Table 4.1) and added descriptions provided by Luecke (2003),

who also analyzed individuals’ resistance.

It is obvious that individuals’ distribution within the company corresponds with

general distribution. Team members were split into categories according to

interviewees’ comments and researcher’s observation.

Applying Agile Methodologies to Design and Programming

43/90

Conservers Pragmatics Originators

Designer

Customer Support Specialist

Product Owner

Senior Developer

Chief Developer

Software Architect

Junior Developer

Usability Tester

 Prefer change that

maintains current

structure

 Enjoy predictability

 Honor tradition and

established practice

 Prefer change that

emphasizes workable

outcomes

 Are more focused on

results than structure

 Are open to both sides of

an argument

 Prefer change that

challenges current

structure

 Will likely challenge

accepted assumptions

 Enjoy risk and

uncertainty

Table 4.1 – Distribution of team members within three types of individual

disposition to change

4.1.2 Weekly Meeting Episode

The team had a weekly meeting every Monday. There were several purposes for

such appointment. First, it was important to gather part-time, full-time employees,

freelancers and distributed members in one place at one time and discusses the

objective. This meeting was planned as a Retrospective in Scrum for discussing

what is going wrong and what should be changed. In fact, meetings nave never

had a common structure, and usually people were speaking chaotically,

interrupting each other, moving from one topic to another inconsistently. Figure

4.1 presents a short overview of one meeting episode, documented by the

researcher. In addition to such conversations, sometimes meetings cannot even be

continued since no result was achieved during the week, and the application was

not even launching. These circumstances certainly needed involvement of

methodological approach, Scrum in our case.

Applying Agile Methodologies to Design and Programming

44/90

Weekly Meeting Episode

Product Owner, Designer, Usability Tester, Junior and Senior Developer are sitting at

the round table and discussing additional feature that should be implemented.

Customer Support Specialist is sitting nearby doing his business not participating in

the meeting.

Designer asks questions with a

negative attitude. Such scene

repeats several times, after

discussing every new feature.

Designer tries to change Product

Owner's view.

Finally, Product Owner stands up

and explains as simply as possible

how the feature should work. He

shows the “door model”, where

door means button, and entering

the door means activating this

button. This looks funny but quite

illustrative. Designer still disagrees

but remains silent.

One hour has passed. Too much

talking and no mockup created.

Suddenly Senior Developer stands up and starts drawing screen layouts on the

whiteboard. Designer and Product Owner are talking between each other not paying

attention to Senior Developer. Colleagues are speaking all at once. In a moment

Senior Developer kindly asks to look at the whiteboard. Team members get

interested and start commenting the layout, adding elements and passing marker to

each other. Finally, several ideas get created. People seem more or less satisfied.

Figure 4.1 – One weekly meeting episode: conversation between Designer (green),

Senior Developer (blue) and Product Owner (red)

4.1.3 Revealed Problems

Initial observation of people, their roles and attitude, showed that company meets

challenges due to diverse interactional identities (Brown, Lindgaard, and Biddle,

Applying Agile Methodologies to Design and Programming

45/90

2012) of team members, especially the Designer (conserver) being different from

the majority (pragmatics) and from the opposite minority (originators). It is also

crucial that the team splits into newcomers (recently hired employees) and seniors

(more than ten years working employees). People need some time to get involved

and feel as a team. Plus, different time schedule does not let members spend more

time together, for instance, participate all at once in daily Standups.

We can notice that individuals have different goals, artifacts, objectives and

tensions. For example, Junior Developer wants to work fast and methodological ly,

whereas Designer does not provide graphic elements for the interface consistently.

Some members are more collaborative than the others. Also their level of adopting

changes is different. When implementing the object of our design research, we

should make it suitable for all members, according to their personal identities.

They all should feel like a team having one goal and doing one thing together.

Problem illustrated by the meeting episode demonstrates lack of mutual

understanding and low self-organization. Things, which should be discussed

during the meeting, are not listed, time is wasted and no result is achieved.

However, there is a positive tendency that some members try to improve the

situation and organize the others. There was an attempt to prototype the function

(‚door model‛ in Figure 4.1), which indicates creative thinking. Another member

tried to draw everyone’s attention by making notes on whiteboard. By designing

effective Scrum approach we should help active people to put their energy and

ideas into the right channel.

4.1.3 Turning Problems into Goals

The revealed problems can be easily transformed into goals of our design. Table

4.2 demonstrates how this can be done, based on the qualitative data received

from the interviews and observations. After analyzing Company Sigma

Applying Agile Methodologies to Design and Programming

46/90

environment we stick to our second hypothesis: Design and Programming are

difficult to combine not because of Scrum, as inappropriate framework, but

because of the team being not enough self-organized. Therefore, an effective

implementation of Scrum should change the situation.

The table of problems is based on Chapters 3-4, and qualitative analysis of

thematically coded interviews. The list of codes can be found in Annex A.

PROBLEMS WEAK POINTS IMPROVEMENTS GOALS

Team is not
self-organized

Distributed team
Create possibilities

for online
collaboration

Better self-
organization

Unawareness of all
possibilities of Scrum

Make presentations,
motivate team,

convince team that
they have potential to

do Scrum

No common
understanding of

product’s functionality
Make prototypes

Wasting time during
the meetings

Plan what should be
discussed in advance

Designer does not
support Scrum

Designer prefers
traditional Project

Management approach

Adopt some methods
of Scrum specially for

Designer

More effort to
maintain design

and Scrum

Designer’s contributes
are not regular

Contact Designer
regularly. Find a

mediator between
Designer and the rest

of the team

Designer needs
documented
information

Document iteratively,
provide Designer brief
overview of features

needed soon

Table 4.2 – Turning problems into goals

Applying Agile Methodologies to Design and Programming

47/90

Chapter 5

Designing Effective Scrum Approach

This chapter finally covers the consequent process of tailoring our design object

(implementation of Scrum) into specific working environment of a Company

Sigma. In the beginning, we give an overview of existing approaches relevant to

this research and adopted during the implementation cycles. Latter part allows

tracking each cycle one by one.

5.1 Guidelines for Design Research

Various methods of designing effective Scrum approach were inspirited by works

of Koskinen et al. (2011), Brown et al. (2012), Nelson, Ketelhut, Clarke, Bowman,

and Dede (2004), Collins, Joseph and Bielaczyc (2007), and IDEO cards (2003).

The book by Koskinen et al. (2011) presents a great amount of constructive design

research examples. The approach of Eureka project (p. 20) seemed to be very

relevant to our methodological framework, because that project required

intervention to a firm in order to improve its informational system and enable

sharing their practical knowledge. The idea is that the most relevant information

flows through individuals and should not be imposed by artificial methods. This

is important for our research, since implementing new practices, such as Scrum, is

similar to building informational systems and sharing knowledge.

Applying Agile Methodologies to Design and Programming

48/90

Another relevant notion from the book by Koskinen et al. (2011) is that solving

environmental and social problems cannot always be completely successful, and

this is not a solid foundation for design research. The goal is to imagine ‚something

better than what exists‛ (p. 17). Sticking to this goal would lead to more satisfying

results than struggling for ultimate solution. And there is always ‚a rich array of

theory‛, which ‚gives constructive design research plenty of depth‛ (p. 118) to keep

moving towards better results.

