
ENG 115 Engineering Applications of OR Fall 1998 Handout 3

The shortest path problem

Consider the following problem. You are given a map of the city in which you live, and you wish to �gure
out the fastest route to travel from your home to your o�ce. In your city, some of the streets are two-way,
and some are one-way. Furthermore, traveling down a street in one direction might not take the same time
as in the other direction (e.g, if there is some construction taking place on your side of the street).

First of all, we would like to give a mathematical model of this problem. To do this, it will be useful to
introduce the notion of a directed graph. A directed graph consists of a set of nodes, and a set of arcs. For
example, the picture below shows a graph in which 1, 2, 3, 4, 5, and 6 are the nodes of the graph. That is,
in drawing a graph we represent a node by a circle with its name indicated inside. An arc is an ordered pair
of nodes, such as (1; 2). The arc (1; 2) is represented below as the arrow that points from node 1 to node 2.
For nodes 2 and 3, there is an arc from 2 to 3 and an arc from 3 to 2. Thus, if we consider the graph below,
then the set of nodes is f1; 2; 3; 4; 5; 6g and the set of arcs is

f(1; 2); (1; 3); (2; 3); (2; 4); (3; 2); (3; 5); (4; 3); (4; 6); (5; 2); (5; 6)g:

If we let N be the name for the set of nodes, that is, N = f1; 2; 3; 4; 5; 6g, and if we let A be the name for
the set of arcs then

A = f(1; 2); (1; 3); (2; 3); (2; 4); (3; 2); (3; 5); (4; 3); (4; 6); (5; 2); (5; 6)g:

When we specify the elements that are contained in a set, then it does not matter in which order we list
them. So for example, we could equally well have described N as f1; 3; 4; 6; 5; 2g; that is the same set. A
graph consists of a set of nodes and a set of arcs; hence, if we call the graph G, then we often write that
G = (N;A) to mean that N is its set of nodes, and A is its set of arcs.

3 5

61

2 4

Figure 1: A graph with 6 nodes and 10 arcs

A path in a graph is a sequence of arcs that, from a visual perspective, you could follow with your pencil
without lifting the pencil up. For example, (2; 3); (3; 5); (5; 6) is a path from node 2 to node 6 in the graph
given in Figure 1. There are two important things to notice. First, a path is a sequence of arcs, not a set of
arcs: the order in which we list the arcs does matter. Second, we are following each arc in its given direction.
For example, (3; 2); (2; 1) is not a path from node 3 to node 1, since there is no arc (2; 1) in the graph in
Figure 1; only (1; 2) is an arc in this graph. In general, we can write a path as follows: let i1, i2, . . . , ik
denote nodes in the graph (not necessarily the nodes 1; 2; : : : ; k); then

(i1; i2); (i2; i3); (i3; i4); : : : ; (ik�1; ik)

1



is a path in the graph from node i1 to node ik provided that each of (i1; i2), (i2; i3) through (ik�1; ik) is an
arc in the graph. This path has k � 1 arcs in it.

We will often be interested in directed graphs for which each arc has an associated length. We will denote
the length of each arc (i; j) in A by `(i; j). In the graph below, we have added lengths by writing each arc's
length right next to it. For example, the length of arc (3; 2) is 5, or equivalently, `(3; 2) = 5. The length of
a path is the sum of the lengths of the arcs in it. For example, the path from node 2 to node 6 given above,
that is, (2; 3); (3; 5); (5; 6), has length equal to 3 + 1 + 2 = 6. In this case, there are two paths from node 2
to node 6 of length 6. Can you �nd another one? We will be interested in �nding the shortest path between
a given pair of nodes. This is the next optimization model that we shall consider in this course.

2

6

3

2

4

1

1

3

3 5

61

2 4

3 5

Figure 2: A graph with arc lengths

The shortest path problem can be stated as follows: given a directed graph G = (N;A), and a speci�ed
source node s (which is in N), where each arc (i; j) in A has a speci�ed non-negative length `(i; j), for each
node i in N �nd a shortest path from s to i. (Unlike the traveling salesman problem, we do not need to go
through all other nodes on the way; we just want the shortest path to get there.)

