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This book provides an introduction to the statistical analysis of quantitative data for
researchers studying aspects of language and language processing. The statistical anal-
ysis of quantitative data is often seen as an onerous task that one would rather leave to
others. Statistical packages tend to be used as a kind of oracle, from which you elicit a
verdict as to whether you have one or more significant effects in your data. In order to
elicit a response from the oracle, one has to click one’s way through cascades of menus.
After a magic button press, voluminous output tends to be produced that hides the p-
values, the ultimate goal of the statistical pilgrimage, among lots of other numbers that
are completely meaningless to the user, as befits a true oracle.

The approach to data analysis to which this book provides a guide is fundamentally
different in several ways. First of all, we will make use of a radically different tool for do-
ing statistics, the interactive programming environment known as R. R is an open source
implementation of the (object-oriented) S language for statistical analysis originally de-
veloped at Bell Laboratories. It is the platform par excellence for research and devel-
opment in computational statistics. It can be downloaded from the COMPREHENSIVE

R ARCHIVE NETWORK (CRAN) at http://cran.r-project.org or one of the many
mirror sites. Learning to work with R is in many ways similar to learning a new language.
Once you have mastered its grammar, and once you have acquired some basic vocabu-
lary, you will also have begun to acquire a new way of thinking about data analysis that
is essential for understanding the structure in your data. The design of R is especially ele-
gant in that it has a consistent uniform syntax for specifying statistical models, no matter
which type of model is being fitted.

What is essential about working with R, and this brings us to the second difference in
our approach, is that we will depend heavily on visualization. R has outstanding graph-
ical facilities, which generally provide far more insight into the data than long lists of
statistics that depend on often questionable simplifying assumptions. That is, this book
provides an introduction to exploratory data analysis. Moreover, we will work incrementally
and interactively. The process of understanding the structure in your data is almost always
an iterative process involving graphical inspection, model building, graphical inspection,
updating and adjusting the model, etc. The flexibility of R is crucial for making this itera-
tive process of coming to grips with your data both easy and in fact quite enjoyable.

A third, at first sight heretical aspect of this book is that I have avoided all formal
mathematics. The focus of this introduction is on explaining the key concepts and on
providing guidelines for the proper use of statistical techniques. A useful metaphor is
learning to drive a car. In order to drive a car, you need to know the position and function
of tools such as the steering wheel and the brake. You also need to know that you should
not drive with the handbrake on. And you need to know the traffic rules. Without these
three kinds of knowledge, driving a car is extremely dangerous. What you do not need
to know is how to construct a combustion engine, or how to drill for oil and refine it so
that you can use it to fuel that combustion engine. The aim of this book is to provide you
with a driving licence for exploratory data analysis. There is one caveat here. To stretch
the metaphor to its limit: With R, you are receiving driving lessons in an all-powerful
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car, a combination of a racing car, a lorry, a personal vehicle, and a limousine. Conse-
quently, you have to be a responsible driver, which means that you will find that you
will need many additional driving lessons beyond those offered in this book. Moreover,
it never hurts to consult professional drivers — statisticians with a solid background in
mathematical statistics who know the ins and outs of the tools and techniques, and their
advantages and disadvantages. Other introductions that the reader may want to consider
are Dalgaard [2002], Verzani [2005], and Crawley [2002]. The present book is written for
readers with little or no programming experience. Readers interested in the R language
itself should consult Becker et al. [1988] and Venables and Ripley [2002].

The approach I have taken in this course is to work with real data sets rather than
with small artificial examples. Real data are often messy, and it is important to know
how to proceed when the data display all kinds of problems that standard introductory
textbooks hardly ever mention. Unless stated otherwise, data sets discussed in this book
are available in the languageR package, which is available at the CRAN archives. The
reader is encouraged to work through the examples with the actual data, to get a feeling
of what the data look like and how to work with R’s functions. To save typing, you
can copy and paste the R code of the examples in this book into the R console (see the
file examples.txt in languageR ’s scripts directory). The languageR package also
makes available a series of functions. These convenience functions, some of which are
still being developed, bear the extension .fnc to distinguish them from the well-tested
functions of Rand its standard packages.

An important reason for using R is that it is a carefully designed programming en-
vironment that allows you, in a very flexible way, to write your own code, or modify
existing code, to tailor R to your specific needs. To see why this is useful, consider a re-
searcher studying similarities in meaning and form for a large number of words. Suppose
that a separate model needs to be fitted for each of 1000 words to the data of the other 999
words. If you are used to thinking about statistical question as paths through cascaded
menus, you will discard such an analysis as impractical almost immediately. When you
work in R, you simply write the code for one word, and then cycle it through on all other
words. Researchers are often unnecessarily limited in the questions they explore because
they are thinking in menu-driven language instead of in an interactive programming lan-
guage like R. This is an area where language determines thought.

If you are new to working with a programming language, you will find that you will
have to get used to getting your commands for R exactly right. R offers command line
editing facilities, and you can also page through earlier commands with the up and down
arrows of your keyboard. It is often useful to open a simple text editor (emacs, gvim,
notepad), to prepare your commands in, and to copy and paste these commands into
the R window. Especially more complex commands tend to be used more than once,
and it is often much easier to make copies in the editor and modify these, than to try
to edit multiple-line commands in the R window itself. Output from R that is worth
remembering can be pasted back into the editor, which in this way comes to retain a
detailed history of both your commands and of the relevant results. You might think
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that using a graphical user interface would work more quickly, in which case you may
want to consider using the commercial software S-PLUS, which offers such an interface.
However, as pointed out by Crawley [2002], “If you enjoy wasting time, you can pull
down the menus and click in the dialog boxes to your heart’s content. However, this
takes about 5 to 10 times as long as writing in the command line. Life is short. Use the
command line.” (p. 11)

There are several ways in which you can use this book. If you use this book as an
introduction to statistics, it is important to work through the examples, not only by read-
ing them through, but by trying them out in R. Each chapter also comes with a set of
problems, with worked-out solutions in Appendix A. If you use this book to learn how
to apply in R particular techniques that you are already familiar with, then the quickest
way to proceed is to study the structure of the relevant data files used to illustrate the
technique. Once you have understood how the data are to be organized, you can load the
data into R and try out the example. And once you have got this working, it should not
be difficult to try out the same technique on your own data.

This book is organized as follows: Chapter 1 is an introduction to the basics of R. It ex-
plains how to load data into R, and how to work with data from the command line. Chap-
ter 2 introduces a number of important visualization techniques. Chapter 3 discusses
probability distributions, and Chapter 4 provides a guide to standard statistical tests for
single random variables as well as for two random variables. Chapter 5 discusses meth-
ods for clustering and classification. Chapter 6 discusses regression modeling strategies,
and Chapter 7 introduces mixed-effect models, the models required for analyzing data
sets with nested or crossed repeated measures.

I am indebted to Carmel O’Shannessy for allowing me to use her data on Warlpiri, to
Kors Perdijk for sharing his work on the reading skills of young children, to Joan Bres-
nan for her data on the dative alternation in English, to Maria Spassova for her data on
Spanish authorial hands, to Karen Keune for her materials on the social and geographi-
cal variation in the Netherlands and Flanders, to Laura de Vaan for her experiments on
Dutch derivational neologisms, to Mirjam Ernestus for her phonological data on final de-
voicing, to Wieke Tabak for her data on etymological age, to Jen Hay for the rating data
sets, and to Michael Dunn for his data on the phylogenetic classification of Papuan and
Oceanic languages. Many students and colleagues have helped me with their comments
and suggestions for improvement. I would like to mention by name Joan Bresnan, Mir-
jam Ernestus, Jen Hay, Reinhold Kliegl, Victor Kuperman, Petar Milin, Ingo Plag, Stuart
Robinson, Hedderik van Rijn, Eva Smolka, and Fiona Tweedie. I am especially indebted
to Douglas Bates for his detailed comments on Chapter 7, his advice for improving the
languageR package, his help with the code for temporary ancillary functions for mixed-
effects modeling, and the insights offered on mixed-effects modeling. In fact, I would like
to thank Doug here for all the work he has put into developing the lme4 package, which
I believe is the most exciting tool discussed in this book for analyzing linguistic experi-
mental data. Last but not least, I am grateful to Tineke for her friendship and support.
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Chapter 1

An introduction to R

In order to learn to work with R, you have to learn to speak its language, the S language,
developed originally at Bell Laboratories [Becker et al., 1988]. The grammar of this pro-
gramming language is beautiful and easy to learn. It is important to master its basics, as
this grammar is designed to guide you towards the appropriate way of thinking about
your data and how you might want to carry out your analysis.

When you begin to use R on an Apple Macintosh or a Windows PC, you will start
R either through a menus guiding you to applications, or by clicking on R’s icon. As
a result, a graphical user interface is started up, with as central part a window with a
prompt (>), the place where you type your commands. On UNIX or LINUX, the same
window is obtained by opening a terminal and typing R to its prompt.

The sequence of commands in a given R session and the objects created are stored
in files named .Rhistory and .RData when you quit R and respond positively to the
question whether you want to save your workspace. If you do so, then your results will
be available to you the next time you start up R. If you are using a graphical user inter-
face, this .RData file will be located by default in the folder where R has been installed.
In UNIX and LINUX, the .RData file will be created in the same directory where R was
started up.

You will often want to use R for different projects, located in different directories on
your computer. On UNIX and LINUX systems, simply open a terminal in the desired di-
rectory, and start R. When using a graphical user interface, you have to use the File
drop-down menu. In order to change to another directory, select Change dir . You will
also have to load the .RData and .Rhistory using the options Load Workspace and
Load History .

Once R is up and running, you need to install a series of packages, including the pack-
age that comes with this book, languageR . This is accomplished with the following in-
struction, to be typed at the Rprompt:

install.packages(c("rpart", "chron", "Hmisc", "Design" , "Matrix",
"lme4", "coda", "e1071", "zipfR", "ape", "languageR"),
repos = "http://cran.r-project.org")
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Packages are installed in a folder named library , which itself is located in R’s home
directory. On my system, R’s home is /home/harald/R-2.4.0 , so packages are found
in /home/harald/R-2.4.0/library , and the code of the main examples in this book
is located in /home/harald/R-2.4.0/library/languageR/scripts .

I recommend to create a file named .Rprofile in your home directory. This file
should contain the line

library(languageR)

telling R that upon startup it should attach languageR . All data sets and functions de-
fined in languageR , and almost all packages that we will need, will be automatically
available. Alternatively, you can type library(languageR) to the R prompt yourself
after you have started R. All examples in this book assume that the languageR package
has been attached.

The way to learn a language is to start speaking it. The way to learn R and the S lan-
guage that it is built on, is to start using it. Reading through the examples in this chapter
is not enough to become a confident user of R. For this, you need to actually try out the
examples by typing them at the Rprompt. You have to be very precise in your commands,
which requires a discipline that you will only master if you learn from experience, from
your mistakes and typos. Don’t be put off if R complains about your initial attempts to
use it, just carefully compare what you typed, letter by letter and bracket by bracket, with
the code in the examples.

If you type a command that extends over separate lines, the standard prompt > will
change into the special continuation prompt +. If you think your command is completed,
but still have a continuation prompt, there is something wrong with your syntax. To
cancel the command, use either the escape key, or type CONTROL-C. Appendix C provides
an overview of operators and functions, grouped by topic, that the reader may find useful
as a complement to the example-by-example approach followed in the main text of this
introduction.

1.1 R as a calculator

Once you have an Rwindow, you can use Rsimply as a calculator. To add 1 and 2, type

> 1 + 2

and hit the RETURN (ENTER) key, and Rwill display

[1] 3

The [1] preceding the answer indicates that 3 is the first element of the answer. In this
example, it is also the only element. Other examples of arithmetic operations are

> 2 * 3 # multiplication
[1] 6
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> 6 / 3 # division
[1] 2
> 2 ˆ 3 # power
[1] 8
> 9 ˆ 0.5 # square root
[1] 3

The hash mark # indicates that the text to its right is a comment that should be ignored by
R. Operators can be stacked, in which case it may be necessary to make explicit by means
of parentheses the order in which the operations have to be carried out.

> 9 ˆ 0.5 ˆ 3
[1] 1.316074
> (9 ˆ 0.5) ˆ 3
[1] 27
> 9 ˆ (0.5 ˆ 3)
[1] 1.316074

Note that the evaluation of exponentiation proceeds from right to left, rather than from
left to right. Use parentheses whenever you are not absolutely sure about the order in
which R evaluates stacked operators.

The results of calculations can be saved and referenced by VARIABLES. For instance,
we can store the result of adding 1 and 2 in a variable named x . There are three ways
in which we can assign the result of our addition to x . We can use the equal sign as
assignment operator,

> x = 1 + 2
> x
[1] 3

or we can use a left arrow (composed of < and - ) or a right arrow (composed of - and >,
as follows:

> x <- 1 + 2
> 1 + 2 -> x

The right arrow is especially useful in case you typed a long expression and only then
decide that you would like to save its output rather than have it displayed on your screen.
Instead of having to go back to the beginning of the line, you can continue typing and use
the right arrow as assignment operator. We can modify the value of x , for instance, by
increasing its value by one.

> x = x + 1

Here we take x , add one, and assign the result (4) back to x . Without this explicit assign-
ment, the value of x remains unchanged:
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> x = 3
> x + 1 # result is displayed, not assigned to x
[1] 4
> x # so x is unchanged
[1] 3

We can work with variables in the same way that we work with numbers.