Brown et al. (2012) provide sufficient result of studying enacted interactional

identities of designers and developers. Their paper focuses on understanding

collaborative work, and provides four categories of interactional identities: goals,

shared objective, shared artifacts, and tensions. The material is highly relevant to

our research because information presented there is very recent and covers exactly

the field we are interested in: designing and programming.

More concrete technical approaches of this thesis were adopted from Nelson et al.

(2004), Collins et al. (2007) an IDEO cards. Nelson et al. were designing The River

City virtual world to promote learning for all students. They split implementation

period into four cycles which, in their turn, were split into stages:

‘implementation’, ‘findings’ and ‘implication’. We found this logic suitable for our

research as well, with slightly changing the name of the last category into ‘lessons

learned’.

Collins et al. (2007) present well-documented strategy for developing design

research. The major issue is the similarity between the complex environment of

Company Sigma and learning environments, described by Collins et al.: ‚there are

many variables that cannot be controlled‛ (p. 19). Therefore the goal is ‚to optimize as

much of the design as possible and to observe carefully how the different elements are

working out‛ (p 19.).

Applying Agile Methodologies to Design and Programming

49/90

IDEO method cards (2003) describe design methods, each on one page. Cards have

two sides, one illustrates the method with relevant picture, and another briefly

describes it. These techniques are intended as inspiration for practicing designers.

We found there several methods suitable for our design research, such as Quick-

and-Dirty Prototypes (p. 43), Shadowing (p. 55), Social Network Mapping (p. 57),

Still-Photo Survey (p. 59), Try It Yourself (p. 65), Activity Analysis (p. 73) etc.

5.2 First Cycle: Meeting Room

Enhancement

5.2.1 Implementation

The first implementation of Scrum framework was held in Company Sigma in

December 2011. We focused on 7 team members, who worked in the office full-

time, part-time or whenever required. We concentrated our evaluation on

members’ reactions to changes and their attempts to use any of introduced

artifacts. Modifications were applied only to the meeting room, which was filled

with various Scrum elements, described in Chapter 1. Prior to adapting any

instruments, a large poster was put on the wall. Team members stuck there screen

designs of application, database tables and a blank sheet for suggestions.

Scrum elements were the following:

1. Task Board

2. Two User Stories

3. Fibonacci Numbers for tasks evaluation

4. Sprint Burndown Chart

In addition, people were informed that they have a Scrum Master in their team.

The meeting room looked as shown in Figure 5.1.

Applying Agile Methodologies to Design and Programming

50/90

Figure 5.1 – Meeting room filled with Scrum elements

5.2.2 Findings

From the observation of focus group participants, we noticed that the most

successful artifact was the Task Board. Two members (Junior and Senior

Developer) used Task Board every day creating new tasks and moving them from

one column to another. Evolution of the Task Board is shown in Figure 5.2.

Both User Stories were written by Product Owner and were 3 to 5 lines long,

which is more than required by Scrum. Team members found them quite complex,

therefore we can notice many tasks cards stuck to the same story (see Figure 5.2).

Applying Agile Methodologies to Design and Programming

51/90

Figure 5.2 – Evolution of the Task Board

The last two elements (Sprint Burndown Chart and Fibonacci Numbers) were not

used at all. According to Product Owner, it was too early to use Sprint Burndown

Chart since we haven’t completed the User Stories, therefore we cannot move

further. Fibonacci numbers were also postponed until team finishes solving

technical problems, which had the main priority at the moment.

Senior and Junior Developers used Task Board most of all because they worked in

the office every day. However, Chief Developer, who comes every second

Monday, never put his tasks cards onto Task Board. Software Architect used it a

few times.

5.2.3 Lessons Learned

Based on this implementation, we decided that our changes had been positive and

should be kept. They moved us further to achieving the main goal: better self-

organization of the team. However, another goal has not been affected at all: how

to improve collaboration with Designer. Several sub-problems also remained

untouched, including distributed team and unawareness of all possibilities of

Scrum. We took them as the next steps towards designing effective Scrum

approach.

1

2

3

Applying Agile Methodologies to Design and Programming

52/90

Before moving further, we emphasized additional modifications:

1. Clear and simple User Stories

2. Educative presentation about Scrum

3. More meetings

4. Paper prototypes of application

5.3 Second Cycle: Facing Challenges

5.3.1 Implementation

This one month-long cycle (January 2012) was the least successful due to several

reasons. From the beginning, our plan to implement clear and simple User Stories

was rejected because the first User Story, which was in its developing phase,

included solving a big task, therefore Developers and Product Owner put it as a

priority and nobody had interest or time for creating new User Stories. However,

according to Scrum, the stories should be written by several members and Product

Owner, not only by Scrum Master. The most we could do was splitting existing

stories into parts and testing them as suggested by Sims and Someone (2011). The

list of printed test cases was passed on to every member during the weekly

meeting. However, it did not draw much attention and did not receive any

comments. The list is illustrated in Figure 5.3.

Applying Agile Methodologies to Design and Programming

53/90

Figure 5.3 – Report on testing User Stories

The second modification was an educative presentation for team members

covering the main features of Scrum. Six people were participating: Product

Owner, Junior, Senior, Chief Developers, representative from financial department

and Scrum Master as a speaker. Several posters and printouts were prepared in

advance. Meeting room was enhanced once again: Scrum methodologies were

illustrated on the opposite wall (see Figure 5.4).

Third modification was organizing more meetings, including daily Standups,

when everyone should report about the work done yesterday and the work

planned for today. A timetable was put on the wall so, that Scrum Master could

update it when needed (see Figure 5.5).

The last modification was inspired by Cooper et al. (2007). These were paper

prototypes meant to clarify features of the application and achieve common

understanding of product’s functionality. Two versions of prototypes were

initially created. The first one was hand-drawn, another constructed from iPad

stencils downloaded from the internet. Prototypes were located on the table in the

meeting room.

Applying Agile Methodologies to Design and Programming

54/90

Figure 5.4 – Scrum values presented on the wall of Company Sigma

Figure 5.5 – Sprint Cycle Schedule that allows constant updating

Applying Agile Methodologies to Design and Programming

55/90

5.3.2 Findings

After observing people’s reactions to implemented changes, we realized that

nothing actually worked. People became slightly more aware of Scrum

possibilities, but they did not meet interventions with great enthusiasm. The

positive movement was after the presentation, when an important question was

asked: ‚How does design match Scrum?‛

Team members were not interested in rebuilding User Stories due to occupation

with technical problems. Junior Developer provided valuable feedback regarding

the second cycle of tailoring Scrum saying that team members had more than

enough instruments and never managed to adopt User Stories or Sprint

Burndown Chart. They did not manage to break tasks into small tasks; had

difficulties with finishing sprint that lasted more than a month. According to

Junior Developer, the first task was defined very abstract and represented the

main idea of application (see the transcription of interview on CD enclosed).

New meetings were not successfully implemented either, because the Developers

were occupied with other tasks. Senior Developer described a situation when they

had a highest priority task, and Product Owner told that if the task would not

have been solved by the end of the week, they would stop all the other work. For

the same reasons paper prototypes were not even tried (see Figure 5.6).

Figure 5.6 – Unused paper prototyped moved from table to shelf

Applying Agile Methodologies to Design and Programming

56/90

5.3.3 Lessons Learned

The main lesson learned from the second cycle is the importance of factors that we

cannot control: technical and time problems, decisions of managing director and

team preferences. This indicates that Scrum should not be introduced artificially

but needs to be adopted according to current situation. In addition, Scrum has to

be flexible and well-understood by team members. As it was already mentioned

by Koskinen et al. (2011), knowledge is spread from individual to individual, n ot

through the theoretical presentations.