As the next step, we shall explain why this problem can be used to model our problem of �nding the
quickest way to the o�ce. We can model the map of our city by a graph as follows. Introduce a node for
each intersection on the map. For each pair of intersections (say, 7th Ave. & 33rd St. and 7th Ave. &
32nd St.) if there is a street connecting them (going the right way) and this street does not cross any other
intersection along the way, we introduce an arc from the node corresponding to the �rst intersection, to the
node corresponding to the second intersection. In our example, 7th Ave. is one-way going downtown, and so
there is only an arc from the �rst to the second of them, and not from the second to the �rst. The length of
an arc is the length of time to drive between the two intersections in that direction. By solving the shortest
path problem for the graph derived from our city map, we can compute routes in the city.

Next we need an algorithm to solve this mathematical model. In this case, we will be able to give a
very simple algorithm that for any input, �nds an optimal solution. First think about �nding a node that
is closest to the source s. In some trivial sense, s is the closest node to itself, so we will set Closest(1) = s.
Now we wish to �nd some other node i for which the shortest path from s to i is as short as possible. We
shall call this node Closest(2). Clearly, there might be several nodes that are all the same distance from s,
but for at least one of these nodes i there is an arc (s; i), since if you can reach i from s only by passing
through some other node along the way, that other node must be at least as close to s as i. (Would this still
be true if an arc could have a negative length?) So Closest(2) can be identi�ed by considering all arcs of the
form (s; i); let (s; i�) be the arc leaving s that is shortest. Then Closest(2) = i

�, and the shortest path from
s to i

� consists of the single arc (s; i�). Next consider identifying the node that is next closest to s (counting
ties, so it might be just as close as Closest(2)). The shortest path might be just one arc from s, or else it
might �rst pass through Closest(2) and then continue on to it. By considering all of the paths of this form,
we can identify the next closest node, Closest(3). We can continue in this way until we have assigned each
node to be Closest(j) for some j = 1; : : : ; n. At each stage, we know that the shortest path to Closest(j)
must consist of the shortest path to Closest(i), for some i = 1; : : : ; j � 1, and then one arc from Closest(i)
to Closest(j).

We will now describe the algorithm to compute the shortest path from s to each other node in the graph

2



in a more formal way. The fact that the algorithm always �nds the correct solution is a direct consequence
of the previous discussion. Since this algorithm was �rst proposed by E. Dijkstra, it is commonly called
Dijkstra's algorithm.

� fInitializeg Set Label(s) := 0, and Label(i) := +1 for all other nodes i in N . Set j := 0.
Let Prev(i) be unde�ned for each node i in N ; all nodes are unmarked.

� fMain Loopg Until all nodes are marked with a � do the following:

1. Set j := j + 1;

2. Among all unmarked nodes, select a node i for which the label is minimum;

3. Mark node i with a �; Set Closest(j) := i;

4. For each arc of the form (i; j), or in other words, for each arc leaving node i, compare Label(j)
with Label(i) + `(i; j); if the latter is smaller, then set Label(j) := Label(i) + `(i; j), and set
Prev(j) := i.
(Note: in fact, it su�ces to consider all arcs leaving i that go to unmarked nodes j.)

It is not clear that, when this algorithm �nishes, you have computed any path from s to each other node,
let alone a shortest path for each of these nodes. Let us �rst run Dijkstra's algorithm on the above example,
where node 1 is the speci�ed source.
Initialization:

Node 1 2 3 4 5 6

Label 0 +1 +1 +1 +1 +1
Prev { { { { { {

Clearly, node 1 is the one to be marked, that is, i = 1. There are two arcs leaving node 1: (1; 2) and (1; 3).
Since Label(2) = +1, Label(1) = 0, and `(1; 2) = 6, it follows that we should update Label(2) = 6 and
Prev(2) = 1. This can be interpreted as follows: we have found a shorter path to node 2; take the shortest
path to node 1 (which is no path at all) and then take arc (1; 2). Since the node previous to 2 in this path
is node 1, we have set Prev(2) = 1. Similarly, we set Label(3) = 2, and Prev(3) = 1.
After the �rst iteration of the main loop:

Node 1� 2 3 4 5 6

Label 0 6 2 +1 +1 +1
Prev { 1 1 { { {

Now node 3 is the next one to be marked. There are arcs leaving 3 to nodes 2 and 5. For the �rst of
these, Label(2) = 6 whereas Label(3)+ `(3; 2) = 2+ 5 = 7, and so we leave Label(2) unchanged. We did not
�nd an improved path to node 2. For node 5, we set Label(5) = 3 and Prev(5) = 3. As above, this means
that the best path we have found from 1 to 5 consists of taking the best path that we have found from 1 to
3 (which consists of just the arc (1; 3)) and then arc (3; 5).
After the second iteration of the main loop:

Node 1� 2 3� 4 5 6

Label 0 6 2 +1 3 +1
Prev { 1 1 { 3 {

Now node 5 is the next node to be marked. There are two arcs leaving node 5, to nodes 2 and 6. In the
former case, we discover a path of length 3+1=4 to node 2, and so we set Label(2) = 4 and Prev(2) = 5.
For the latter, we set Label(6) = 3 + 2 = 5, and Prev(6) = 5.
After the third iteration of the main loop:

Node 1� 2 3� 4 5� 6

Label 0 4 2 +1 3 5

Prev { 5 1 { 3 5

3



Check that you get the results tabulated below for the remainder of the execution of the algorithm on
this graph. The only point to mention is that in processing the arcs leaving node 2 (the next marked node)
we need only consider the arc (2; 4), since the arc (2; 3) leads to a node that is already marked.
After the fourth iteration of the main loop:

Node 1� 2� 3� 4 5� 6

Label 0 4 2 7 3 5

Prev { 5 1 2 3 5

After the �fth iteration of the main loop:

Node 1� 2� 3� 4 5� 6�

Label 0 4 2 7 3 5

Prev { 5 1 2 3 5

And �nally, after the sixth iteration of the main loop:

Node 1� 2� 3� 4� 5� 6�

Label 0 4 2 7 3 5

Prev { 5 1 2 3 5

By now it should be clear how to deduce the shortest paths from this information. Take node 4, for
example. We get there by coming from Prev(4) = 2. But how do we get to node 2? From node Prev(2) = 5.
And we get to node 5 from node Prev(5) = 3. And we get to node 3 from node Prev(3) = 1, which is the
source. (We can detect that we have traced back to the source by the fact that its Prev(�) value is still
unde�ned. So the shortest path from node 1 to node 4 is (1; 3); (3; 5); (5; 2); (2; 4).

While we can perform this tracing-back each time we wish to determine a shortest path, we can also give
a nice way to concisely describe all of the shortest paths. For each node i that is not the source, highlight
the arc from Prev(i) to i. This is done for our example in the �gure below. This collection of arcs is called

3

2

6

2

4

1

1

3

3 5

61

2 4

3 5

Figure 3: Shortest path tree

the shortest path tree. With an active imagination (and holding this piece of paper sideways), you can think
of this as a tree growing up from the source node. Its importance should be clear. For each node i we have
highlighted the shortest path from 1 to i.

In the remainder of this handout we shall explain a simple way to verify that you have computed correctly
the shortest path between two nodes in a given graph, without having to rerun the entire algorithm. Suppose
that the input is a directed graph G = (N;A), where each arc (i; j) 2 A (the 2 symbol means \is an element
of") has a given length `(i; j) � 0, and you wish to compute the shortest path from a given node s to each
other node in the graph. In fact, you have run Dijkstra's algorithm, and computed that the shortest path
from s to one node w consists of the the k + 1 arcs (s; i1); (i1; i2); : : : ; (ik�1; ik); (ik; w). You want to know
some easy way to verify that you have computed the correct path, other than just running the algorithm
again to see that you did each step correctly.