> 4 ˆ 3
[1] 64
> x = 4
> y = 3
> x ˆ y
[1] 64

The more common mathematical operations are carried out with operators such as +,
-, and * . For a range of standard operations, as well as for more complex mathematical
calculations, a wide range of functions is available. Functions are commands that take
some input, do something with that input, and return the result to the user. Above, we
calculated the square root of 9 with the help of the ∧ operator. Another way of obtaining
the same result is by means of the sqrt() function.

> sqrt(9)
[1] 3

The argument of the square root function, 9, is enclosed between parentheses.

1.2 Getting data into and out of R

Bresnan et al. [2007] studied the dative alternation in English in the three- million-word
Switchboard collection of recorded telephone conversations and in the Treebank Wall
Street Journal collection of news and financial reportage. In English, the recipient can
be realized either as an NP (Mary gave John the book) or as a PP (Mary gave the book to John).
Bresnan and colleagues were interested in predicting the realization of the recipient (as
NP or PP) from a wide range of potential explanatory variables, such as the animacy, the
length in words, and the pronominality of the theme and the recipient. A subset of their
data collected from the treebank is available as the data set verbs . (Bresnan and col-
leagues studied many more variables, the full data set is available as dative , and we
will study it in detail in later chapters.) You should have attached the languageR pack-
age at this point, otherwise verbs will not be available to you.

We display the first 10 rows of the verbs data with the help of the function head() .
(Readers familiar with programming languages like C and Python should note that R
numbering begins with 1 rather than with zero.)

> head(verbs, n = 10)

4
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RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme Lengt hOfTheme
1 NP feed animate inanimate 2.6390573
2 NP give animate inanimate 1.0986123
3 NP give animate inanimate 2.5649494
4 NP give animate inanimate 1.6094379
5 NP offer animate inanimate 1.0986123
6 NP give animate inanimate 1.3862944
7 NP pay animate inanimate 1.3862944
8 NP bring animate inanimate 0.0000000
9 NP teach animate inanimate 2.3978953
10 NP give animate inanimate 0.6931472

When the option n is left unspecified, the first 6 rows will be displayed by default. Tables
such as exemplified by verbs are referred to in R as DATA FRAMES. Each line in this
data frame represents a clause with a recipient, and specifies whether this recipient was
realized as an NP or as a PP. Each line also lists the verb used, the animacy of the recipient,
the animacy of the theme, and the logarithm of the length of the theme. Note that each
elementary observation — here the realization of the recipient as NP or PP in a given
clause — has its own line in the input file. This is referred to as the LONG DATA FORMAT,
where long highlights that no attempt is made to store the data more economically.

It is good practice to spell out the elements in the columns of a data frame with sensible
names. For instance, the first line with data specifies that the recipient was realized as an
NP for the verb to feed, that the recipient was animate, and that the theme was inanimate.
The length of the theme was 14, as shown when we undo the logarithmic transformation
with its inverse, the exponential function exp() :

> exp(2.6390573)
[1] 14
> log(14)
[1] 2.639057

A data frame such as verbs can be saved outside R as an independent file with
write.table() , enclosing the name of the file (including its path) between quotes.

> write.table(verbs, file = "/home/harald/dativeS.txt") # linux
> write.table(verbs, file = "/users/harald/dativeS.txt" ) # MacOSX
> write.table(verbs, file = "c:stats/dativeS.txt") # Wind ows

Users of Windows should note the use of the forward slash for path specification. Alter-
natively, on MacOS X or Windows, the function file.choose() may be used, replacing
the file name, in which case a dialog box is provided.

External data in this tabular format can be loaded into R with read.table() . We
tell this function that the file we just made has an initial line, its header, that specifies the
column names.

> verbs = read.table("/home/harald/dativeS.txt", header = TRUE)
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R handles various other data formats as well, including sas.get() (which converts
SAS data sets), read.csv() (which handles comma-separated spreadsheet data), and
read.spss() (for reading SPSS data files).

Data sets and functions in Rcome with extensive documentation, including examples.
This documentation is accessed by means of the help() function. Many examples in the
documentation can be also executed with the example() function.

> help(verbs)
> example(verbs)

1.3 Accessing information in data frames

When working with data frames, we often need to select or manipulate subsets of rows
and columns. Rows and columns are selected by means of a mechanism referred to as
subscripting. In its simplest form, subscripting can be achieved simply by specifying the
row and column numbers between square brackets, separated by a comma. For instance,
to extract the length of the theme for the first line in the data frame verbs , we type

> verbs[1, 5]
[1] 2.639057

Whatever precedes the comma is interpreted as a restriction on the rows, and whatever
follows the comma is a restriction on the columns. In this example, the restrictions are so
narrow that only one element is selected, the one element that satisfies the restrictions that
it should be on row 1 and in column 5. The other extreme is no restrictions whatsoever,
as when we type the name of the data frame to the prompt, which is equivalent to typing

> verbs[ , ] # this will display all 903 rows of verbs!

When we leave the slot before the comma empty, we impose no restrictions on the rows:

> verbs[ , 5] # show the elements of column 5
[1] 2.6390573 1.0986123 2.5649494 1.6094379 1.0986123
[5] 1.3862944 1.3862944 0.0000000 2.3978953 0.6931472
...

As there are 903 rows in verbs , the request to display the fifth column results in an
ordered sequence of 903 elements. In what follows, we refer to such an ordered sequence
as a vector . Thanks to the numbers in square brackets in the output, we can easily see
that 0.00 is the seventh element of the vector. Column vectors can also be extracted with
the $ operator preceding the name of the relevant column:

> verbs$LengthOfTheme # same as verbs[, 5]

When we specify a row number but leave the slot after the comma empty, we impose no
restrictions on the columns, and therefore obtain a row vector instead of a column vector:
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> verbs[1, ] # show the elements of row 1
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme Lengt hOfTheme

1 NP feed animate inanimate 2.639057

Note that the elements of this row vector are displayed together with the column names.
Row and column vectors can be extracted from a data frame and assigned to separate

variables:

> col5 = verbs[ , 5]
> head(col5, n = 5)

[1] 2.6390573 1.0986123 2.5649494 1.6094379 1.0986123

Individual elements can be accessed from these vectors by the same subscripting mecha-
nism, but simplified to just one index between the square brackets:

> row1[1]
RealizationOfRec

1 NP
> col5[1]
[1] 2.639057

Because the row vector has names, we can also address its elements by name, properly
enclosed between double quotes:

> row1["RealizationOfRec"]
RealizationOfRec

1 NP

You now know how to extract single elements, rows and columns from data frames,
and how to access individual elements from vectors. However, we often need to ac-
cess more than one row or more than one column simultaneously. R makes this possible
by placing vectors before or after the comma when subscripting the data frame, instead
of single elements. (For R, single elements are actually vectors with only one element.)
Therefore, it is useful to know how to create your own vectors from scratch. The simplest
way of creating a vector is to combine elements with the concatenation operator c() . In
the following example, we select some arbitrary row numbers.

> rs = c(638, 799, 390, 569, 567)
> rs

[1] 638 799 390 569 567

We can now use this vector of numbers to select precisely those rows from verbs that
have the row numbers specified in rs . We do so by inserting rs before the comma.

> verbs[rs, ]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme Lengt hOfTheme

638 PP pay animate inanimate 0.6931472
799 PP sell animate inanimate 1.3862944
390 NP lend animate animate 0.6931472
569 PP sell animate inanimate 1.6094379
567 PP send inanimate inanimate 1.3862944
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Note that the appropriate rows of verbs appear in exactly the same order as specified in
rs .

The combination operator c() is not the only function for creating vectors. Of the
many other possibilities, the colon operator should be mentioned here. This operator
brings into existence sequences of increasing or decreasing numbers with a stepsize of
one:

> 1 : 5
[1] 1 2 3 4 5
> 5 : 1
[1] 5 4 3 2 1

In order to select from verbs the rows specified by rs and the first three columns, we
specify the row condition before the comma and the column condition after the comma:

> verbs[rs, 1:3]
RealizationOfRec Verb AnimacyOfRec

638 PP pay animate
799 PP sell animate
390 NP lend animate
569 PP sell animate
567 PP send inanimate

Alternatively, we could have specified a vector of column names instead of column num-
bers.

> verbs[rs, c("RealizationOfRec", "Verb", "AnimacyOfRec ")]

Note once more that when strings are brought together into a vector, they must be en-
closed between quotes.

Thus far, we have selected rows by explicitly specifying their row numbers. Often, we
do not have this information available. For instance, suppose we are interested in those
observations for which the AnimacyOfTheme has the value animate . We do not know
the row numbers of these observations. Fortunately, we do not need them either, because
we can impose a condition on the rows of the data frame such that only those rows will
be selected that meet that condition. The condition that we want to impose is that the
value in the column of AnimacyOfTheme is animate . Since this is a condition on rows,
it precedes the comma.

> verbs[verbs$AnimacyOfTheme == "animate", ]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme Lengt hOfTheme

58 NP give animate animate 1.0986123
100 NP give animate animate 2.8903718
143 NP give inanimate animate 2.6390573
390 NP lend animate animate 0.6931472
506 NP give animate animate 1.9459101
736 PP trade animate animate 1.6094379
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This is equivalent to

> subset(verbs, AnimacyOfTheme == "animate")

It is important to note that the equality in the condition is expressed with a double equal
sign. This is because the single equal sign is the assignment operator. The following ex-
ample illustrates a more complex condition with the logical operator AND (&) (the logical
operator for OR is |).

> verbs[verbs$AnimacyOfTheme == "animate" & verbs$Length OfTheme > 2, ]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme Lengt hOfTheme

100 NP give animate animate 2.890372
143 NP give inanimate animate 2.639057

Row and column names of a data frame can be extracted with the functions rownames()
and colnames() .

> head(rownames(verbs))
[1] "1" "2" "3" "4" "5" "6"

> colnames(verbs)
[1] "RealizationOfRec" "Verb" "AnimacyOfRec" "AnimacyOf Theme"
[5] "LengthOfTheme"

The vector of column names is a string vector. Perhaps surprisingly, the vector of row
names is also a string vector. To see why this is useful, we assign the subtable of verbs
obtained by subscripting the rows with the rs vector to a separate object that we name
verbs.rs .

> verbs.rs = verbs[rs, ]

We can extract the first line not only by row number,

> verbs.rs[1, ]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme Lengt hOfTheme

638 PP pay animate inanimate 0.6931472

but also by row name,

> verbs.rs["638",] # same output

The row name is a string that reminds us of the original row number in the data frame
from which verbs.rs was extracted:

> verbs[638, ] # same output again

Let’s finally extract a column that does not consist of numbers, such as the column
specifying the animacy of the recipient.

> verbs.rs$AnimacyOfRec
[1] animate animate animate animate inanimate

Levels: animate inanimate
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Two things are noteworthy. First, the words animate and inanimate are not enclosed be-
tween quotes. Second, the last line of the output mentions that there are two LEVELS:
animate and inanimate . Whereas the row and column names are vectors of strings,
non-numerical columns in a data frame are automatically converted by R into FACTORS.
In statistics, a factor is a non-numerical predictor or response. Its values are referred to
as its levels. Here, the factor AnimacyOfRec has as only possible values animate and
inanimate , hence it has only two levels. Most statistical techniques don’t work with
string vectors, but with factors. This is the reason why R automatically converts non-
numerical columns into factors. If you really want to work with a string vector instead of a
factor, you have to do the back-conversion yourself with the function as.character() :

> verbs.rs$AnimacyOfRec = as.character(verbs.rs$Animac yOfRec)
> verbs.rs$AnimacyOfRec

[1] "animate" "animate" "animate" "animate" "inanimate"

Now the elements of the vector are strings, and as such properly enclosed between quotes.
We can undo this conversion with as.factor() .

> verbs.rs$AnimacyOfRec = as.factor(verbs.rs$AnimacyOf Rec)

If we repeat these steps, but with a smaller subset of the data in which AnimacyOfRec is
only realized as animate,

> verbs.rs2 = verbs[c(638, 390), ]
> verbs.rs2

RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme Lengt hOfTheme
638 PP pay animate inanimate 0.6931472
390 NP lend animate animate 0.6931472

we observe that the original two levels of AnimacyOfRec are remembered:

> verbs.rs2$AnimacyOfRec
[1] animate animate
Levels: animate inanimate

In order to get rid of the uninstantiated factor level, we convert AnimacyOfRec to a
character vector, and then convert it back to a factor:

> as.factor(as.character(verbs.rs2$AnimacyOfRec))
[1] animate animate
Levels: animate

An alternative with the same result is

> verbs.rs2$AnimacyOfRec[drop=TRUE]

10



D
R

A
FT

1.4 Operations on data frames

1.4.1 Sorting a data frame by one or more columns

In the previous section, we created the data frame verbs.rs , the rows of which appeared
in the arbitrary order specified by our vector of row numbers rs . It is often useful to
sort the entries in a data frame by the values in one of the columns, for instance, by the
realization of the recipient,

> verbs.rs[order(verbs.rs$RealizationOfRec), ]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme Lengt hOfTheme

390 NP lend animate animate 0.6931472
638 PP pay animate inanimate 0.6931472
799 PP sell animate inanimate 1.3862944
569 PP sell animate inanimate 1.6094379
567 PP send inanimate inanimate 1.3862944

or by verb and then by the length of the theme,

> verbs.rs[order(verbs.rs$Verb, verbs.rs$LengthOfThem e), ]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme Lengt hOfTheme

390 NP lend animate animate 0.6931472
638 PP pay animate inanimate 0.6931472
799 PP sell animate inanimate 1.3862944
569 PP sell animate inanimate 1.6094379
567 PP send inanimate inanimate 1.3862944

The crucial work is done by order() . Its first argument is the primary column of the
data frame by which the rows should be sorted (alphabetical or numerical depending on
the column values). The second argument is the column that provides the sort key for
those rows that have ties according to the first column. Additional columns for sorting
can be supplied as third or fourth argument, and so on.