Introducing more meetings did not improve the situation of distributed

employees being less active. Team members were not coming more often, so we

had to check if Scrum methodology has methods to maintain distributed team. It

is important that Designer could not even attend the presentation. Designer’s

contacts with the rest of the team were very inconsistent and rare.

Based on this implementation, we realized that previous modifications should be

revised and additional improvements introduced:

1. Create possibilities for online collaboration

2. Involve people into using prototypes

3. Adopt some methods of Scrum specially for Designer

4. Contact Designer regularly. Find a mediator between Designer and the rest

of the team

5.4 Third Cycle: Moving to Kanban

5.4.1. Implementation

Taking into account negative experience from the previous cycle, it was decided to

collect additional data in order to understand how team members see each other

Applying Agile Methodologies to Design and Programming

57/90

and how they establish priorities. We already knew that some tasks were

estimated as more important than the others. Therefore finishing the sprint in time

became a real challenge.

The feedback received from Product Owner demonstrates that the main challenge

was fixing sprints and having a fixed set of features for the sprint. Moreover, it

was difficult to estimate the features that could be done in a predefined time. As a

result, people were under the pressure and tried to finish sprint sacrificing the

quality.

For the research, it meant choosing between two ways: (1) either to keep sprints,

saying that the main idea is exactly to learn how to split tasks into predefined

time, or (2) to accept the situation how it was, and combine the rest of Scrum with

other techniques that allowed more flexible iterations. Finally the last way was

chosen, and Company Sigma started to use Kanbanery digital Task Board (Figure

5.7).

We already gave an overview of team members’ identities, but it was not enough

to reveal deeper connections between members. During the third implementation

cycle, the obvious problems led us to consider Repertory Grid Technique (RGT) as

a tool which might help to understand an individual’s personal construction of

surrounding environment. Hassenzahl and Wessler (2008) proved that RGT is

quite usable from a design perspective; it helps to find hidden connections.

Five respondents were individually presented a randomly drawn triad of cards

with team members’ names on them. People had to separate two cards from one,

explaining what differentiates them. Usually, this is expressed in personal

perception of objects (kind-angry, active-passive, cold-warm). As a result, we got

24 bipolar categories, which were grouped by similarity. However, respondents

preferred business connections rather than personal. All of them spoke about

Applying Agile Methodologies to Design and Programming

58/90

working environment and not about individual attitude. As a result, we could not

treat the results as ‘personal constructs’ and, therefore, grouped them in a

different way (see Table 5.1).

Work-related constructs
Characteristic

constructs
Obvious constructs

Makes design proposals - Receives feedback

about the design

Work on interface - Work on logic

Front-end - Back-end

Receive big tasks - Receives small tasks

Vision - Implementation

Work with graphics - Works with code

Work with clients - Works with computers

Find problems - Find solutions

Ongoing continuous connections -

Temporary connections

Keep server - Keep database

in the office - Outside the office

Connected to other members – Individuals

Maintain old system – Share new ideas

Keep server - Keep database

Experienced - Assistant

Agile - Traditional

Young - Old

Communicative - Unsociable

Bigger salary - Smaller salary

Men - Women

Full-time -Part-time

Contract – Freelance

Smokers - Non-smokers

Employer - Employee

Table 5.1 – Constructs collected by RGT

Nevertheless, the positive result of this small research shows the high interest of

individuals in work-related connections. Personal level does not interrupt ongoing

work process; everyone treats each other respectfully, as colleagues, not as ‘sworn

brothers’. This makes design implementation easier, because people are aware of

each other’s duties and can easily identify who is responsible for what. Such

situation demonstrates how big their potential is to become more self-organized.

Next thing to establish was separate connections with the Designer. Skype was

used as a contacting method; a new Kanbanery project was open for design issues.

Scrum Master became a mediator between Developers who worked in the office

and the freelance Designer.

Applying Agile Methodologies to Design and Programming

59/90

The idea of prototypes was still considered as a useful one, but this time

prototypes were implemented in two different ways: whiteboard schemes and

accurate hand-drawn paper layouts (see Figure 5.7).

The whole implementation period of the third cycle took one month, from the end

of January until the end of February.

Figure 5.7 – Two ways of application prototypes

5.4.2 Findings

Kanbanery received positive feedback in general. Product Owner said that they

always had a list of things to do, but using Kanban board helped to follow the

throughput and allowed limiting the number of features developed

simultaneously, so that they could get a well-working and tested increment of

application. Senior Developer treated Kanbanery as one of the indicators of Agile

team. Software architect had slightly different point of view, saying that real

communication is more important than Kanbanery. He said that if he had worked

in the office every day, he would organize Standups. Kanbanery is simply not

enough. Designer was not satisfied with Kanbanery at all, claimed that it was

inconvenient, and proposed an alternative tool Pivotaltracker with more human-

Applying Agile Methodologies to Design and Programming

60/90

friendly interface, which, however, was not approved by Product Owner and

therefore not implemented.

Nevertheless, the researcher’s observations showed that Kanbanery tool was

extremely helpful in terms of tracking workflow, automatic evaluation of tasks

and getting distributed team members more involved into process. Figure 5.8

illustrates the main view of the tool.

Figure 5.8 – Kanbanery project task management tool: main view

There are seven columns: Backlog, Ready for Coding, Coding, Waiting to Be

Tested, Testing, Approval and Done. Kanban allowed to see graphical

representation of tasks distributed by estimate, by type, by owner etc. (see Figure

5.9). And instead of Sprint Burndown Chart, created in the first cycle and

remained unused haning on the wall, Kanbanery provided its own Cumulative

Flow Chart illustrated in Figure 5.10.

Applying Agile Methodologies to Design and Programming

61/90

Figure 5.9 – Kanbanery pie chart illustrates proportion of tasks according to their

types (Feature, Bug, Chore, Task Related to Story, Design Issue, and undefined)

Figure 5.10 – Kanbanery Cumulative Flow Chart for the period January 30 –

February 29, 2012.

During the third phase, frequent contact was established between Designer and

Usability Tester. They started communicating by e-mail and Skype, and, as a

result, all necessary graphical elements needed for coding the interface, were

received in time, which allowed producing piece of working application

iteratively. The concept map in Figure 5.11 illustrates three additional connections

(compared to Figure 3.3).

This time prototypes received more attention comparing to previous cycle. People

especially liked the whiteboard drawings, where everyone could add own notes.

Applying Agile Methodologies to Design and Programming

62/90

To make prototypes interactive (otherwise they would be just mockups), some

features were not drawn right on the board but on small pieces stuck to the board.

They could be easily taken off and replaced. As a result, meeting went quite fast

and gave positive outcomes. At least, everyone got common understanding of

particular screens and functions that were seen on whiteboard. However, the

method was inconvenient for the future use, since sheets on the whiteboard are

constantly changing.

Figure 5.11 – New connections: Usability Tester as a mediator between Developers

and Designer

Applying Agile Methodologies to Design and Programming

63/90

5.4.3 Lessons Learned

Feedback and observations form the third cycle proved Cohn’s (2011) hypothesis

that there is no unique way of adopting Agile methodologies. Each company

should do it in its own suitable way that matches conditions and purposes. We

also realized that Scrum adoption might not go smooth right away. However, we

should not draw a hasty conclusion that team does not fit Scrum or cannot be

Agile at all. If at least one small positive tendency was noticed, it could become

stronger and bring more results later on.