4



3 5

61

2 4

0

2

3 5

0

0

9

0

0

5

Figure 4: An easy shortest path input

Consider the input in Figure 4. Can you give a convincing argument that you know that shortest path
from node 1 to each other node? (Think about this before reading on!!)

Since each arc length is nonnegative, then the length of any path is nonnegative. However, for each node
i in Figure 4, it is quite easy to identify a a path of total length 0 from the source to node i. Since all path
lengths are non-negative, then certainly a path of length 0 is a shortest path (because no path of negative
length exists!) Of course, as in the example above, if the length of the whole path is 0, then the length of
each arc in it must also be 0. (Because, once again, there are no negative length arcs.) This seems like a
very special case, but the end conclusion will be that it is still a very useful and powerful idea.

The next step will be to consider a rather peculiar variant of the shortest path problem. In this new
problem, we are given a graph as in the usual shortest path problem, plus each node i 2 N has a special
price p(i). In this new problem, we view the nodes as representing cities and the arcs as roads connecting
them. When we travel along an arc (i; j) 2 A we incur a cost equal to its length `(i; j); in addition, whenever
we enter a city we are given a present meant to entice us to stay in that city of value p(i). If we leave that
city, we must pay that amount back. Once again, we return to our original input, as given in Figure 2, and
add such p values, where each node's value is speci�ed in a box right next to it.

0

4 7

2 3

4

2

6

3

2

4

1

1

3

3 5

61

2 4

3 5

Figure 5: A graph with node enticements

In general, what is the cost of our path from the source node s to node w (for our new problem)? Well,
we must pay p(s) to leave the source, and we will get p(w) when we �nally enter node w. All of the other
presents acquired en route must be paid back, so that the total cost is

`(s; i1) + `(i1; i2) + � � � + `(ik�1; ik) + `(ik; w) + p(s)� p(w):

5



A shorthand notation for this is to write it as

`(s; i1) +

kX

j=2

`(ij�1; ij) + `(ik; w) + p(s)� p(w):

So we can think of the total cost of this path as its total length with respect to the original length function `

plus (p(s)� p(w)). But this is true no matter which path from s to w we consider! Therefore, the cheapest
path in this new setting is exactly the same as the shortest path for the original lengths. (Make sure you
understand exactly why this is!) We have obtained an equivalent problem to solve; a path that is shortest
for this new variant must be a shortest path in original sense, and vice versa. (Make sure you understand
this; thinking about the speci�c example given in Figure 5 is probably helpful.)

Here is another view of the new problem, however. We would like to get rid of the fact that there are
these two types of costs, arc lengths and \node enticements", but still leave the problem unchanged, even
in computing the cost of any path correctly. Here is a simple idea that might be seem a bit odd at �rst.
Think about using an arc (i; j). To use it, one must �rst leave node i, then traverse arc (i; j), and then
enter node j. All are required if we are to use arc (i; j) at all. So the e�ective cost of traversing this arc is
p(i) + `(i; j)� p(j). We de�ne the adjusted length of an arc (i; j) of the graph to be

�̀(i; j) = `(i; j) + p(i)� p(j):

The total adjusted length of a path is the sum of the adjusted lengths of arcs in that path. It should be
clear that the adjusted length of any path is exactly the quantity that we wanted to minimize in the node
enticement version of the shortest path problem. Just to double check, let's compute the total adjusted
length of our given path from s to w.

Total adjusted length = �̀(s; i1) + �̀(i1; i2) + � � � + �̀(ik�1; ik) + �̀(ik; w)

= [p(s) + `(s; i1)� p(i1)] + [p(i1) + `(i1; i2)� p(i2)] + � � �

+ [p(ik�1) + `(ik�1; ik)� p(ik)] + [p(ik) + `(ik; w)� p(w)]

= `(s; i1) + `(i1; i2) + � � � + `(ik�1; ik) + `(ik; w) + p(s)� p(w)

which is exactly what we wanted the total adjusted length to be. The adjusted lengths for the example given
in Figure 5 are given in the �gure below.