Note that the order() function occupies the slot in the subscript of the data frame
that specifies the conditions on the rows. What order() actually does is supply a vector
of row numbers, with the row number of the row that is to be listed first as first element,
the row number that is to be listed second as second element, and so on. For instance,
when we sort the rows by Verb , order() returns a vector of row numbers

> order(verbs.rs$Verb)
[1] 10 7 8 3 1 9 2 4 6 5

that will move the last row (for cost) to the first row, the seventh row (for give) to the
second row, and so on.

The elements of a vector can be sorted in the same way. When sorting the vector

> v = c("pay", "sell", "lend", "sell", "send",
+ "sell", "give", "give", "pay", "cost")
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(note that Rchanges the prompt from > to + when a command is not finished by the end
of the line, so don’t type the + symbol when defining this vector) we subscript it with
order() applied to itself:

> v[order(v)]
[1] "cost" "give" "give" "lend" "pay"
[6] "pay" "sell" "sell" "sell" "send"

However, a more straightforward function for sorting the elements of a vector is sort() :

> sort(v)

It is important to keep in mind that in all preceding examples we never assigned the out-
put of the reordering operations, so v is still unsorted. In order to obtain sorted versions,
simply assign the output to the original data object.

> v = sort(v)

1.4.2 Changing information in a data frame

Information in a data frame can be changed. For instance, we could manipulate the data
in verbs.rs and change the realization of the recipient for the verb to pay (originally on
line 638 in verbs ) from PP into NP. (In what follows, I assume that this command is not
actually carried out.)

> verbs.rs["638", ]$RealizationOfRec = "NP"

If many such changes have to be made, for instance in order to correct coding errors, then
it may be more convenient to do this in a spreadsheet, save the result as a .csv file, and
load the corrected data into Rwith read.csv() .

Changes that are easily carried out in Rare changes that affect whole columns or sub-
parts of the table. For instance, in order to reconstruct the length of the theme (in words)
from the logarithmically transformed values listed in verbs.rs , all we have to do is
apply the exp() function to the appropriate column. All values in the column will be
changed accordingly.

> verbs.rs$LengthOfTheme
[1] 0.6931472 1.3862944 0.6931472 1.6094379 1.3862944
> exp(verbs.rs$LengthOfTheme)
[1] 2 4 2 5 4

We can also add new columns to a data frame. For instance, we might consider adding
a column with the length of the verb (in letters). There is a function, nchar() , that con-
veniently reports the number of letters in its input, provided that its input is a character
string or a vector of character strings. We illustrate nchar() for the longest word (with-
out intervening spaces or hyphens) of English [Sproat, 1992] and the shortest word of
English.
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> nchar(c("antidisestablishmentarianism", "a"))
[1] 28 1

When applying nchar() to a column in a data frame, we have to keep in mind that non-
numerical columns typically are not vectors of strings, but factors. So we must first con-
vert the factor into a character vector with as.character() before applying nchar() .
We add the result to verbs.rs with the $ operator.

> verbs.rs$Length = nchar(as.character(verbs.rs$Verb))

We display only the first four rows of the result, and only the verb and its orthographic
length.

> verbs.rs[1:4, c("Verb", "Length")]
Verb Length

638 pay 3
799 sell 4
390 lend 4
569 sell 4

1.4.3 Extracting contingency tables from data frames

How many observations are characterized by animate recipients realized as an NP? Ques-
tions like this are easily addressed with the help of CONTINGENCY TABLES, tables that
cross-tabulate counts for combinations of factor levels. Since the factors RealizationOf
Rec and AnimacyOfRec each have two levels, as shown by the function levels() ,

> levels(verbs$RealizationOfRec)
[1] "NP" "PP"
> levels(verbs$AnimacyOfRec)
[1] "animate" "inanimate"

a cross-tabulation of RealizationOfRec and AnimacyOfRec with xtabs() results in
a table with four cells.

> xtabs( ˜ RealizationOfRec + AnimacyOfRec, data = verbs)
AnimacyOfRec

RealizationOfRec animate inanimate
NP 521 34
PP 301 47

The first arguments of xtabs() is a FORMULA. Formulas have the following general
structure, with the tilde (∼) denoting ’depends on’ or ’is a function of’.

dependent variable ∼ predictor 1 + predictor 2 + . . .
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A DEPENDENT VARIABLE is a variable the value of which we try to predict. The other vari-
ables are often referred to as INDEPENDENT VARIABLES. This terminology is somewhat
misleading, however, because sets of predictors are often characterized by all kinds of in-
terdependencies. A more appropriate term is simply PREDICTOR. In the study of Bresnan
et al. [2007] that we are considering here, the dependent variable is the realization of the
recipient. All other variables are predictor variables.

When we construct a contingency table, however, there is no independent variable. A
contingency table allows us to see how counts are distributed over conditions, without
making any claim as to whether one variable might be explainable in terms of other vari-
ables. Therefore, the formula for xtabs() has nothing to the left of the tilde operator. We
only have predictors, which we list to the right of the tilde, separated by plusses.

More than two factors can be cross-tabulated:

> verbs.xtabs =
+ xtabs( ˜ AnimacyOfRec + AnimacyOfTheme + RealizationOfRe c,
+ data = verbs)
> verbs.xtabs
, , RealizationOfRec = NP

AnimacyOfTheme
AnimacyOfRec animate inanimate

animate 4 517
inanimate 1 33

, , RealizationOfRec = PP

AnimacyOfTheme
AnimacyOfRec animate inanimate

animate 1 300
inanimate 0 47

As three factors enter into this cross-classification, the result is a three-dimensional con-
tingency table, that is displayed in the form of two 2 by 2 contingency tables. It is clear
from this table that animate themes are extremely rare. It therefore makes sense to re-
strict our attention to the clauses with inanimate themes. We implement this restriction
by conditioning on the rows of verbs .

> verbs.xtabs = xtabs( ˜ AnimacyOfRec + RealizationOfRec,
+ data = verbs, subset = AnimacyOfTheme != "animate")
> verbs.xtabs

RealizationOfRec
AnimacyOfRec NP PP

animate 517 300
inanimate 33 47

It seems that recipients are somewhat more likely to be realized as an NP when animate
and as a PP when inanimate.
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This contingency table can be recast as a table of proportions by dividing each cell in
the table by the sum of all cells, the total number of observations in the data frame with
inanimate themes. We obtain this sum with the help of the function sum() , which returns
the sum of the elements in a vector or table:

> sum(verbs.xtabs)
[1] 897

We verify that this is indeed equal to the number of rows in the data frame with inanimate
themes only, with the help of the nrow() function.

> sum(verbs.xtabs) == nrow(verbs[verbs$AnimacyOfTheme ! = "animate",])
[1] TRUE

A table of proportions is obtained straightforwardly by dividing the contingency table by
this sum.

> verbs.xtabs/sum(verbs.xtabs)
RealizationOfRec

AnimacyOfRec NP PP
animate 0.57636566 0.33444816
inanimate 0.03678930 0.05239688

For percentages instead of proportions, we simply multiply by 100.

> 100 * verbs.xtabs/sum(verbs.xtabs)
RealizationOfRec

AnimacyOfRec NP PP
animate 57.636566 33.444816
inanimate 3.678930 5.239688

It is often useful to recast counts as proportions (relative frequencies) with respect to
row or column totals. Such proportions can be calculated with prop.table() . When its
second argument is 1, prop.table() calculates relative frequencies with respect to the
row totals,

> prop.table(verbs.xtabs, 1) # rows sum to 1
RealizationOfRec

AnimacyOfRec NP PP
animate 0.6328029 0.3671971
inanimate 0.4125000 0.5875000

when its second argument is 2, it produces proportions relative to column totals.

> prop.table(verbs.xtabs,2) # columns sum to 1
RealizationOfRec

AnimacyOfRec NP PP
animate 0.9400000 0.8645533
inanimate 0.0600000 0.1354467
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These tables show that the row proportions are somewhat different for animate versus
inanimate recipients, and that column proportions are slightly different for NP versus
PP realizations of the recipient. Later we shall see that there is indeed reason for surprise:
The observed asymmetry between rows and columns is unlikely to arise under chance
conditions. For animate recipients, the NP realization is more likely than the PP realiza-
tion. Inanimate recipients have a non-trivial preference for the PP realization.

1.4.4 Calculations on data frames

Another question that arises with respect to the data in verbs is to what extent the length
of the theme, i.e., the complexity of the theme measured in terms of the number of words
used to express it, covaries with the animacy of the recipient. Could it be that animate
recipients show a preference for more complex themes, compared to inanimate recipi-
ents? To assess this possibility, we calculate the mean length of the theme for animate and
inanimate recipients. We obtain these means with the help of the function mean() , which
takes a numerical vector as input, and returns the arithmetic mean.

> mean(1:5)
[1] 3

We could use this function to calculate the means for the animate and inanimate recipients
separately,

> mean(verbs[verbs$AnimacyOfRec == "animate", ]$LengthO fTheme)
[1] 1.540278
> mean(verbs[verbs$AnimacyOfRec != "animate", ]$LengthO fTheme)
[1] 1.071130

but a much more convenient way for obtaining these means simultaneously is to make
use of the tapply() function. This function takes three arguments. The first argument
specifies a numeric vector for which we want to calculate means. The second argument
specifies how this numeric vector should be split into groups, namely, on the basis of
its factor levels. The third argument specifies the function that is to be applied to these
groups. The function that we want to apply to our data frame is mean() , but other
functions (e.g., sum() , sqrt() ) could also be specified.

> tapply(verbs$LengthOfTheme, verbs$AnimacyOfRec, mean )
animate inanimate

1.540278 1.071130

The output of tapply() is a table, here a table with two means labeled by the levels of
the factor for which they were calculated. Later we shall see that the difference between
these two group means is unlikely to be due to chance.

It is also possible to calculate means for subsets of data defined by the levels of more
than one factor, in which case the second argument for tapply() should be a LIST of
the relevant factors. Like vectors, lists are ordered sequences of elements, but unlike for
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vectors, the elements of a list can themselves have more than one element. Thus we can
have lists of vectors, lists of data frames, or lists containing a mixture of numbers, strings,
vectors, data frames, and other lists. Lists are created with the list() function. For
tapply() , all we have to do is specify the factors as arguments to the function list() .
Here is an example for the means of the length of the theme cross-classified for the lev-
els of AnimacyOfRec and AnimacyOfTheme , illustrating an alternative, slightly shorter
way of using tapply() with the help of with() :

> with(verbs, tapply(LengthOfTheme,
+ list(AnimacyOfRec, AnimacyOfTheme), mean))

animate inanimate
animate 1.647496 1.539622
inanimate 2.639057 1.051531

A final operation on data frames is best illustrated by means of a data set (heid )
concerning reaction times in visual lexical decision elicited from Dutch subjects for neol-
ogisms ending in the suffix -heid (’-ness’).

> heid[1:5, ]
Subject Word RT BaseFrequency

1 pp1 basaalheid 6.69 3.56
2 pp1 markantheid 6.81 5.16
3 pp1 ontroerdheid 6.51 5.55
4 pp1 contentheid 6.58 4.50
5 pp1 riantheid 6.86 4.53

This data frame comprises log reaction times for 26 subjects to 40 words. For each com-
bination of subject and word, a reaction time (RT) was recorded. For each word, the
frequency of its base word was extracted from the CELEX lexical database [Baayen et al.,
1995]. Given what we know about frequency effects in lexical processing in general, we
expect that neologisms with a higher base frequency elicit shorter reaction times.

Psycholinguistic studies often report two analyses, one for reaction times averaged
over subjects, and one for reaction times averaged over words. The aggregate() func-
tion carries out these averaging procedures. Its syntax is similar to that of tapply() . Its
first argument is the numerical vector for which we want averages according to the sub-
sets defined by the list supplied by the second argument. Here is how we average over
words:

> heid2 = aggregate(heid$RT, list(heid$Word), mean)
> heid2[1:5, ]

Group.1 x
1 aftandsheid 6.705000
2 antiekheid 6.542353
3 banaalheid 6.587727
4 basaalheid 6.585714
5 bebrildheid 6.673333
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As aggregate() does not retain the original names of our data frame, we change the
column names so that the columns of heid2 remain well interpretable.

> colnames(heid2) = c("Word", "MeanRT")

In the averaging process, we lost the information about the base frequencies of the words.
We add this information in two steps. We begin with creating a data frame with just the
information pertaining to the words and their frequencies.

> items = heid[, c("Word", "BaseFrequency")]

Because each subject responded to each item, this data frame has multiple identical rows
for each word. We remove these redundant rows with unique() .

> nrow(items)
[1] 832
> items = unique(items)
> nrow(items)
[1] 40
> items[1:4, ]

Word BaseFrequency
1 basaalheid 3.56
2 markantheid 5.16
3 ontroerdheid 5.55
4 contentheid 4.50

The final step is to add the information in items to the information already available
in heid2 . We do this with merge() . As arguments to merge() , we first specify the
receiving data frame (heid2 ), and then the donating data frame (items ). We also specify
the columns in the two data frames that provide the keys for the merging: by.x should
point to the key in the receiving data frame and by.y should point to the key in the
donating data frame. In the present example, the keys for both data frames have the
same value, Word.