Moving closer to the last cycle of implementation period, here is list of goals that

have not been yet investigated:

 Plan in advance what should be discussed during Scrum meeting

 Adopt some methods of Scrum specially for Designer

 Document iteratively, provide Designer brief overview of features needed

soon

In addition, previous findings created a new goal, inspired by Software Architect’s

suggestion to use not only online Kanbanery tool but communicate more in real

life.

5.5 Fourth Cycle: Not Ideal but Effective

5.5.1 Implementation

Changes in previous design session showed satisfying results, however the

implemented approach has moved away from some of Scrum ideas, for example

daily meetings (Standups). As we already learned, imposing ideas and forcing

artificial adaptation can make individual’s attitude even worse. To avoid such

situation, new data retrieval was made. Turning to lists of code presented in

Applying Agile Methodologies to Design and Programming

64/90

Annex A, there is an interesting setting called ‚Towards Ideal Situation‛.

Interviewers gave their own recommendations about the perfect environment for

the project, as they saw it. We joined the answers together and presented them as a

Tag Cloud in Figure 5.12.

Figure 5.12 – Tag Cloud of concepts that could lead towards ideal working

environment in Company Sigma

The Tag Cloud indicates frequently used job-related words: ‘tasks’, ‘work’, ‘report’,

‘implement’, ‘responsible’ and collaboration-related words: ‘everyone’, ‘discuss’,

‘people’, ‘collaborate’, ‘communicate’, ‘meetings’. The word ‘scrum’ is also

noticeable, which indicates that respondents see Scrum as a part of ideal future.

Implementation started in the beginning of March and lasted until April, but

hopefully an effective Scrum approach, achieved by the fourth cycle, would last

longer. The final elements to be adopted were:

1. Daily Standups

2. Improvised mockups

3. Kanban doubled on the wall

4. Dropbox

5. Planned meetings

Applying Agile Methodologies to Design and Programming

65/90

In fact, daily Standups were not implemented due to personnel volatility in

Company Sigma. One programmer has quit the job; hence managing director has

been searching for new employees. There were only two people staying in the

office every day during the fourth implementation cycle. Nevertheless, the rest 4

modifications were implemented and evaluated.

5.5.2 Findings

Improvised mockups, such as illustrated in Figure 5.13, appeared to be more

convenient than white board sketches or accurate cutouts prepared in advance.

Figure 5.13 – Improvised application prototypes

Dropbox was implemented for files sharing with the Designer. Finally, we received

.psd designs, which included all necessary elements separately (buttons,

navigation bar, background etc). Senior Developer considered Dropbox as a

helpful tool for such sharing. However, we did not go further than that and cannot

state that introducing special Scrum techniques worked well for a Designer. To

understand how critical it was, we decided to interview two members regarding

Applying Agile Methodologies to Design and Programming

66/90

design and Scrum and asked them to sort 8 cards, representing Scrum-related

ideas, by priority: the most important to the left (or top). Both respondents put a

‚Special Approach to Design Issues‛ card aside, saying that this was much less

important than organizational tools and collaboration between team members.

Then we moved to the meeting schedule. It was organized so that participants

moved towards main topics faster without unrelated conversations. There were

subjects listed on the white board supplied with schemes and comments.

Observation and direct participation proved that more issues were discussed than

usual. Product Owner remained very pleased and happy.

Real-life version of Kanban project task management tool was the last

modification made within the frames of this design research. Previously created

Task Board had not been used already for two weeks. We reorganized the meeting

room by creating a wall-copy of Kanbanery interface, where Developers put their

tasks cards in the same way as they did it online (see Figure 5.14).

Figure 5.14 – New task tracking system looked exactly as online version of

Kanbanery.

Applying Agile Methodologies to Design and Programming

67/90

5.5.3 Lesson Learned

Four of five elements planned for this cycle were successfully adapted, which is a

sufficient result. From this cycle we learned that forcing Designer to do Scrum

should not be treated as a goal. Designer had his own vision of project

management, and as long as his work was done, the team was satisfied. However,

this did not match with our research problem – building an effective Scrum

approach. In terms of this research we could not make Scrum effective for

Designer. But if we analyze Designer’s feedback (Annex A.1), we will see that

Designer adequately understood what Scrum is. The point is that he did not

distinguish Scrum from other methodologies, claiming that they all are about the

same: ‚It’s a common Project Management‛. Apart from everything else, Designer

knew that Scrum is about:

1. Doing something by certain deadline

2. Constant process of changing everything simultaneously

3. A-la demo version

What is more, Designer commented that the whole process was not properly

organized. And when we asked for suggestions how to make it better, Designer

proposed following solutions:

1. Someone distributes the tasks

2. Designer does planning with Senior Developer

3. Make back-end first

4. Group report

5. Plan program

6. Prepare for the future

7. Stick to planned mockup

8. I need information

9. Senior developer should be responsible for Junior developer

The proposals in cursive do not correspond with Scrum framework since they

Applying Agile Methodologies to Design and Programming

68/90

imply traditional linear approach and hierarchy; whereas Scrum team should not

be divided hierarchically.

Finally, the most interesting Designer’s expression was: ‚My task is to make a good,

convenient and nice product. If I need to beat someone for it, I will beat someone for it‛.

On one hand, the attitude to the product as such is quite positive and shows the

responsible approach to the matter. On the other hand, Designer treats his work

separately from others and sees others separately from each other. However, this

might be due to his freelance contract, which is a factor that cannot be changed

within this research.

The rest team adopted modifications successfully. We planned in advance what

should be discussed during Scrum meeting and started to communicate more in

real life.

5.6 Implementation Analysis and Feedback

If we look back at all four implementation cycles, the full pass included 19

modifications presented in Table 5.2.

 Successful Partly successful Not successful

1 Scrum Master Task Board Pilot User Stories

2 Contact Designer regularly Sprint Burndown Chart Fixed Sprints

3 Improvised mockups More frequent meetings
Fibonacci Numbers to
evaluate tasks

4 Kanbanery online tool
Paper prototypes of
application

More clear and simple User
Stories

5
Kanbanery tool doubled on
the wall

Involve people into using
prototypes

Educative presentation about
Scrum

6 Dropbox
Adopt some methods of
Scrum specially for Designer

7
Preplanned topics for
meetings

 Daily Standups

Table 5.2 – The list of modifications done during the whole implementation period

Applying Agile Methodologies to Design and Programming

69/90

From the first column we see that successfully adopted elements were mostly

related to the tools being used. Scrum Master was positive in terms of managing

several organizational moments, such as contacting Designer, being a mediator

between Designer and Developers, planning meetings. Kanbanery tool lead us

further from Scrum but was still an Agile approach. Improvised mockups were

good replacement for paper prototypes, which also correspond to Scrum.

Partly successful modifications were highly related to Scrum. These are guidelines

for further improvements, because the team should never stop when something is

achieved. Continuous development is one of Scrum values. Scrum team always

tries new processes and tools (see Figure 2.3).

The most crucial failed elements were User Stories and Sprints. To be more

concrete, these are the basics of Scrum. But this does not mean that the whole

Scrum has failed. For Company Sigma, all the achievements are valuable, because

the company have not used any methodology before. Scrum was the first step

towards being Agile.