3 5

61

2 4

2

0

0

35

0

9

1

6

0

Figure 6: Adjusted arc lengths

But what does this have to do with verifying that we got the correct answer for the shortest path from s

to w in our original problem? First, let's summarize what we just �gured out. We give each node i a value
p(i) (any value is possible). If we consider the problem where we try to �nd a shortest path from s to w with
respect to the adjusted arc lengths �̀(i; j) = `(i; j) + p(i)� p(j) (for each (i; j) 2 A) instead of the original
ones `(i; j), then the shortest path found is also a shortest path for the original lengths. So we could solve
the adjusted problem instead of the original one, if that turns out to be easier.

6



But how do we set the values p(i) for each node i 2 N? Suppose we let p(i) = length of the shortest
path from s to i. (If we have run Dijkstra's algorithm correctly, we presumably know these.) Do this for the
graph in Figure 2; after all, we have already run Dijkstra's algorithm for this graph, and the output from
the algorithm gives us the proposed p value for each node. I claim that in computing the adjusted costs with
these p values, you will rederive one of the �gures given above. Which one is it? Do this exercise before
continuing to read.

Next we will show that some of the properties of the adjusted lengths that you have just computed are
not at all coincidental, and hold when you perform this procedure for any graph whatsoever.
Claim 1. If, for each i 2 N , p(i) is set to the length of the shortest path from s to i (with respect to the
original length function `), then, for each arc (i; j) 2 A, �̀(i; j) � 0.

Proof. First observe that for each arc (i; j) 2 A, the length of the shortest path from s to j is at most the
length of the shortest path from s to i plus `(i; j) (since we can build a path from s to j by �rst going to
i and then taking arc (i; j). By the way that we set the p values, this means that p(j) � p(i) + `(i; j), and
hence p(i) + `(i; j)� p(j) � 0. But then, �̀(i; j) = p(i) + `(i; j)� p(j) � 0. 2

Claim 2. If, for each i 2 N , p(i) is set to the length of the shortest path from s to i (with respect to the
original length function `), then, for each node v 2 N , the total adjusted length of the shortest path from s

to v is 0.

Proof. Recall that this shortest path is shortest with respect to both ` and �̀. We know that the total adjusted
length of any path from s to v is its total length with respect to the original lengths ` plus (p(s)� p(v)).
But p(s) = 0 and p(v) is the length of the shortest path from s to v (with respect to the original lengths `).
So the total adjusted length of any shortest path is 0. 2

Claim 3. If, for each i 2 N , p(i) is set to the length of the shortest path from s to i (with respect to the
original length function `), then, for each arc (i; j) in a shortest path from s to v, �̀(i; j) = 0.

Proof. Claim 1 showed that each adjusted length is non-negative. Claim 2 showed that the total adjusted
length of any shortest path is equal to 0. But the only way these two can both happen is that that every

arc in a shortest path must have adjusted length equal to 0. 2

These claims have the following nice consequences. Suppose that you run Dijkstra's algorithm. Now, if you
compute �̀ where each p(i) is the shortest path length from s to i, we get an equivalent input in which each
arc has adjusted length that is non-negative, and each arc in a shortest path has adjusted length 0. But then
by the original simple case that we discussed at the start (as in Figure 4) we know that we have the shortest
path with respect to the adjusted lengths, and thus have the shortest path with respect to the original ones.

To summarize: we can check if our path from s to w is indeed shortest by (1) computing �̀(i; j) for each
arc in the graph for p values set by the shortest path lengths just found by Dijkstra's algorithm; (2) for each
(i; j) 2 A check that �̀(i; j) � 0; (3) for each arc (i; j) in the path, check that �̀(i; j) = 0. If this holds, then
you have computed a correct shortest path.

Now return to Figure 5. This �gure indicates another setting for the p values. How does this procedure
prove that these values are not the shortest path values? If we look at Figure 6, we see that there is no path
from node 1 to node 6 of total adjusted length equal to 0. If the p values did indicate the shortest path
lengths, then there must be such a path. Hence, these are not the correct values.

7