> heid2 = merge(heid2, items, by.x = "Word", by.y = "Word")
> head(heid2, n = 4)

Word MeanRT BaseFrequency
1 aftandsheid 6.705000 4.20
2 antiekheid 6.542353 6.75
3 banaalheid 6.587727 5.74
4 basaalheid 6.585714 3.56

Make sure you understand why the next sequence of steps lead to the same results.

> heid3 = aggregate(heid$RT, list(heid$Word, heid$BaseFr equency), mean)
> colnames(heid3) = c("Word", "BaseFrequency", "MeanRT")
> head(heid3[order(heid3$Word),], 4)

We shall see shortly that the MeanRT indeed tends to be shorter as BaseFrequency
increases.
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1.5 Session management

R stores the objects it created during a session in a file named .RData , and it keeps track
of the commands issued in a file named .Rhistory . These files are stored on your com-
puter, except when you explicitly request R to delete these files when quitting. Since
the names of these files begin with a period, they are invisible to file managers in Unix,
Linux and Mac OS X, except when these are explicitly instructed to show hidden files.
In Windows, these files are visible, and an R session can be restored by double clicking
on the icon for the .RData file. The data and history files can be moved around, copied,
or deleted if so required. The history file is a text file that can be viewed with any edi-
tor or text processor. The contents of the .RData file, however, can only be viewed and
manipulated within R.

When working in R, the current contents of the workspace can be viewed with the
objects() function, which lists the objects that you have made.

> objects()
[1] "heid" "heid2" "heid3" "verbs" "verbs.rs"

Objects that are no longer necessary can be removed with rm() .

> rm(verbs.rs)
> objects()

[1] "heid" "heid2" "heid3" "verbs"

It is recommended to allocate a different workspace to each project you are working on.
This avoids your workspace becoming cluttered with objects that have nothing to do with
your current project. It also helps to avoid your workspace becoming unmanagably large.

The proper way to exit from R from the console is to make use of the q() function,
which then inquires whether the workspace should be saved.

> q()
Save workspace image? [y/n/c]:
y

Answering with no implies that whatever objects you created in R in your current session
will not be available the next time you start up R in the same directory.

Note that we have to specify the opening and closing parentheses of the function, even
when it is not supplied with an argument. If you type a function name to the prompt
without the parentheses, R interprets this as a request to print the function’s code on the
screen.

> q
function (save = "default", status = 0, runLast = TRUE)
.Internal(quit(save, status, runLast))
<environment: namespace:base>

If you see unexpected code like this, you can be sure that you forgot your parentheses.
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1.6 Exercises

The data set spanishMeta contains metadata about fifteen texts sampled from three
Spanish authors. Each line in this file provides information on a single text. Later in this
book we will consider whether these authors can be distinguished on the basis of the
quantitative characteristics of their personal styles (gauged by the relative frequencies of
function words and tag trigrams).

1. Display this data frame in the R terminal. Extract the column names from the data
frame. Also extract the number of rows.

2. Calculate how many different texts are available in meta for each author. Also
calculate the mean publication date of the texts sampled for each author.

3. Sort the rows in meta by year of birth (YearOfBirth ) and the number of words
sampled from the texts (Nwords ).

4. Extract the vector of publication dates from meta . Sort this vector. Consult the help
page for sort() and sort the vector in reverse numerical order. Also sort the row
names of meta .

5. Extract from meta all rows with texts that were published before 1980.

6. Calculate the mean publication date for all texts. The arithmetic mean is defined as
the sum of the observations in a vector divided by the number of elements in the
vector. The length of a vector is provided by the function length() . Recalculate
the mean year of publication by means of the functions sum() and length() .

7. We create a new data frame with fictitious information on each author’s favorite
composer with the function data.frame() .

> composer = data.frame(Author = c("Cela","Mendoza","Var gasLLosa"),
+ Favorite = c("Stravinsky", "Bach", "Villa-Lobos"))
> composer

Author Favorite
1 Cela Stravinsky
2 Mendoza Bach
3 VargasLLosa Villa-Lobos

Add the information in this new data frame to meta with merge() .
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Chapter 2

Graphical data exploration

2.1 Random variables

Chapter 1 introduced the data frame as the data structure for storing vectors of numbers
as well as factors. Numerical vectors and factors represent in R what statisticians call
RANDOM VARIABLES. A random variable is the outcome of an experiment. Here are some
examples of experiments and their associated random variables:

tossing a coin Tossing a coin will result in either ’head’ or ’tail’. Hence, the toss of a coin
is a random variable with two outcomes.

throwing a dice In this case, we are dealing with a random variable with 6 possible out-
comes, 1, 2, . . . , 6.

counting words We can count the frequencies with which words occur in a given corpus
or text. Word frequency is a random variable with as possible values 1, 2, 3, . . . , N ,
with N the size of the corpus.

familiarity rating Participants are asked to indicate on a seven-point scale how frequent
they think words are used. The ratings elicited for a given word will vary from
participant to participant, and constitute a random variable.

lexical decision Participants are asked to indicate, by means of button presses, whether
a word presented visually or auditorily is an existing word of the language. There
are two outcomes, and hence two random variables, for this type of experiment: the
accuracy of a response (with levels ’correct’ and ’incorrect’) and the latency of the
response (in milliseconds).

A random variable is random in the sense that the outcome of a given experiment is
not known beforehand, and varies from measurement to measurement. A variable that
always assumes exactly the same value is not a random variable but a constant. For
instance, if an experiment consists of counting, with the same computer program, the
number of words in the Brown corpus [Kučera and Francis, 1967], then one will always
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obtain exactly the same outcome. The size of the Brown corpus is a constant, and not a
random variable.

Each random variable is associated with a PROBABILITY DISTRIBUTION that describes
the likelihood of the different values that a random variable may assume. For a fair coin,
the two outcomes (head and tail) are equally probable, for word frequencies, a minority of
words has very high probabilities (for instance, the function words) while large numbers
of words have very low probabilities. Knowledge of the probability distribution of a
random variable is often crucial for statistical analysis, as we shall see in Chapter 3.

The present chapter addresses visualization. While numerical tables are hard to make
sense of, data visualization often allows the main patterns to emerge remarkably well.
In what follows, I therefore first discuss tools for visualizing properties of single random
variables (in vectors and uni-dimensional tables). I then proceed with an overview of
tools for graphing groups of random variables. In addition to introducing further statis-
tical concepts, this chapter serves the purpose, as we go through the examples, to discuss
the most commonly used options that R provides for plotting and visualization. Later
chapters in this book depend heavily on these visualization techniques.

2.2 Visualizing single random variables

Bar plots and histograms are useful for obtaining visual summaries of the distributions of
single random variables. We illustrate this by means of a data set (ratings ) with several
kinds of ratings collected for a set of 81 words for plants and animals.

> colnames(ratings)
[1] "Word" "Frequency" "FamilySize"
[4] "SynsetCount" "Length" "Class"
[7] "FreqSingular" "FreqPlural" "DerivEntropy"

[10] "Complex" "rInfl" "meanWeightRating"
[13] "meanSizeRating" "meanFamiliarity"

For each word, we have three ratings (averaged over subjects), one for the weight of the
word’s referent, one for its size, and one for the words’ subjective familiarity. Class is
a factor specifying whether the word’s referent is an animal or a plant. Furthermore, we
have variables specifying various linguistic properties, such a word’s frequency, its length
in letters, the number of synsets (synonym sets) in which it is listed in WordNet [Miller,
1990], its morphological family size (the number of complex words in which the word
occurs as a constituent), and its derivational entropy (an information theoretic variant of
the family size measure). Figure 2.1 presents a number of bar plots for these numeric
variables. The upper left panel is a bar plot of the counts of word lengths, produced with
the help of the function barplot() .

> barplot(xtabs( ˜ ratings$Length), xlab = "word length", c ol = "grey")

The option xlab (x-label) sets the label for the X axis, and with the option col we set
the color for the bars to grey. We see that word lengths range from 3 to 10, and that
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the distribution is somewhat asymmetric, with a MODE (the value observed most often)
at 5. The mean is 5.9, and the MEDIAN is 6. The median is obtained by ordering the
observations from small to large, and then taking the central value (or the average of the
two central values when the number of observations is even). Mean, median, and range
are obtained with the functions mean() , median() , and range() :

> mean(ratings$Length)
[1] 5.91358
> median(ratings$Length)
[1] 6
> range(ratings$Length)
[1] 3 10

We can also extract the minimum and the maximum values separately with min() and
max() :

> min(ratings$Length)
[1] 3
> max(ratings$Length)
[1] 10

The upper right panel of Figure 2.1 shows the histogram corresponding to the bar plot
in the upper left panel. One difference between the bar plot and the histogram is that the
bar plot is a natural choice for measures for discrete variables (such as word length) or
factors (which have discrete levels). Another difference is that the histogram is scaled on
the vertical axis in such a way that the total area of the bars is equal to 1. This allows us
to see that the words of length 5 and 6 jointly already account for more than 40% of the
data. This histogram was obtained with the truehist() function in the MASSpackage.

Packages are collections of functions, often written to facilitate a particular kind of sta-
tistical analysis. There are hundreds of packages, and every year more packages become
available. When we start up R, the most important and central packages are loaded auto-
matically. These packages make available the basic classical statistical tests and graphical
tools. It does not make sense to load all available packages, as this would slow perfor-
mance of R considerably by having to allocate resources to a great many functions that a
given user is not interested in at all. Packages that are installed but not loaded automati-
cally can be made available by means of the library() function. Packages that are not
yet installed can be added to your system with install.packages() , or through your
graphical user interface.

The MASSpackage contains a wide range of functions discussed in Venables and Rip-
ley [2003]. We make the functions in this package available with

> library(MASS)

All the functions in the MASSpackage will remain available to the end of your R session,
unless the package is explicitly removed with detach() .

> detach(package:MASS)
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Figure 2.1: A bar plot and histograms for selected variables describing the lexical proper-
ties of 81 words denoting plants and animals.
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When you exit from R, all packages that you loaded are detached automatically. When
you return to the same workspace, you will have to reload the packages that you used
previously in order to have access again to the functions that they contain.

With the MASSpackage loaded, we can produce the histogram in the upper right panel
with truehist()

> truehist(ratings$Length, xlab="word length", col="gre y")

The remaining panels of Figure 2.1 were made in the same way.

> truehist(ratings$Frequency,
+ xlab = "log word frequency", col = "grey")
> truehist(ratings$SynsetCount,
+ xlab = "log synset count", col = "grey")
> truehist(ratings$FamilySize,
+ xlab = "log family size", col = "grey")
> truehist(ratings$DerivEntropy,
+ xlab = "derivational entropy", col = "grey")

Note that the bottom panels show highly assymmetric, skewed distributions: Most of the
words in this data set have no morphological family members at all.

The six bar plots in Figure 2.1 were brought together in one display. Such multipanel
plots require changing the defaults for plotting. Normally, Rwill reserve the full graphics
window for a single graph. However, we can divide the graphics plot window into a
matrix of smaller plots by changing this default using a function that actually handles a
wide range of graphical parameters, par() . The graphics parameter that we need to set
here is mfrow , which should be a two-element vector specifying the number of rows and
the number of columns for the matrix of plots.

> par(mfrow = c(3, 2)) # plots arranged in 3 rows and 2 columns

From this point onwards, any plot will be added to a grid of three rows and two colums,
starting with the upper left panel, and filling a given row before starting on the next. After
having filled all panels, we reset mfrow to its default value, so that the next plot will fill
the full plot region instead of starting a new series of six small panels.

> par(mfrow = c(1, 1))

There are many other graphical parameters that can be set with par() , parameters for
controlling color, font size, tick marks, margins, text in the margins, and so on. As we pro-
ceed through this book, many of these options will be introduced. A complete overview
is available in the on-line help, type ?par or help(par) to see them all.

There are several ways in which plots can be saved as independent graphics files ex-
ternal to R. If you are using the graphical user interface for Mac OS X or Windows, you
can right click on the graphics window, and choose copy as or save as . R supports
several graphics formats, including png, pdf, jpeg, and PostScript. Each format corre-
sponds to a function that can be called from the command line: png() , pdf() , jpeg() ,
and postscript() . The command line functions offer many ways of fine-tuning how
a figure is saved. For instance, a jpeg file with a width of 400 pixels and a height of 420
pixels is produced as follows:
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> jpeg("barplot.jpeg", width = 400, height = 420)
> truehist(ratings$Frequency, xlab = "log word frequency" )
> dev.off()

The jpeg() command opens the jpeg file. We then execute truehist() , the output of
which is no longer shown on the standard graphics device, but redirected to the jpeg file.
Finally, we close the jpeg file with dev.off() . The dev.off() command is crucial: If
you forget to close your file, you will run into all sorts of trouble when you try to view the
file outside R, or if you try to make a new figure in the graphics window of R. It is only
after closing the file that further plot commands will be shown to you on your computer
screen. Encapsulated PostScript files are produced in a similar way.