In addition, we interviewed team members on the matter, what actually worked

and what did not. People gave their general feedback, and we extracted concepts

which indicate gaps in adapting Scrum. The most popular negative comments

were regarding separately working people and low experience in iOS

programming. Unfortunately, these variables could not be changed by our Scrum

approach, because they are parts of working environment. Several issues that

should not be part of Scrum were also named, such as: no concrete plan, broken

hierarchy, no organization, weird mess. Scrum does not assume plans, hierarchy

and might seem messy for someone who is used to traditional approach.

The most adequate comments regarding what did not work in Scrum are: no fixed

sprints; the first task defined abstract; not focusing; meeting only once a week;

Applying Agile Methodologies to Design and Programming

70/90

Scrum does not work at all; does not work to full extent; throwing out completed

tasks; spent a lot of time; deadlines not valid; no enthusiasm.

While some respondents supposed that Scrum did not work, others said that the

team worked relatively close to what Scrum is. Overall positive feedback includes

these statements: good people; good company; interaction between team

members; breaking application into parts; not a big resistance; communication

case by case; connections are almost equally strong; meeting at least once a week;

70% percents of Scrum were successful; more than enough artifacts; potentially

marketable product; building the version – version appears.

Figure 5.15 - Internal connections and responsibilities of team members in a

Company Sigma at the last cycle of implementing Scrum

Applying Agile Methodologies to Design and Programming

71/90

Turning back to our concept maps about Company Sigma initial and ideal

infrastructures, here is a final model (Figure 5.15) that highlights the new

connections appeared due to Scrum approach (marked with red color). However,

there was one unexpected change: there is no Junior Developer anymore. Scrum

Master is a mediator, Designer shares files, and Senior Developer develops

functionality and interface, instead of just building. Product Owner rather

approves than controls the process.

Applying Agile Methodologies to Design and Programming

72/90

Chapter 6

Conclusion

The purpose of this master thesis is to design an effective Scrum approach for

Company Sigma. Designed approach covers two major problems of the company:

how to adapt Scrum and manage user interface design. This paper results in

establishing the direction towards appropriate Agile techniques. Final

recommendations can be sufficiently used by future employees and ensure their

productivity.

At the beginning, Agile and Scrum are studied in their ‘ideal’ theoretical state to be

further compared with the practical usage in Company Sigma. The overview of

software development methodologies demonstrates that Agile is an iterative

approach opposite to linear. Iterative approach excludes initial planning and

focuses on constant changes.

We discovered that the term ‘agile’ is quite new and covers previously existing

lightweight iterative incremental methodologies, as for instance Scrum. Scrum is

commonly used as a synonym for Agile. This is so due to its overwhelming

popularity as compared with other Agile approaches (e.g. RAD, Crystal, Lean,

Kanban). By 2011 Scrum has been the most used framework. In this paper we refer

to Scrum as a sub-term of Agile and do not interchange them.

After defining the core of Scrum, which is a self-organizing and cross-functional

Applying Agile Methodologies to Design and Programming

73/90

team, we analyze perspective of adopting Scrum in a small company. Some of the

interviewees claimed that Company Sigma is too small to follow Scrum. This

statement was disclaimed, since an ideal Scrum team consists of 5-9 members,

which is true for the case of Company Sigma.

One of company problems is managing user interface design. In order to cover this

issue, we study whether Scrum can bridge the gap between designers and

programmers. We conclude that design is indeed unlikely iterative and therefore

hard to manage via Scrum. Scrum is not meant to bridge that gap.

The next step is to describe Company Sigma's environment, where our design

object is implemented. We evaluate potential factors that can and cannot be

affected by design research. Company’s background, objective, product roadmap,

and personnel volatility can be observed but not altered. Company’s background

points out the lack of experience in user interface design and iterative

methodologies. The objective corresponds to Apple Human Interface Guidelines

(HIG, 2011). Product roadmap ensures long application development cycle. And

personnel volatility is important since one developer left company during the last

implementation phase. Infrastructure and team engagement are modified during

the implementing period which makes them corresponding to Agile

methodologies.

Ethnographic approach reveals weak spots of Company Sigma application

development process. The problems are discussed in details and turned into two

major goals: better self-organization and more effort to maintain design and

Scrum. These goals are taken into account when introducing the object of the

research.

Designing an effective Scrum approach is split into four implementation cycles.

The first cycle brings positive results and indicates that developers are able to use

Applying Agile Methodologies to Design and Programming

74/90

Task Board and track their tasks. The second cycle is negative because it imposes

artificial instruments that are not appreciated by team members. This highlights

the importance of factors that cannot be changed. We also indicate that Company

Sigma prioritizes tasks in the middle of the process and changes sprint length –

not according to Scrum framework. The third cycle is devoted to deeper team

analysis. Collected data shows that team members see each other as colleagues

and do not use personal constructs as grouping factors. Hence we have a good

potential for professional collaboration and self-organization. This cycle moves us

away from pure Scrum framework to other Agile techniques, such as Kanbanery.

However, this is still a positive change. Scrum Master is more active during this

cycle and establishes contacts between Designer and developers. Overall

estimation of the third cycle is ‚a turning point‛. The fourth cycle is the last one. It

finally establishes an effective design approach. The goal is not to find the absolute

solution but to make things work better than before. As a result, we have a team

that is organized enough to track each others’ tasks via digital Task Board.

Distributed members are also involved. Team uses improvised mockups proving

the ability to clarify things when needed. Developers constantly share files with

Designer. Real-life Task Board is synchronized with digital version.

Communication within the office has increased.

Thus, one part of effective Scrum approach is finished: team is self -organized.

Another part is not completed as planned: Designer is left out of Scrum. However,

we claim that unless Designer’s tasks are ready in time and satisfy the

requirements, it does not matter which methodology he uses. The effective

approach in case of Company Sigma can be the following: involve as much team

members as possible into Scrum, keep tracking others and slack their resistance.

The most important outcomes are highlighted in the last part of Chapter 5.

To conclude, we can develop Scrum further and implement more cycles. But the

Applying Agile Methodologies to Design and Programming

75/90

goal is to design an effective Scrum approach, where approach means a way of

dealing with a situation or problem. The way of becoming Agile by starting with

Scrum is found. We prove that the team should not be forced to use Scrum, but be

free to choose only those methods, which are most suitable for company’s

environment. The list of such methods is provided in this research.

A future work direction includes continuous studying the additional problems

related to Scrum in Company Sigma, such as two distributed teams, increasing the

scope, dealing with newcomers, etc. A survey may be conducted in order to

generalize the results and develop a set of unique Agile strategies for companies

similar to Company Sigma. Another interesting notion to be further developed

(partly covered with this thesis) is bridging the gap between designers and

programmers via Agile methodologies.

Applying Agile Methodologies to Design and Programming

76/90

Kokkuvõte

Käesolev magistritöö hõlmab agiilsete meetodite rakendamise propbleeme

disainis ja programmeerimises. Töö on pühendatud firma Company Sigma

töökeskonnale ning uurib kuidas see firma rakendab kõige populaarsemat agiilse

tarkvara arendamise metoodit ehk Scrum´i. Uurimistööprobleemina on käsitletud

Scrum´i kasutamine väikses firmas mis ei ole kunagi kasutanud mitte ühtegi

konkreetset tarkvara arendusmetoodit. Lisaprobleemideks on enesejuhtimise

puudus meeskonnas ja mittekompetsentsus disaini juhtimise valdkonnas.