> postscript("barplot.ps", horizontal = FALSE, height = 6, width = 6,
+ family = "Helvetica", paper = "special", onefile = FALSE)
> truehist(items$Frequency, xlab = "log word frequency")
> dev.off()

The first argument of postscript() is the name of the PostScript file. Whether the plot
should be in portrait or landscape mode is controlled by the horizontal argument. If
horizontal = TRUE , the plot will be produced in landscape mode, otherwise in por-
trait mode. The parameters height and width control the height and width of the plot
in inches. In this example, we have set both height and width to 6 inches. The font to be
used is specified by family , and with paper="special" the output will be an encap-
sulated PostScript file that can be easily incorporated in, for instance, a LATEX document.
The final argument, onefile , is set to FALSE in order to indicate there is only a single
plot in the file. (If you are going to add more than one plot to the file, set onefile to
TRUE.)

The shape of a histogram depends, sometimes to a surprising extent, on the width of
the bars and on the position of the left side of the first bar. The function truehist()
that we used above has defaults that are chosen to minimize the risk of obtaining a rather
arbitrarily shaped histogram (see also Haerdle [1991] and Venables and Ripley [2003]).
Nevertheless, histograms for variables that represent real numbers remain somewhat un-
satisfactory. The histogram suggests discrete jumps as you move from bar to bar, while
the real distribution of probabilities that we try to approximate with the histogram is
smooth.

We can avoid this problem with the function density() , which produces a ’smoothed
histogram’. We illustrate the advantages of DENSITY ESTIMATION by means of the reac-
tion times elicited in a visual lexical decision experiment using the same words as in the
ratings data set. The reaction times for 79 of the 81 words used in the rating data set
are available as the data set lexdec . Details about the variables in this data set can be
obtained with ?lexdec . The left panel of Figure 2.2 shows the histogram as given by
truehist() applied to the (logarithmically transformed) reaction times.

> truehist(lexdec$RT, col = "lightgrey", xlab = "log RT")

The distribution of the logged reaction times is somewhat skewed, with an extended right
tail of long latencies.
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Figure 2.2: Histograms and density function for the response latencies of 21 subjects to 79
nouns referring to animals and plants.

The upper right panel of Figure 2.2 shows the histogram, together with the DENSITY

curve, using the function density() . Below, we discuss in detail how exactly we made
this plot. Here, we note that the histogram and the density curve have roughly the same
shape, but that the density curve smoothes the discrete jumps of the histogram. As reac-
tion time is a continuous variable, the density curve is both more appropriate and more
accurate.

Plotting the right panel is not difficult, but it requires some special care and illustrates
some more details of how plotting works in R. The problem that arises when superim-
posing one graph on another graph, as in Figure 2.2, is that we have to make sure that
the ranges for the two axes are set appropriately. Otherwise R will set the ranges to ac-
comodate the first graph, in which case the second graph may not fit properly. We begin
with the standard function for making a histogram, hist() which, unlike truehist() ,
can be instructed to produce a histogram object. As we don’t want a plot at this point, we
tell hist() to forget about producing a histogram in the graphics window by specifying
plot = FALSE .

> h = hist(lexdec$RT, freq = FALSE, plot = FALSE)

(The option freq = FALSE ensures that the histogram has a total area of one.) A his-
togram object has many components, of which we need two: the locations of the edges of
the bars, and the heights of the bars. These are available as components of our histogram
object h, and accessible as h$breaks and h$density . As our next step, we make a
density object.
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> d = density(lexdec$RT)

which provides the x and y coordinates for the graph as d$x and d$y . We now have all
the information we need for determining the smallest and largest values that should be
displayed on the X and Y axes. We calculate these values with range() , which extracts
the largest and smallest values from all its input vectors.

> xlimit = range(h$breaks, d$x)
> ylimit = range(0, h$density, d$y)

For the vertical axis, we include 0 when calculating the range in order to make sure that
the origin will be included as the lowest value.

We can now proceed to plot the histogram, informing hist() about the limits for the
axes through the options xlim and ylim :

> hist(lexdec$RT, freq=FALSE, xlim=xlimit, ylim=ylimit, main="",
+ xlab="log RT", ylab="", col="lightgrey", border="darkg rey",
+ breaks = seq(5.8, 7.6, by = 0.1))

With the option col we set the color of the bars to light grey, and with border we set
the color of the borders of the bars to dark grey. We also prevent hist() from adding a
title to the graph with main = "" . The breaks option is necessary for getting hist()
to produce the same output as truehist() does for us by default. Finally, we add the
curve for the density with the function lines() . The function lines() takes a vector
of x coordinates and a vector of y coordinates, and connects the points specified by these
coordinates with a line in the order specified by the input vectors.

> lines(d$x, d$y)

In this case, the command lines(d$x, d$y) is unnecessarily complex, as a density
object such as d tells plotting functions like lines() where they can find the x and y
coordinates. Therefore, all we actually have to specify is

> lines(d)

You can plot a histogram or density object simply with the general plotting function
plot()

> plot(h)
> plot(d)

without having to specify the x and y values yourself. However, if you need those values,
you can extract them from the objects, as we have seen when we calculated xlimit and
ylimit . In other words, R provides sensible plotting defaults without giving up user
control over the fine details.

There are several other ways in which you can visualize the distribution of a random
variable. Figure 2.3 shows plots based on the values of the reaction times sorted from
small to large. The upper left panel plots the index (or rank) of the reaction times on the

28



D
R

A
FT

0 500 1000 1500

6.
0

6.
5

7.
0

7.
5

Index

lo
g 

R
T

6.
0

6.
5

7.
0

7.
5

Quartiles

lo
g 

R
T

0% 25% 50% 75% 100%

6.
0

6.
5

7.
0

7.
5

Deciles

lo
g 

R
T

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Figure 2.3: Ordered values, quartiles, and deciles for logarithmically transformed reaction
times in a visual lexical decision experiment.

horizontal axis, and the reaction times themselves on the vertical axis. This way of plot-
ting the data reveals the range of values, as well as the presence of outliers. Outliers are
data points with values that are surprisingly large or small given all data points consid-
ered jointly. There are a few outliers representing very short reaction times, and many
more outliers representing very long reaction times. This difference between the head
and the tail of the distribution corresponds to the asymmetry in the density curve shown
in the lower panel of Figure 2.2.

The upper left panel of Figure 2.3 was produced simply with

> plot(sort(lexdec$RT), ylab = "log RT")

When plot() is supplied with only one vector of data, it assumes that this vector rep-
resents Y -values and generates a vector of X-values numbered from 1 to the number of
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elements in the input vector. As we provided a sorted vector of numbers, the automati-
cally generated X-values represent the ranks of these numbers.

The upper right panel of Figure 2.3 shows the QUARTILES of the distribution of reac-
tion times, and the lower left panel the DECILES. The quartiles are the data points you
get by dividing the sorted data into four equal parts. The 50% quartile is also known as
the MEDIAN. The deciles are the data points dividing the sorted data into 10 equal parts.
The function quantile() calculates the quantiles for its input vector, by default it pro-
duces the quartiles. By supplying a second vector with the required percentage points,
the default can be changed.

Let’s have a closer look at the code that produced the quantile plots in Figure 2.3, as
this illustrates some further ways in which you can control what R plots. These quantile
plots require special attention with respect to the labels on the horizontal axis. We do
not want R to label the 5 points for the quartiles on the horizontal axis with 5 tick marks
(the small vertical and horizontal lines marking the labeled values on the axes) and the
numbers 1 through 5. What we want is sensibly labeled quartiles. We therefore instruct
plot() to forget about tick marks and numbers labeling the horizontal axis, using the
option xaxt = "n" :

> plot(quantile(lexdec$RT), xaxt = "n",
+ xlab = "Quartiles", ylab = "log RT")

The next step is to add the appropriate labels. We do this with the function mtext() ,
which adds text to a given margin of a plot. A plot margin is the white space between
the edge of the graphics window and the plot itself. The margins are labeled 1 (bottom),
2 (left), 3 (top) and 4 (right). In other words, the first margin is the space between the
X axis and the lower edge of the plotting region. We instruct mtext() to place the
text vector c("0%", "25%", "50%", "75%", "100%") in the first margin (with the
option side = 1 ), one line out (downwards) into the margin (with the option line =
1) with a font size reduced to 70% of the default font size (with the option cex = 0.7 ).

> mtext(c("0%", "25%", "50%", "75%", "100%"),
+ side = 1, at = 1:5, line = 1, cex = 0.7)

The option at = 1:5 tells mtext() where to place the 5 elements of the text vector.
Recall that we plotted the quartiles with plot(quantile(lexdec$RT)) , i.e., without
explicitly telling R about the X and Y coordinates. As there is only one vector of num-
bers, these numbers are taken to be Y coordinates. The X coordinates are the indexes of
the input vector, the numbers 1, 2, . . . , n, with n the length of the input vector (the total
number of elements in the vector). As we have 5 elements in our input vector, we know
that the X coordinates that plot() generated for us are the numbers 1 through 5. To get
our labels at the appropriate location, we supply these positions to mtext() through the
option at .

In the code that produced the lower left panel of Figure 2.3,

> plot(quantile(lexdec$RT, seq(0, 1, 0.1)),
+ xaxt = "n", xlab = "Deciles", ylab = "log RT")
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> mtext(paste(seq(0, 100, 10), rep("%", 11), sep = ""),
+ side = 1, at = 1:11, line = 1, cex = 0.7, las = 2)

the first argument to plot() is again the output of the quantile function. By default,
quantile() outputs quartiles, but here we are interested in deciles. The second argu-
ment to quantile() specifies these deciles, created with the help of the function seq() .

> seq(0, 1, 0.1)
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

The first argument of seq() specifies with which number a sequence should begin, its
second argument specifies the number with which this sequence should end, and the
third argument specifies the increment, here 0.1. This vector has 11 elements, hence the
output of quantile() has 11 elements as well.

> quantile(lexdec$RT, seq(0, 1, 0.1))
0% 10% 20% 30% 40% 50% 60%

5.828946 6.122493 6.188264 6.248816 6.297109 6.345636 6.3 95262
70% 80% 90% 100%

6.459904 6.553933 6.721907 7.587311

As we are not interested in the X-coordinates generated automatically by plot() , we
suppress tick marks and labels for the tick marks by specifying xaxt = "n" . We now
add our own tick marks. We could create a vector of strings by hand, but by combining
seq() with another function, paste() , we save ourselves some typing. paste() takes
two or more strings as input and glues them together so that they become one single
string. The user has control over what character should separate the input strings. By
default, the original arguments are separated by a space,

> paste("a", "b", "c")
[1] "a b c"

but we can remove the space by setting the separating character to the empty string.

> paste("a", "b", "c", sep = "")

When paste() is supplied with vectors of strings, it will glue the elements of these
vectors together pairwise:

> paste(seq(0, 100, 10), rep("%", 11), sep = "")
[1] "0%" "10%" "20%" "30%" "40%" "50%"
[7] "60%" "70%" "80%" "90%" "100%"

This vector provides sensible labels for the horizontal axis of our plot. Above, we fed it to
mtext() . We also instructed mtext() to place the strings perpendicular to the horizon-
tal axis with las=2 as there are too many labels to fit together when placed horizontally
along the axis.

Figure 2.4 plots the estimated density, the ordered values, and a new summary plot,
a box and whiskers plot or boxplot, for the reaction times, with the untransformed RTs
in milliseconds on the upper row of panels, and log RT on the lower row of panels. The
rightmost panels show box and whiskers plots, produced with the function boxplot() ,
which provide useful graphical summaries of distributions.
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Figure 2.4: Density, ordered values, and boxplots for reaction times and log reaction times
in a visual lexical decision experiment.
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> boxplot(exp(lexdec$RT)) # upper panel
> boxplot(lexdec$RT) # lower panel

(For the upper panel, we use the exponential function exp() to undo the logarithmic
transformation of the reaction times in the data frame lexdec .) The box in a box and
whiskers plot shows the interquartile range, the range from the first to the third quartile.
The whiskers in a boxplot extend to maximally 1.5 times the interquartile range. Points
falling outside the whiskers are plotted individually, they are potential outliers. The hor-
izontal line in the box represents the median. The large number of individual points
extending above the upper whiskers in these boxplots highlight that we are dealing with
a quite skewed, non-symmetrical distribution.

A comparison of the upper and lower panels shows that the skewing is reduced, al-
though not eliminated, by the logarithmic transformation. This is clearly visible in the
boxplot in the lower right. There are still many marked outliers, but their number is
smaller and the box has moved somewhat more towards the center of the graph.

The reason that many of the variables that we study in this book are logarithmically
transformed is to eliminate or at least substantially reduce the skewing in their distribu-
tion. This reduction is necessary for most statistical techniques discussed in this book to
work appropriately. Without the logarithmic transformation, just a few extreme outliers
might dominate the outcome, partially or even completely obscuring the main trends
characterizing the majority of data points.

2.3 Visualizing two or more variables

In Chapter 1, we created a contingency table for the counts of clauses cross-classified by
the animacy of the recipient and the realization of the recipient (NP versus PP), using the
data analyzed by Bresnan et al. [2007]. We recreate this contingency table,

> verbs.xtabs = xtabs( ˜ AnimacyOfRec + RealizationOfRec,
+ data = verbs[verbs$AnimacyOfTheme != "animate", ])
> verbs.xtabs

RealizationOfRec
AnimacyOfRec NP PP

animate 517 300
inanimate 33 47

and visualize it by means of a bar plot. We use the same barplot() function as above.
However, as our input is not a vector but a table, we have to decide what kind of bar
plot we want. Figure 2.5 illustrates the two options. The left panel shows two bars, each
composed of subbars proportional to the two counts in the columns of verbs.xtabs .
The right panel shows two pairs of bars, the first pair representing the counts for animacy
within NP realizations, the second pair representing the same counts within the realiza-
tions of the recipient as a PP.
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Figure 2.5: Bar plots for the counts of clauses cross-classified by the realization of the
recipient as NP or PP and the animacy of the recipient.

> par(mfrow = c(1, 2))
> barplot(verbs.xtabs, legend.text=c("anim", "inanim") )
> barplot(verbs.xtabs, beside = T, legend.text = rownames( verbs.xtabs))
> par(mfrow = c(1, 1))

In Chapter 1 we had a first look at the data of Bresnan and colleagues on the dative
alternation in English. Let’s consider their data once more, but now we make use of the
full data set (dative ), and cross-tabulate the realization of the recipient by its animacy
and accessibility.

> verbs.xtabs =
+ xtabs( ˜ AnimacyOfRec + AccessOfRec + RealizationOfRecip ient,
+ data = dative)
> verbs.xtabs
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, , RealizationOfRecipient = NP

AccessOfRec
AnimacyOfRec accessible given new

animate 290 1931 78
inanimate 11 99 5

, , RealizationOfRecipient = PP

AccessOfRec
AnimacyOfRec accessible given new

animate 259 239 227
inanimate 55 33 36

Such a contingency table might be visualized with a barplot, but 12 bars or smaller
numbers of stacked bars quickly become rather complex to interpret. An attractive alter-
native is to make use of a mosaic plot, as shown in the left panel of Figure 2.6.

> mosaicplot(verbs.xtabs, main = "dative")

The areas of the twelve rectangles in the plot are proportional to the counts for the twelve
cells of the contingency table. When there is no structure in the data, as in the mosaic plot
in the right panel of Figure 2.6, each rectangle is approximately equally large. The many
asymmetries in the left panel show, for instance, that in the actual data set given recipients
are more likely to be realized as NP than new or accessible recipients, both for animate and
inanimate recipients, irrespective of the overall preponderance of given recipients.

The relation between two numerical variables with many different values is often
brought to light by means of a SCATTERPLOT. Figure 2.7 displays two versions of the
same scatterplot for variables in the ratings data set. The upper panel was produced in
two steps. The first step consisted of plotting the data points.

> plot(ratings$Frequency, ratings$FamilySize)

All we have to do is specify the vectors of X and Y values as arguments to plot() . By
default, the names of the two input vectors are used as labels for the axes. You can see
that words with a very high frequency tend to have a very high family size. In other
words, the two variables are positively CORRELATED. At the same time, it is also clear
that there is a lot of noise, and that the scatter (or variance) in family sizes is greater for
lower frequencies. Such an uneven pattern is referred to as HETEROSKEDASTIC, and is
endemic in lexical statistics.

The second step consisted of adding the grey line to highlight the main trend.

> lines(lowess(ratings$Frequency, ratings$FamilySize) , col="darkgrey")

This line shows that you have to proceed almost 2 log frequency units along the horizontal
axis before you begin to see an increase in family size. For larger frequencies, the family
size increases, slowly at first, but then faster and almost like a straight line. A curve
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Figure 2.6: A mosaic plot for observed counts of clauses cross-classified by the animacy
of the recipient, the accessibility of the recipient, and the realization of the recipient (left
panel), and for random counts (right).
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Figure 2.7: Scatterplots for Family Size as a function of Frequency for 81 English nouns.
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like this is often referred to as a SCATTERPLOT SMOOTHER, as it smoothes away all the
turbulence around the main trend in the data. The smoothing function that we used
here is lowess() , which takes as input the X and Y coordinates of the data points and
produces as output the X and Y coordinates of the smooth line. To plot this line, we fed
its coordinates into lines() .

The basic idea underlying smoothers is to use the observations in a given span (or bin)
of values of X to calculate the average increase in Y . You then move this span from left
to right along the horizontal axis, each time calculating the new increase in y. There are
many ways in which you can estimate these increases, and many ways in which you can
combine all these estimated increases into a line. Recall that Figure 2.2 illustrated that the
smoothness of a histogram depends on the width of its bins (bars). In a similar way, the
smoothness of the line produced by lowess() is determined by the bin width used. As
lowess() makes use of a sensible rule of thumb for calculating a reasonable bin width,
we need not do anything ourselves. However, if you think that lowess() engages in too
much smoothing (the line hides variation you suspect to be there) or too little smoothing
(the line has too many idiosyncratic bumps) for your data, you can change the bin width
manually, as documented in the on-line help. Venables & Ripley [2000:228–232] provide
detailed information on various important smoothers that are available in R.

The lower panel of Figure 2.7 shows a different version of the same scatterplot. Data
points are now labeled by the words they represent. It is now easy to see that horse and dog
are the words with the highest frequency and family size in the sample. This scatterplot
was also made in two steps. The first step consisted of setting up the axes, now with our
own labels for the axes, specified with xlab and ylab . However, we instructed plot()
not to add the data points by setting the plot type to ”none” with type = "n" .

> plot(ratings$Frequency, ratings$FamilySize, type = "n" ,
+ xlab = "Frequency", ylab = "Family Size")

The second step consisted in adding the words to the plot with text() . Like plot() ,
it requires input vectors for the X and Y coordinates. Its third argument should be a
vector with the strings that are to be placed in the plot. In the data frame ratings ,
the column labeled Word is a factor, so we first convert it into a vector of strings with
as.character() before handing it over to text() . Finally, we set the font size to 0.7
of its default with cex = 0.7 .

> text(ratings$Frequency, ratings$FamilySize,
+ as.character(ratings$Word), cex = 0.7)

Thus far, we have considered scatterplots involving two variables only. Many data
sets have more than two variables, however, and although we might consider to inspect
all possible pairwise combinations with a series of scatterplots, it is often more convenient
and insightful to make a single multipanel figure that shows all pairwise scatterplots si-
multaneously. Figure 2.8 shows such a SCATTERPLOT MATRIX for all two by two com-
binations of the five numerical variables in ratings . The panels on the main diagonal
provide the labels for the axes of the panels. For instance, all the panels on the top row
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Figure 2.8: A pairs plot for the five numerical variables in the ratings data frame.
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have Frequency on the vertical axis, and all the panels of the first column have Frequency
on the horizontal axis. Each pair of variables is plotted twice, once with a given variable
on the horizontal axis, and once with the same variable on the vertical axis. Such pairs
of plots have coordinates that are mirrored in the main diagonal. Thus, panel (1, 2) is
the mirror image of panel (2, 1). Similarly, panel (5, 1) in the lower left has its opposite
in the upper right corner at location (1, 5). The reason for having mirrored panels is that
sometimes a pattern strikes the eye in one orientation, but not in the other.

Figure 2.8 was made with the pairs() plot function, which requires a data frame
with numerical columns as input.

> pairs(ratings[ , -c(1, 6:8, 10:14)])

The condition on the columns has a minus sign, indicating that all columns specified to
its right should be excluded instead of included. The columns that we exclude here are all
factors. Factors cannot be visualized in scatterplots, hence we take them out before apply-
ing pairs() . Figure 2.8 reveals that a fair number of pairs of predictors enter into cor-
relations, a phenomenon that is known as MULTICOLLINEARITY. Strong multicollinearity
among a set of predictor variables may make it impossible to ascertain which predictor
variables best explain the dependent variable. We will return to this issue in more detail
when discussing multiple regression.

2.4 Trellis graphics

A trellis is a wooden grid for growing roses and other flowers that need vertical support.
Trellis graphics are graphs in which data are visualized by many systematically organized
graphs simultaneously. We have encountered one trellis graph already, the pairwise scat-
terplot matrix, where each plot is a hole in the trellis. There are more advanced functions
for more complex trellis plots, which are available in the lattice package.

> library(lattice)

Trellis graphics become important when you are dealing with different groups of data
points. For instance, the words in the ratings data frame fall into two groups: ani-
mals on the one hand, and the produce of plants (fruits, vegetables, nuts) on the other
hand. Therefore, the factor Class (with levels animal and plant ) can be regarded as
a GROUPING FACTOR for the words. Another possible grouping factor for this data is
whether the word is morphologically complex (e.g., woodpecker) or morphologically sim-
ple (e.g., snake). With respect to the lexical decision data in lexdec , the factor Subject
is a grouping factor: Each subject provided response latencies for the same 79 words.

A question that arises when running a lexical decision experiment with native and
non-native speakers of English is whether there might be systematic differences in how
these two groups of subjects perform. It is to be expected that non-native speakers require
more time for a lexical decision. Furthermore, the conditions under which they make
errors may differ as well. In order to explore this possibility, we make boxplots for the
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Figure 2.9: Trellis box and whiskers plot for log reaction time by accuracy (correct versus
incorrect response) grouped by the first language of the subject.

reaction times for correct and incorrect responses, and we do this both for the native
speakers, and for the non-native speakers in the experiment. In other words, we use the
factor NativeLanguage as a grouping factor. In order to make a grouped boxplot, we
use the bwplot() function from the lattice package as follows:

> bwplot(RT ˜ Correct | NativeLanguage, data = lexdec)

The result is shown in Figure 2.9. As you can see, bwplot() requires two arguments, a
FORMULA and a data frame, lexdec in this example. The formula

RT ∼ Correct | NativeLanguage

considers RTas depending on the correctness of the response (Correct ), grouped by the
levels of NativeLanguage . In the formula, the vertical bar (|) is the GROUPING OPER-
ATOR. Another paraphrase within the context of bwplot() is create box and whisker
plots for the distributions of reaction times for the levels of Correct conditioned on the
levels of NativeLanguage . The result is a plot with two panels, one for each level of the
grouping factor. Within each of these panels, we have two box and whiskers plots, one
for each level of Correct .
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Figure 2.10: Weight rating as a function of log word frequency grouped by subject.

This trellis graph shows some remarkable differences between the native and non-
native speakers of English. First of all, we see that the boxes (and medians) for the non-
native speakers are shifted upwards compared to those for the native speakers, indicating
that they required more time for their decisions, as expected. Interestingly, we also see
that the incorrect responses were associated with shorter decision latencies for the native
speakers, but with longer latencies for the non-native speakers. Finally, note that there
are many outliers only for the correct responses, for both groups of subjects. Later, we
shall see how we can test whether what we see here is indeed reason for surprise. What
is clear already at this point is that there is a pattern in the data that is worth examining
in greater detail.
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There are many other kinds of trellis graphs, examples of which can be found in the
on-line help for xyplot() . Here, we restrict ourselves to two important and easy ways
to use trellis functions.

It is often useful to explore data with scatterplots for each of the levels of a grouping
factor. To make this more concrete, we consider the subjective estimates of weight elicited
for the 81 words in the rating data set that we examined previously. But now we inspect
the individual ratings provided by the subjects to the different words, as available in the
data set weightRatings .

> weightRatings[1:5, ]
Subject Rating Trial Sex Word Frequency Class

1 A1 5 1 F horse 7.771910 animal
2 A1 1 2 F gherkin 2.079442 plant
3 A1 3 3 F hedgehog 3.637586 animal
4 A1 1 4 F bee 5.700444 animal
5 A1 1 5 F peanut 4.595120 plant

We inspect how weight ratings were influenced by frequency for each of the subjects sep-
arately by means of Figure 2.10. Each panel plots the data for one subject, the grouping
factor in this trellis graph. Each panel is labeled with the relevant level of the grouping
factor in the accompanying strip, here, an acronym for the subject. In each panel, the de-
pendent variable (Rating ) appears on the vertical axis, and the predictor (Frequency )
on the horizontal axis.

Figure 2.10 suggests that weight ratings increase with increasing (log) frequency, albeit
only clearly so for the highest frequencies. There also seems to be some variation in how
strong the effect is. To judge from the scatterplot smoothers, subject Gdoes not seem to
have much of a frequency effect, in contrast to, for instance, subject R5, for whom the
effect seems quite large. This trellis display invites further research into whether these
visual patterns are statistically robust.

The code that produced Figure 2.10 is quite simple:

> xylowess.fnc(Rating ˜ Frequency | Subject, data = weightR atings,
+ xlab = "log Frequency", ylab = "Weight Rating")

The same plot, but now without the lines for the scatterplot smoothers, is obtained with

> xyplot(Rating ˜ Frequency | Subject, data = weightRatings ,
+ xlab = "log Frequency", ylab = "Weight Rating")

While xyplot() is part of the lattice package, xylowess.fnc() is not. It is a func-
tion that I wrote around xyplot() in order to make it easy to produce matrices with
scatterplots and smoothers.

A second important trellis graph is the CONDITIONING PLOT. An example of a con-
ditioning plot is Figure 2.11. It is based on a data set of 2284 English monomorphemic
and monosyllabic words studied by Balota et al. [2004] and Baayen et al. [2006]. The plot
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Figure 2.11: A conditioning plot: morphological family size as a function of number
of complex synsets, for six overlapping ranges of written frequency (English monomor-
phemic and monosyllabic words).

graphs morphological family size as a function of the number of complex synsets, condi-
tioned on equal counts of written frequency. Recall that a word’s morphological family
size is the count of complex words in which it occurs as a constituent. The complex words
on which this count is based are words written without internal spaces. Hence, com-
pounds such as apple pie are not included. By contrast, the count of complex synsets
concerns the number of synonym sets in WordNet in which the word is listed as part of
a compound with internal spaces. Therefore, the count of complex synsets is a comple-
mentary family size measure. Consequently, we may expect that in general words that
have a high family size will also have a high value for the number of complex synsets
measure. We also know that higher frequency words tend to have more family members.
The importance of a conditioning plot is that it allows us to inspect the joint correlational
structure among three predictors in a single graphical display.