Töö eesmärgiks on kujundada effektiivne üleminek Scrum´ile Company Sigma

jaoks ning tagada selle ülemineku edukat edasiandmist tulevaste töötajatele. Õige

üleminek vastab ka ettevõtte eesmärgile ning meeskonna liikmete vajadustele ja

oskustele.

Käesolev uuring on läbi viidud kvalitatiivsete meetodite põhjal. Peamiselt kasutati

disaini uurimust ja lisaks etnograafilist uurimust. Disaini objektina on välja

toodud Scrum´i efektiivne rakendus spetsiifilises keskkonnas. Disaini uurimus

koosneb neljast rakendustsüklist mis lõpevad üldstrateegia esitamisega.

Etnograafilist uurimust on kasutatud uuringu osalejate tagasiside saamiseks

Scrum´i rakendamise kohta. Uurimuse aluseks on teoreetiline ülevaade erinevatest

agiilsetest meetoditest. Uurimuse strateegia põhineb disaini uurimuse kirjandusel.

Magistritöö tulemuseks on saanud firmale sobiv üleminek Scrum´ile mille

põhimõtteks on võimalikult suure meeskonna liikmete hulga kaasamine, teiste

Applying Agile Methodologies to Design and Programming

77/90

jälgimine ja nende vastutuleku vähendamine. Sai kinnitatud, et meeskonda ei pea

sundima kasutama Scrum´i vaid neil võib lubada vastavaid meetodeid ise valida.

Vastavate meetodite nimekiri on välja töötatud käesolevas töös.

Uurimuse edasine arendus võib keskenduda uute meetodite läbi töötamisele

disaini ja programmeerimise ühendamiseks Scrum´i raamides, sest hetkel on näha

vastava teooria puudust.

Applying Agile Methodologies to Design and Programming

78/90

Annex A

List of Codes Retrieved from Interviews

A.1 Codes from Interview with Designer

Settings Acts Activities Meanings Participation Relationships

Role in the

project

Retrieving

information;

Collecting grain

by grain;

Beat someone if

needed;

Visualization of

interface;

Responsible for

usability;

Front-end;

No need in full-

time designer;

Freelancer;

There are no

mockups;

Designers are

also usability

testers

Attitude to

Scrum

Doing

something by

certain deadline;

Constant

process of

changing

everything

simultaneously;

Should have job

experience;

A-la demo

version;

Processes are all

the same;

Three ways of

managing design;

User stories

were not clear

to anybody;

My task is to

make a good,

convenient and

nice product;

Need a person

who will push

the whole

project;

Leader;

It’s a common

Project

Management;

Current

situation

Searching for

concrete

information;

No concrete

plan;

Good ideas;

Hierarchy and

organization is

broken;

Weird mess is

happening;

Everyone is

responsible for

his work;

Constant

presence is not

required;

Good people,

good company;

Towards ideal

situation

Someone

distributes the

tasks;

Designer plans

with senior

developer;

Make back-end

first;

Group report;

Plan program;

Prepare for the

future;

Stick to planned

mockup;

I need

information;

Job experience;

Responsible

people;

The whole work

can be done in 2

months;

Software

architect and

Junior developer

report to Senior

Developer;

Product Owner

is someone

from

developers;

Senior

developer

should be

responsible for

Junior

Applying Agile Methodologies to Design and Programming

79/90

A.2 Codes from Interview with Product Owner

Settings Acts Activities Meanings Participation Relationships

Role in the

project

Give tasks;

Making product-

do stuff;

Proposing new

ideas;

Interesting for

the customers;

Without

needing to

exactly tell how

they are done;

I talk with Chief

developer about

the general

architecture,

something

inside;

Give tasks to

Senior

developer ;

Junior

Developer

needs more

assistance;

Attitude to

Scrum

Thinking;

Understand;

Criticize;

Agree

Formalized way

of doing Agile;

Arguing;

Forcing things to

be the same;

Well-

documented;

Easy to

understand for

everybody;

Sacrifice quality;

Rather

theoretical;

Hope we just

converted it;

Haven't had a

formal

methodology

previously;

Not a huge

enthusiasm, not

a big resistance

either;

Agile is an

umbrella term

for Scrum;

Artificial

connection;

Current

situation

Working

relatively close

to what is

Scrum;

Stopped fixing

sprints;

Interaction;

Breaking

application into

parts;

Depending who

is working on

what;

Don't so much

have Junior

Developer;

Don’t have a big

resistance

Communication

case by case;

All links are

about the

strong;

Connections are

almost equally

strong;

Chief developer

– general

architecture,

something

inside;

Towards ideal

situation

Introduce

morning

meetings;

Update the

board;

Sorted already;

Discuss;

Practice;

Changes

become smaller

and smaller;

Making it a little

bit more

methodological;

Deifning stroies

when they are

implemented

Design is

important;

Problems of

design come out

quicker;

Technical

mistakes are

more expensive;

Nobody will see

underlying

hidden

architectural

decisions;

Finish first what

you are doing

and then you

text the next

one;

Smoother and

smoother;

Design has to go

in same steps

Applying Agile Methodologies to Design and Programming

80/90

A.3 Codes from Interview with Junior Developer

Settings Acts Activities Meanings Participation Relationships

Role in the

project

Do;

Write;

Work;

Give something

to show;

Building the

interface of iOS

App;

Implementing

logic;

Writing

controllers;

Working with

the code;

Interesting;

For the future;

Tasks;

Containers;

Views;

Transitions;

Prototypes;

Designing;

The only who

was dealing with

iPad for the first

three months;

Attitude to

Scrum

Joined the team;

Agile motivates

programmers;

Push their

knowledge;

Trying;

Studying deeply;

Follow the

discipline;

Achieve results;

Succeed;

Interested;

The best

solution;

Productive;

Good results;

The discipline;

Motivation;

Agile

techniques;

Scrum;

Kanban;

Extreme

programming;

Test-driven

development

Course and

lectures at the

university;

Schedule;

Current

situation

Meeting once a

week;

Trying;

Struggling;

Go down;

Realized;

The first task

defined abstract;

Were not there;

Had difficulties;

Can be

improved;

Not focusing;

Having technical

problems;

Useless;

Separated;

Absent;

Not enough for

being effective;

Not enough

experience;

70% percents of

Scrum;

Successful;

More than

enough artifacts;

Conservative;

Meeting only

once a week;

Framework;

Rules of Scrum;

Potentially

marketable

product;

No technique

used before;

One-month

sprint;

Only two local

developers;

Designer;

Software

architect;

Product owner;

Did not have

people

Programmers

abroad;

Part-time

workers;

Towards ideal

situation

Be ready

Doing;

Define the task;

Break tasks into

small tasks;

Work forward;

They really

didn't care;

Release sort of

a product;

Cannot waste a

lot of time;

Doing nothing;

Work;

Divide tasks

into subtasks;

Communicate;

Tell;

Do;

Any technique

can be tried or

applied;

Implement;

Achieve the

result;

Undertaking

tasks;

Confident;

Attitude of

some

programmers;

New people;

Flexible;

Deadlines;

Cycle;

Scheduling time;

High and low

priority tasks;

Do something

better

Automated

testing;

Time;

Team of five

people;

Daily Scrum

meeting;

Communicate

with each other;

Agile

programming

Applying Agile Methodologies to Design and Programming

81/90

A.4 Codes from Interview with Senior Developer

Settings Acts Activities Meanings Participation Relationships

Role in the

project
Trying to do;