The conditioning plot shown in Figure 2.11 consists of six scatterplots, each with its
own smoother, which graph log Family Size against log Number of Complex Synsets.
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The six panels are arranged by increasing intervals of Written Frequency. The lowest fre-
quency band is found in the lower left plot, and the highest frequency band in the upper
right plot. The shaded areas in the strips above the panels provide a visual indication
of the frequency bands that characterize the data points in the scatterplots. As indicated
by these shaded areas, written frequency increases as we move from the lower left to the
lower right, and then from the upper left to the upper right. The six frequency bands are
chosen such that there is an equal count of observations in each frequency band. What
Figure 2.11 shows is that the correlation between the Family Size measure and the Num-
ber of Complex Synsets is present predominantly for the higher-frequency words. This
may be due to a lexicographic bias favoring inclusion of compounds with internal spaces
in dictionaries (and hence in WordNet) only if they are sufficiently frequent. Technically,
the phenomenon illustrated here is referred to as an INTERACTION, in this example an
interaction of Written Frequency by Number of Complex Synsets.

To reproduce Figure 2.11, we need the english data set (4568 rows), which provides
mean reaction times to 2284 words for two subject populations. In order to obtain the
characteristics of the items without duplicate entries, we restrict the data to the subset
pertaining to the young subject population.

> english = english[english$AgeSubject == "young", ]
> nrow(english)
[1] 2284

This data frame provides a large number of quantitative lexical variables, among which
WrittenFrequency , FamilySize , and NumberComplexSynsets . A conditioning
plot is useful here. Crucially, we do not condition on WrittenFrequency as such —
this would result in one panel for each distinct frequency. Instead, we use the function
equal.count() to obtain what is referred to as a SHINGLE: six overlapping frequency
bands with equal numbers of observations in each band.

> xylowess.fnc(FamilySize ˜ NumberComplexSynsets |
+ equal.count(WrittenFrequency), data = english)

2.5 Exercises

1. The data set warlpiri (data courtesy Carmel O’Shannessy) provides information
about the use of the ergative case in Lajamanu Warlpiri. Data were elicited for adults
and children of various ages. The question of interest is to what extent the use of the
ergative case marker is predictable from the animacy of the subject, word order, and
the age of the speaker (adult versus child). Explore this data set with respect to this
issue by means of a mosaic plot. (First construct a contingency table with xtabs() ,
then supply this contingency table as argument to mosaicplot() .)

2. In Chapter 1 we created a data frame with mean reaction times and mean base fre-
quencies for neologisms in the Dutch suffix -heid. Reconstruct the data frame heid2 .
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Both reaction times and frequencies are logarithmically transformed. Use exp() to
undo these transformations and make a scatterplot of the averaged reaction times
(MeanRT) against the frequency of the base (BaseFrequency ). Compare this scat-
terplot with a scatterplot using the log-transformed values.

3. The data set moby is a character vector with the text of Melville’s Moby Dick. In this
exercise, we consider whether Zipf’s law holds for Moby Dick. According to Zipf’s
law [Zipf, 1949], the frequency of a word is inversely proportional to its rank in a
numerically sorted list. The word with the highest frequency has rank 1, the word
with the one but highest frequency has rank 2, etc. If Zipf’s law holds, a plot of log
frequency against log rank should reveal a straight line. We make a table of word
frequencies with table() — we cannot use xtabs() , because words is a vector
and xtabs() expects a data frame — and sort the frequencies in reverse numerical
order.

> moby.table = table(moby)
> moby.table = sort(moby.table, decreasing = TRUE)
> moby.table[1:5]
moby

the of and a to
13655 6488 5985 4534 4495

We now have the word frequencies. We use the colon operator and length() ,
which returns the length of a vector, to construct the corresponding ranks.

> ranks = 1 : length(moby.table)
> ranks[1:5]
[1] 1 2 3 4 5

Make a scatterplot of log frequency against log rank.

4. The column labeled Trial in the data set lexdec specifies, for each subject, the
trial number of the responses. For a given subject, the first trial in the experiment has
trial number 1, the second has trial number 2, etc. Use xylowess.fnc() to explore
the possibility that the subjects proceeded through the experiment in different ways,
some revealing effects of learning, and others effects of fatigue.

5. The data set english lists lexical decision and word naming latencies for two age
groups. Inspect the distribution of the naming latencies (RTnaming ). First plot a
histogram for the naming latencies with truehist() . Then plot the density. The
voicekey registering the naming responses is sensitive to the different acoustic prop-
erties of a word’s initial phoneme. The column Voice specifies whether a word’s
initial phoneme was voiced or voiceless. Use bwplot() to make a trellis boxplot
for the distribution of the naming latencies across voiced and voiceless phonemes
with the age group of the subjects (AgeSubject ) as grouping factor.
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Chapter 3

Probability distributions

Many statistical tests exploit the properties of the probability distributions of random
variables. This chapter provides an introduction to some of the most important probabil-
ity distributions, and lays the groundwork for the statistical tests introduced in Chapter 4.

3.1 Distributions

When we count how often a word is used, or when we measure the duration of a vowel,
we carry out a statistical experiment. The outcome of such a statistical experiment varies
each time it is carried out. For instance, the frequency of a word (the outcome of a count-
ing experiment) will vary from text to text and from corpus to corpus, and similarly the
length of a given vowel (the outcome of a measuring experiment) will vary from syllable
to syllable and from word to word. For a given random variable, some outcomes may be
more likely than others. The probability distribution of a random variable specifies the
likelihood of the different outcomes. Random variables fall into two important categories.
Random variables such as frequency counts are DISCRETE (with values that are integers),
random variables such as durational measurements are CONTINUOUS (with values that
are reals). We begin with introducing two discrete distributions.

3.2 Discrete distributions

The CELEX lexical database [Baayen et al., 1995] lists the frequencies of a large number of
English words in a corpus of 18.6 million words. Table 3.1 provides these frequencies for
four words, the high-frequency definite article the, the medium-frequency word president,
and two low-frequency words, hare and harpsichord. It also lists the RELATIVE FREQUEN-
CIES of these words, which are obtained by dividing a word’s frequency by the size of the
corpus. These relative frequencies are estimates of the PROBABILITIES of these words in
English.
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Table 3.1: Frequencies and relative frequencies of four words in the version of the Cobuild
corpus underlying the CELEX frequency counts (corpus size: 18580121 tokens).

Frequency Relative Frequency
the 1093547 0.05885575
president 2469 0.00013288
hare 153 0.00000823
harpsichord 16 0.00000086

In the simplest model for text generation, the selection of a word for inclusion in a text
is similar to sampling marbles from a vase. The likelihood of sampling a red marble is
given by the proportion of red marbles in that vase. Crucially, we sample with replace-
ment, and we assume that the probabilities of words do not change over time. We also
assume independence: The outcome of one trial does not affect the outcome of the next
trial. It is obvious that these assumptions of what is known as the urn model involve
substantial simplifications. The probability of observing the, a high-probability word,
adjacent to another instance of the in real language is very small. In spoken language
such sequences may occasionally occur, for instance, due to hesitations on the part of the
speaker, but in carefully edited written texts a sequence of two instances of the is highly
improbable. On the other hand, it is also clear that the is indeed very much more frequent
than hare or harpsichord, and for questions at high aggregation levels, even simplifying
assumptions can provide us with surprising leverage.

By way of example, consider the question of how the frequencies of these words com-
pare to their frequencies observed in other, smaller, corpora of English such as the Brown
corpus [Kučera and Francis, 1967] (1 million words). Table 3.2 lists the probabilities (rel-
ative frequencies) for the four words in Table 3.1, as well as the frequencies observed in
the Brown corpus and the frequencies one would expect given CELEX. These expected
frequencies are easy to calculate. For instance, if 0.05885575 is the proportion of word to-
kens in CELEX representing the word type the, then a similar proportion of tokens should
represent this type in a 1 million corpus, i.e., 1000000 ∗ 0.05885575 = 58856 tokens. As
shown in Table 3.2, the expected counts are smaller for the and president, larger for hare,
and right on target for harpsichord.

Table 3.2: Probabilities (estimated from CELEX), expected frequencies and observed fre-
quencies in the Brown corpus.

p expected frequency observed frequency
the 0.05885575 58856 69971
president 0.00013288 133 382
hare 0.00000823 8 1
harpsichord 0.00000086 1 1

Should we be surprised by the observed differences? In order to answer this question,
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we need to make some assumptions about the properties of the distribution of a word’s
frequency. There are 382 occurrences of the noun president in the Brown corpus, but the
Brown corpus is only one sample from American English as spoken in the early sixties.
If additional corpora were compiled from the same kind of textual materials using the
same sampling criteria, the number of occurrences of the noun president would still vary
from corpus to corpus. In other words, the frequency of a word in a corpus is a random
variable. The statistical experiment associated with this random variable involves creat-
ing a corpus of one million words, followed by counting how often president is used in
this corpus. For repeated experiments sampling one million words, we expect this ran-
dom variable to assume values similar to the 382 tokens observed in the Brown corpus.
But what we really want to know is the magnitude of the fluctuations of the frequency of
president across corpora.

At this point, we need some further terminology. Let’s define two probabilities, the
probability of observing a specific word and the probability of observing any other word.
We call the former probability p the PROBABILITY OF SUCCESS, and the latter probability
q the PROBABILITY OF FAILURE. The probability of failure is 1− probability of success. In
the case of hare, these probabilities are p = 0.0000082 and q = 0.9999918. Furthermore,
let the NUMBER OF TRIALS (n) denote the size of the corpus. Each token in the corpus is
regarded as a trial which can result either in a success (hare is observed) or in a failure
(some other word is observed). Given the previously mentioned simplifying assumption
that words are used independently and randomly in text, it turns out that we can model
the frequency of a word as a BINOMIALLY DISTRIBUTED RANDOM VARIABLE with PARAM-
ETERS p and n. (The textbook example of a binomially distributed random variable is the
count of heads observed when tossing a coin n times that has probability p of turning up
heads.) The properties of the binomial distribution are well known, and make it possible
to obtain better insight in how much variability we may expect for our word frequencies
across corpora, given our simplifying assumptions.

There are two kinds of properties that we need to distinguish. On the one hand, there
are the properties of the POPULATION, on the other hand, there are the properties of a
given SAMPLE. When we consider the properties of the population, we consider what we
expect to happen on average across an infinite series of experiments. When we consider
the properties of a sample, we consider what has actually occurred in a finite, usually
small series of experiments. We need tools for both kinds of properties. For instance,
we want to know whether an observed frequency of 382 is surprising for president given
that p = 0.000133 according to the CELEX counts and n = 1, 000, 000. This is a question
about the population. How often will we observe this frequency across an infinite series
of samples of one million words? Is this close to what one would expect on average? In
this book, we will mostly use properties of the population, but sometimes it is also useful
to know what a sample of a given size might look like. Rprovides tools for both kinds of
questions.

Consider the upper left panel of Figure 3.1. The horizontal axis graphs frequency,
the vertical axis the probability of that frequency, given that the word the is binomially
distributed with parameters n = 1, 000, 000 and p = 0.059. The tool that we use here
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Figure 3.1: The frequencies (horizontal axis) and the probabilities of these frequencies
(vertical axis) for three words under the assumption that word frequencies are binomially
distributed. Upper panels show the population distributions, lower panels the sample
distributions for 500 random corpora.
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is the dbinom() function, which is often referred to as the FREQUENCY FUNCTION and
also as the PROBABILITY DENSITY FUNCTION. It requires three input values: a frequency
(or a vector of frequencies), and values for the two parameters that define a binomial
distribution, n, and p. dbinom() returns the probability of that frequency (or a vector of
such probabilities in case a vector of frequencies was supplied). For instance, the expected
probability of observing the exactly 59000 times averaged over an infinite series of corpora
of one million words given the probability of success p = 0.05885575 is

> dbinom(59000, 1000000, 0.05885575)
[1] 0.001403392

The upper panels of Figure 3.1 show, for each of the three words from Table 3.2, the
probabilities of the frequencies with which these words are expected to occur. For each
word and each frequency, we used dbinom() to calculate these probabilities given a
sample size n = 1, 000, 000 and the word’s population probability p as estimated by its
relative frequency in CELEX.

The panel for the shows frequencies that are more or less centered around the mean
frequency, 58856, the expected count listed in Table 3.2. We can see that the probabil-
ity of observing values greater than 60000 are infinitesimally small, hence we have solid
grounds to be surprised by the frequency of 69971 observed in the Brown corpus given
the CELEX counts. The next panel of Figure 3.1 shows the distribution of frequencies for
hare. This is a low-frequency word, and we can now see the individual high density lines
for the individual frequencies. The pattern is one that is less symmetric. The highest prob-
ability is 0.1391, which occurs for a frequency of 8, in conformity with the expected value
we saw earlier in Table 3.2. The value actually observed in the Brown corpus, 1, is clearly
atypically low. The upper right panel, finally, shows that for the very low-frequency
word harpsichord, a frequency of zero is actually slightly more likely than the frequency
of 1 listed in Table 3.2 (which rounded the expected frequency 0.86 to the nearest actually
possible — discrete — number of occurrences).