Tasks are

established;

Decisions are

made;

Lots of tasks;

Regular release

of application;

In recognition of

years spent in a

company;

How is my role

different from

others – I don't

know;

Don't have

anyone under

the ferule;

No hierarchy;

Based on trust;

Attitude to

Scrum

Is not very

suitable;

Cannot even

speak about it;

I am skeptical

about it;

All depends on

the result;

Everything is

predefined by

manages;

Has to be 7

people;

Not applicable;

How can I

support

something that

ends up bad;

In sake of an

idea – it's stupid;

Our enterprise;

Must be a team;

Unaware about

all advantages;

Scrum is

somewhere

outside;

There are at

least seven

people in rugby;

Current

situation

It is going more

or less better

now;

Doing

something;

I build the

version;

Version appears;

Scrum does not

work at all;

Throwing out

completed

tasks;

Spent a lot of

time;

Everything goes

very slowly;

iOS took much

time;

Putting limits;

Rotation;

Don't know

exactly what

else is needed;

Small companies

are always Agile;

Not enough

experience;

iOS specifics;

Upsetting;

Deadlines not

valid;

No enthusiasm;

Enough online

and physical

instruments;

Product Owner

participates in

design;

Customer

Support

Specialist does

not take part in

a project

Too few people;

Not enough

people;

Design did not

affect

implementation

of Agile;

Designer is not

interested in

Agile;

Me and Chief

Developer;

Towards ideal

situation

Getting feasible

tasks;

Spin around;

Can't make

many tasks fast;

Discuss right

away;

Collaboration

between

colleagues;

Devote time;

Everyone works

in the name of

the goal, not in

the name of

Agile;

My work should

be really needed

for somebody;

Ready to take

part in

organizational

moments of

Scrum;

If there is

opportunity;

All are equally

interested;

People;

Everyone

synchronizes

task board;

no special

approach to

design;

Programmers

don’t need to

(but may)

collaborate with

each other;

Instructions of

Scrum Master

not important

Applying Agile Methodologies to Design and Programming

82/90

A.5 Codes from Interview with Software Architect

Settings Acts Activities Meanings Participation Relationships

Role in the

project
Find algorithms Inheritance

Based on code

for the previous

product

Functionality

I know

everybody

No

communication

with tester;

Hierarchy;

Attitude to

Scrum

Helps;

Doesn't fully

work;

Tasks are

chosen;

Prioritization;

Sprints existed

before Scrum;

If you don't have

enough

experience in

prioritizing

tasks;

Started using

Kanban

I know

everybofy;

Current

situation

Discussing;

Ready for

coding;

We are trying;

Sprints don't

really work;

Does not work

to full extent;

No

implementation;

Task is not

reproducible;

Isolation;

Design and

architecture;

Chief Developer

and Designer

don't

communicate;

Towards ideal

situation

Organizing

Standups;

Gather

together;

Discuss weekly

tasks and

problems;

Live

communication;

Meetings should

be organized on

different days.

Not bad;

Everyone is

aware of what

others are

doing;

Real contacts;

Not only online

Applying Agile Methodologies to Design and Programming

83/90

Annex B

Tag Clouds

B.1 Designer Tag Cloud

Applying Agile Methodologies to Design and Programming

84/90

B.2 Product Owner Tag Cloud

B.3 Junior Developer Tag Cloud

Applying Agile Methodologies to Design and Programming

85/90

B.4 Senior Developer Tag Cloud

B.4 Software Architect Tag Cloud

Applying Agile Methodologies to Design and Programming

86/90

References

1. Ambler, S. W. (2010). Agile Modeling. Agile Design. Ambysoft Inc.

Retrieved from http://www.agilemodeling.com/essays/agileDesign.htm

#Philosophies

2. Apple, Inc. (2011) iOS Human Interface Guidelines [HIG]. User Experience.

Retrieved from http://developer.apple.com/library/ios/documentation/

UserExperience/Conceptual/MobileHIG/MobileHIG.pdf

3. Apple, Inc. (2011). Apple’s App Store Downloads Top 15 Billion. Apple Press

Info. Retrieved from http://www.apple.com/pr/library/2011/07/07Apples-

App-Store-Downloads-Top-15-Billion.html

4. Arslan, Y. (2012). What is wrong with design and Scrum? Retrieved from

http://yusufarslan.net/what- wrong-design-and-scrum

5. Beck, K., Beedle, M. et al. (2011). Manifesto for Agile Software

Development. Retrieved from http://agilemanifesto.org/

6. Brown, J. M., Lindgaard, G., & Biddle, R. (2012). Interactional Identity:

Designers and Developers Making Joint Work Meaningful and Effective.

Qualitative Studies of Software Development II, 1381-1390.

http://www.agilemodeling.com/essays/agileDesign.htm
http://developer.apple.com/library/ios/documentation/%20UserExperience/Conceptual/MobileHIG/MobileHIG.pdf
http://developer.apple.com/library/ios/documentation/%20UserExperience/Conceptual/MobileHIG/MobileHIG.pdf
http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html
http://www.apple.com/pr/library/2011/07/07Apples-App-Store-Downloads-Top-15-Billion.html
http://agilemanifesto.org/

Applying Agile Methodologies to Design and Programming

87/90

7. Centers for Medicare and Medicaid Services [CMS]. (2008). Selecting a

development approach. Department of Health and Human Services.

Retrieved from http://www.cms.gov/Research-Statistics-Data-and-Systems

/CMS-Information-Technology/SystemLifecycleFramework/downloads/Sele

ctingDevelopmentApproach.pdf

8. Cocburn, A. (2008). Using Both Incremental and Iterative Development.

Humans and Technology. Crosstalk . Retreived from http://www.crosstalk

online.org/storage/issue-archives/2008/200805/200805-Cockburn.pdf

9. Cohen L., Manion, L., & Morrison, K. (2007). Research Methods in Education.

(6th ed.). London and New York: Routledge.

10. Cohn, M. (2010). Succeeding With Agile: Software Development Using Scrum .

Upper Saddle River, NJ: Addison-Wesley.

11. Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical

and methodological issues. The Journal of the Learning Sciences, 13(1), 15-42.

12. Cooper, A., Reimann, R., & Cronin, D. (2007). About Face 3: The Essentials of

Interaction Design (3rd ed.). Indianapolis: Wiley Publishing.

13. Design. (2010). In Stevenson, A. & Lindberg, C.A. (Ed.), The New Oxford

American Dictionary (3rd ed.). Oxford: Oxford University Press. Retrieved

April 23, 2012 from Dictionary, Version 2.2.2 (118.1), Apple Inc.

14. Discovery Learning, Inc. (2003). Research Summary Number 8. Change

Style Indicator and MBTI – Is there a connection? Retrieved from

http://www.discoverylearning.com/

15. Hassenzahl, M., & Wessler, R. (2000). Capturing Design Space From a User

Perspective: The Repertory Grid Technique Revisited. International Journal

Of Human–Computer Interaction, 12(3&4), 441–459. Retrieved from

http://www.uni-landau.de/hassenzahl/pdfs/ijhci_hassenzahl _wessler00.pdf

http://www.cms.gov/Research-Statistics-Data-and-Systems%20/CMS-Information-Technology/SystemLifecycleFramework/downloads/Sele%20ctingDevelopmentApproach.pdf
http://www.cms.gov/Research-Statistics-Data-and-Systems%20/CMS-Information-Technology/SystemLifecycleFramework/downloads/Sele%20ctingDevelopmentApproach.pdf
http://www.cms.gov/Research-Statistics-Data-and-Systems%20/CMS-Information-Technology/SystemLifecycleFramework/downloads/Sele%20ctingDevelopmentApproach.pdf
http://www.crosstalkonline.org/storage/issue-archives/2008/200805/200805-Cockburn.pdf
http://www.crosstalkonline.org/storage/issue-archives/2008/200805/200805-Cockburn.pdf
http://www.discoverylearning.com/
http://www.uni-landau.de/hassenzahl/pdfs/ijhci_hassenzahl%20_wessler00.pdf

Applying Agile Methodologies to Design and Programming

88/90

16. IDEO. (2003) IDEO Method Cards: 51 Ways to Inspire Design. William Stout.

Retreived from http://students.washington.edu/kenliu8/INFO360/IDEO

MethodCards.pdf

17. Infrastructure. (2010). In Stevenson, A. & Lindberg, C.A. (Ed.), The New

Oxford American Dictionary (3rd ed.). Oxford: Oxford University Press.

Retrieved April 23, 2012 from Dictionary, Version 2.2.2 (118.1), Apple Inc.

18. Jensen, J. F. (1998). Interactivity: Tracking a new concept in media and

communication studies. Nordicom Review, 19(1), 185-204. Retrieved from

http://www.nordicom.gu.se/common/publ_pdf/38_jensen.pdf

19. Koskinen, I., Zimmerman, J., Binder, T., Redstrom, J., & Wensveen, S. (2011).

Design Research Through Practice. From the Lab, Field, and Showroom (1st ed.).

Waltham: Morgan Kaufmann.

20. Larman, C. & Basili, V. R. (2003). Iterative and Incremental Development: A

Brief History. Computer 36, 47-56. IEEE Computer Society. Retrieved from

http://ftp.rta.nato.int/public//PubFullText/RTO/TR/RTO-TR-IST-026///TR-

IST-026-ANN-E.pdf

21. Linear. (2010). In Stevenson, A. & Lindberg, C.A. (Ed.), The New Oxford

American Dictionary (3rd ed.). Oxford: Oxford University Press. Retrieved

from Dictionary, Version 2.2.2 (118.1), Apple Inc.

22. Lofland, J. & Lofland, L. H. (1995). Analyzing social settings (3rd ed.).

Belmont: Wadsworth.

23. Luecke, R. (2003). Managing Change and Transition. Boston: Harvard Business

School Press.

24. Manning, A. (2008). Agile Designer / Developer collaboration with Scrum.

Retrieved from http://www.allenmanning.com/?p=17

http://students.washington.edu/kenliu8/INFO360/IDEO%20MethodCards.pdf
http://students.washington.edu/kenliu8/INFO360/IDEO%20MethodCards.pdf
http://www.nordicom.gu.se/common/publ_pdf/38_jensen.pdf
http://ftp.rta.nato.int/public/PubFullText/RTO/TR/RTO-TR-IST-026/TR-IST-026-ANN-E.pdf
http://ftp.rta.nato.int/public/PubFullText/RTO/TR/RTO-TR-IST-026/TR-IST-026-ANN-E.pdf

Applying Agile Methodologies to Design and Programming

89/90

25. Mountain Goat Software. (2012). What is Scrum. Introduction to Scrum.

Retrieved from http://www.mountaingoatsoftware.com/topics/scrum

26. Nelson, B., Ketelhut, D. J., Clarke, J., Bowman, C., & Dede, C. (2004). Design-

based Research Strategies for Developing a Scientific Inquiry Curriculum in a

Multi-User Virtual Environment. Cambridge: Harvard University.

27. Norman, D. A. (2002). The design of everyday things. New York: Basic Books.

28. Patton, M. Q. (1980). Qualitative evaluation methods. London: Sage.

29. Pledgerwood. (2012). The Relationship of Scrum to Agile. The Cutting Ledge.

Retrieved from http://thecuttingledge.com/?p=198

30. Pugh, K. (2011). Lean-Agile Acceptance Test-Driven Development Better

Software Through Collaboration. Upper Saddle River, NJ: Addison-Wesley.

31. Rasmusson, J. (2010). The Agile Samurai. How Agile Masters Deliver Great

Software. Raleigh, North Carolina Dallas, Texas: The Pragmatic Bookshelf.

32. Ratcliff, D. (n.d.). 15 Methods of Data Analysis in Qualitative Research.

Retrieved from http://qualitativeresearch.ratcliffs.net/

33. Royce, W. (1970). Managing the Development of Large Software Systems.

Proceedings, IEEE WESCON 26, 328–338. Retrieved from

http://leadinganswers.typepad.com/leading_answers/files/original_waterfal

l_paper_winston_royce.pdf

34. Sims C., Johnson H. L. (2011). The Elements of Scrum. Version 1.01. Foster

City, CA: Dymaxicon.

35. Welch, S. (2011). From Idea to App: Creating iOS UI, Animations, and Gestures.

Berkeley: New Riders Press

36. VersionOne, LLC. (2007). 2nd Annual Survey. ‚The State of Agile

Development‛. Conducted: June-July 2007. Survey Highlights & Full Data

http://www.mountaingoatsoftware.com/topics/scrum
http://thecuttingledge.com/?p=198
http://qualitativeresearch.ratcliffs.net/
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf

Applying Agile Methodologies to Design and Programming

90/90

Report. Retrieved from http://www.versionone.com/pdf/StateOfAgile

Developmet2_FullDataReport.pdf

37. VersionOne, LLC. (2007). Survey: ‚The State of Agile Development‛.

Retrieved from http://trailridgeconsulting.com/surveys/state-of-agile-

development-survey-2006.pdf

38. VersionOne, LLC. (2008). 3rd Annual Survey: 2008. ‚The State of Agile

Development‛. Conducted: June-July 2008. Full Data Report. Retrieved

from http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataRep

ort.pdf

39. VersionOne, LLC. (2009-2010). State of Agile Survey. 2009. ‚The State of

Agile Development‛. 4th Annual. Retrieved from http://www.version

one.com/pdf/2009_State_of_Agile_Development_Survey_Results.pdf

40. VersionOne, LLC. (2010). State of Agile Survey. 2010. ‚The State of Agile

Development‛. 5th Annual. Retrieved from http://www.version

one.com/pdf/2010_State_of_Agile_Development_Survey_Results.pdf

41. VersionOne, LLC. (2012). State of Agile Survey. 2011. ‚The State of Agile

Development‛. 6th Annual. Retrieved from http://www.version

one.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf

42. Williams, L. (2007). A Survey of Agile Development Methodologies.

Retrieved from http://agile.csc.ncsu.edu/SEMaterials/AgileMethods.pdf

http://www.versionone.com/pdf/StateOfAgile%20Developmet2_FullDataReport.pdf
http://www.versionone.com/pdf/StateOfAgile%20Developmet2_FullDataReport.pdf
http://trailridgeconsulting.com/surveys/state-of-agile-development-survey-2006.pdf
http://trailridgeconsulting.com/surveys/state-of-agile-development-survey-2006.pdf
http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataRep%20ort.pdf
http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataRep%20ort.pdf
http://agile.csc.ncsu.edu/SEMaterials/AgileMethods.pdf