The panels in the second row of Figure 3.1 correspond to those in the first row. The
difference concerns the way in which the probabilities were obtained. The probabilities
for the top row are those one would obtain for the frequencies observed across an infinite
series of corpora (experiments) of one million words. They are population probabilities.
The probabilities in the second row are those one might observe for a particular run of just
500 corpora (experiments) of one million words. They illustrate the kind of irregularities
in the shape of a distribution that are typical for the actual samples with which we have to
deal in practice. The irregularities that characterize sample distributions are most clearly
visible in the lower left panel, but also to some extent in the lower central panel. Note that
here the mode (the frequency with the highest sample probability) has an elevated value
with respect to the immediately surrounding frequencies, compared to the upper central
panel. Below, we discuss the tool for simulating random samples of a binomial random
variable that we used to make these plots.

Figure 3.1 illustrates how the parameter p, the probability of success, affects the shape
of the distribution. The other parameter, the number of trials (corpus size) n, likewise co-
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Figure 3.2: The frequencies (horizontal axis) and the probabilities of these frequen-
cies (vertical axis) for the assuming that its frequency is binomially distributed with
p = 0.05885575 and n = 1000 (left panel) or n = 50 (right panel).

determines the shape of the distribution. Figure 3.2 illustrates this for the population, i.e.,
across an infinite series of corpora of n = 1000 (left) and n = 50 (right) word tokens. The
left panel is still more or less symmetric, but by the time that the corpus size is reduced to
only 50 tokens, the symmetry is gone.

It is important to realize that the values that a binomially (n, p)-distributed random
variable can assume are bounded by 0 and n. In the present example, this is intuitively
obvious: a word need not occur in a corpus of size n, and so may have zero frequency.
But a word can never occur more often than the corpus size. The upper bound, therefore,
is n, for a boring but theoretically possible corpus consisting of just one word repeated n
times. It is also useful to keep in mind that the EXPECTED (or mean) frequency is n ∗ p, as
p specifies the proportion of the n trials that are successful.

Let’s now have a closer look at the tools that Rprovides for working with the binomial
distribution. There are four such tools, the functions dbinom() , qbinom() , pbinom() ,
and rbinom() . Rprovides similar functions for a wide range of other random variables.
Once you know how to use them for the binomial distribution, you know how to use the
corresponding functions for any other distribution implemented in R.

First consider the observed frequency of 1 for hare where one would expect 8 given
the counts in CELEX. What is the probability of observing such a low count under chance
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conditions? To answer this question, we use the function dbinom() that we already
introduced above. Given an observed value (its first argument), and given the parameters
n and p (its second and third arguments), it returns the requested probability:

> dbinom(1, size = 1000000, prob = 0.0000082)
[1] 0.002252102

In this example, I have spelled out the names of the second and third parameters, the size
n and the probability p, in order to make it easier to interpret the function call, but the
shorter version works just as well as long as the arguments are provided in exactly this
order:

> dbinom(1, 1000000, 0.0000082)
[1] 0.002252102

Of course, if we think 1 is a low frequency, then 0 must also be a low frequency. So maybe
we should ask what the probability is of observing a frequency of 1 or lower. Since the
event of observing a count of 1 is independent of the event of observing a count of 0, we
may add these two probabilities,

> dbinom(0, size = 1000000, prob = 0.0000082) +
+ dbinom(1, size = 1000000, prob = 0.0000082)
[1] 0.002526746

or, equivalently,

> sum(dbinom(0:1, size = 1000000, prob = 0.0000082))
[1] 0.002526746

When dbinom() is supplied with a vector of frequencies, it returns a vector of probabili-
ties, which we add using sum() . Another way to proceed is to make use of the pbinom()
function, which immediately produces the sum of the probabilities for the supplied fre-
quency as well as the probabilities of all smaller frequencies:

> pbinom(1, size = 1000000, prob = 0.0000082)
[1] 0.002526746

The low probability that we obtain here suggests that there is indeed reason for surprise
about the low frequency of hare in the Brown corpus, at least, from the perspective of
CELEX.

Recall that the Brown corpus mentions the word president 382 times, whereas we
would expect only 133 occurrences given CELEX. In this case, we can ask what the prob-
ability is of observing a frequency of 382 or higher. This probability is the same as one
minus the probability of observing a frequency of 381 or less.

> 1 - pbinom(381, size = 1000000, prob = 0.00013288)
[1] 0
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The resulting probability is indistinguishable from zero given machine precision, and
provides ample reason for surprise.

We used the function dbinom() to make the upper panels of Figure 3.1 and the panels
of Figure 3.2. Here is the code producing the left panel of Figure 3.2.

> n = 1000
> p = 0.05885575
> frequencies = seq(25, 95, by = 1) # 25, 26, 27, ..., 94, 95
> probabilities = dbinom(frequencies, n, p)
> plot(frequencies, probabilities, type = "h",
+ xlab = "frequency", ylab = "probability of frequency")

The first two lines define the parameters of the binomial distribution. The third line de-
fines a range of frequencies for which the corresponding probabilities have to be pro-
vided. The fourth line calculates these probabilities. Since frequencies is a vector,
dbinom() provides a probability for each frequency in this vector. The last two lines plot
the probabilities against the frequencies, provide sensible labels, and specify, by means
of type = "h" , that a vertical line (a ’high-density line’) should be drawn downwards
from each point on the density curve.

Thus far, we have considered functions for using the population properties of the bi-
nomial distribution. But it is sometimes useful to know what a sample from a given
distribution would look like. The lower panels of Figure 3.1, for instance, illustrated
the variability that is typically observed in samples. The tool for investigating random
samples from a binomial distribution is the function rbinom() . This function produces
binomially distributed RANDOM NUMBERS. A random number is a number that simu-
lates the outcome of a statistical experiment. A binomial random number simulates the
number of successes one might observe given a success probability p and n trials. Tech-
nically, random numbers are never truly random, but for practical purposes, they are a
good approximation to randomness.

The following lines of code illustrate how to make the lower panel for hare in Fig-
ure 3.1. We first define the number of random numbers, the corpus size (the number of
trials in one binomial experiment), and the probability of success.

> s = 500 # the number of random numbers
> n = 1000000 # number of trials in one experiment
> p = 0.0000082 # probability of success

Next, we use rbinom() to produce the random numbers representing the simulated
frequencies of hare in the samples. This function takes three arguments: the number of
random numbers required, and the two parameters of the binomial distribution, n and p.
We feed the output of rbinom() into xtabs() to obtain a table listing for each simulated
frequency how often that frequency occurs across the 500 simulation runs. We divide the
resulting vector of counts by the number of simulation runs s to obtain the proportions
(relative frequencies) of the simulated frequencies.

> x = xtabs( ˜ rbinom(s, n, p) ) / s
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> x
rbinom(s, n, p)

2 3 4 5 6 7 8 9 10
0.012 0.028 0.062 0.086 0.126 0.118 0.138 0.132 0.084

11 12 13 14 16 17 18 19
0.090 0.058 0.044 0.008 0.006 0.004 0.002 0.002

Note that in this simulation there are no instances where hare is observed not at all or
only once. If you rerun this simulation, more extreme outcomes may be observed oc-
casionally. This is because rbinom() simulates the randomness that is inherent in the
sampling process. For plotting we convert the cell names in the table to numbers with
as.numeric() :

> plot(as.numeric(names(x)), x, type = "h", xlim = c(0, 30),
+ xlab = "frequency", ylab = "sample probability of frequenc y")

Recall that pbinom(x, n, p) produces the summed probability of values smaller
than or equal to x, which is why it is referred to as the CUMULATIVE DISTRIBUTION FUNC-
TION. It has a mirror image (technically, its INVERSE function), qbinom(y, n, p) , the
QUANTILE FUNCTION, which takes this summed probability as input, and produces the
corresponding count x.

> pbinom(4, size = 10, prob = 0.5)
[1] 0.3769531 # from count to cumulative probability
> qbinom(0.3769531, size = 10, prob = 0.5)
[1] 4 # from cumulative probability to count

Quantile functions are useful for checking whether a random variable is indeed bino-
mially distributed. Consider, for example, the frequencies of the Dutch determiner het in
the consecutive stretches of 1000 words of a Dutch novel that gave its name to a fair trade
brand in Europe, ’Max Havelaar’ (by Eduard Douwes Dekker, 1820 – 1887). The data set
havelaar contains these counts for the 99 consecutive complete stretches of 1000 words
in this novel.

> havelaar$Frequency
[1] 13 19 19 14 20 18 16 16 17 32 25 10 9 12 15

[16] 22 26 16 23 10 12 11 16 13 8 4 16 13 13 11
[31] 11 18 12 16 10 18 10 11 9 18 15 36 22 10 7
[46] 20 5 13 12 14 9 6 8 7 9 11 14 16 10 9
[61] 12 11 6 20 11 12 12 1 9 11 11 7 13 13 10
[76] 9 13 7 8 16 11 15 8 16 26 23 13 11 15 12
[91] 7 9 18 8 21 5 16 11 13

Are these frequencies binomially distributed? As a first step, we estimate the probability
of success from the sample, while noting that the number of trials n is 1000:

> n = 1000
> p = mean(havelaar$Frequency / n)
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In order to see whether the observed frequencies indeed follow a binomial distribution,
we plot the quantiles of an (n, p)-binomially distributed random variable against the
sorted observed frequencies. Recall that the quantile for a given proportion p is the small-
est observed value such that all observed values less than or equal to that value account
for the proportion p of the data. If we plot the observed quantiles against the quantiles of
a truly (n, p)-binomially distributed random variable, we should obtain a straight line if
the observed frequencies are indeed binomially distributed. We therefore define a vector
of proportions

> qnts = seq(0.005, 0.995, by=0.01)

and use the quantile() function to obtain the corresponding expected and observed
frequencies for these percentage points, which we then graph.

> plot(qbinom(qnts, n, p), quantile(havelaar$Frequency, qnts),
+ xlab = paste("quantiles of (", n, ",", round(p, 4),
+ ")-binomial", sep=""), ylab = "frequencies")

As can be seen in Figure 3.3, the points in the resulting QUANTILE-QUANTILE PLOT do
not follow a straight line. Especially the higher frequencies are too high for a binomially
(1000, 0.0134)-distributed random variable.
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Figure 3.3: Quantile-quantile plot for inspecting whether the frequency of the definite
article the in the Dutch novel Max Havelaar is binomially distributed.
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To summarize, here is a short characterization of the four functions for working with
the binomial distribution with n trials and success probability p:

dbinom(x, n, p) THE PROBABILITY DENSITY FUNCTION

probability of the value x

qbinom(q, n, p) THE QUANTILE FUNCTION

the largest value for the first q% of ranked data points

pbinom(x, n, p) THE CUMULATIVE DISTRIBUTION FUNCTION

the proportion of values with value less than or equal to x

rbinom(k, n, p) THE RANDOM NUMBER GENERATOR

k binomially distributed random numbers

Thus far, we used the binomial distribution to gain some insight in the probabili-
ties of the different frequencies with which the might occur in a corpus of one million
words. We equated corpus size with the parameter n, and defined a success probabil-
ity p = 0.05885575 of observing the. With a slight change in perspective, we can look
at the frequency of the as specifying a rate of occurrence: the occurs (on average) 58856
times in a corpus of one million words. In other words, during a sampling time of one
million tokens, we count (on average) 58856 tokens of the. This rate of occurrence is the
(single) parameter (named λ) of a second important discrete probability distribution, the
POISSON DISTRIBUTION, named after the great French mathematician Siméon Denis Pois-
son (1781–1840). If (and only if) n is large and p small, the binomial distribution is very
similar to a Poisson distribution with λ taking as its value the product of n and p. Since
the frequencies with which words occur in a corpus tend to be very small compared to
the corpus size, and since the Poisson distribution has mathematical properties that are
more convenient than those of the binomial distribution, it is useful for modeling word
frequency distributions [Baayen, 2001].

The four functions for the Poisson distribution provided by R are dpois for the fre-
quency distribution, rpois for random numbers, qpois() for the quantile function, and
ppois() for the cumulative distribution function. Figure 3.4 shows the frequency func-
tion for four values of λ. Note that the frequency function becomes more and more sym-
metrical as we increase λ. For large λ, the (discrete) Poisson distribution becomes very
similar to the continuous normal distribution that will be discussed in the next section.

Above, we observed that the frequency of the definite article the is not that well de-
scribed by a binomial distribution. The same holds for the Poisson distribution. The
average count of tokens of het in 1000 words is 0.0134. In terms of a binomial distribution,
we therefore have n = 1000 trials with a probability of success p = 0.0134. In terms of
a Poisson distribution, het appears at a rate λ = 13.4 per 1000 tokens. To get a sense of
how similar the binomial and Poisson models are, and how they differ from the observed
data, we inspect their frequency functions.

We begin with making a table listing for each frequency the number of text fragments
in which het occurs with that frequency.

57 D
R

A
FT0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

x

pr
ob

ab
ili

ty
 (

x)

poisson(0.5)

0 2 4 6 8

0.
00

0.
10

0.
20

x

pr
ob

ab
ili

ty
 (

x)

poisson(3)

20 30 40 50 60 70 80

0.
00

0.
02

0.
04

x

pr
ob

ab
ili

ty
 (

x)

poisson(50)

60 80 100 120 140

0.
00

0.
02

0.
04

x

pr
ob

ab
ili

ty
 (

x)

poisson(100)

Figure 3.4: Poisson frequency functions for λ = 0.5, 3, 50, 100.
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Figure 3.5: Observed relative frequencies of the definite article het (’the’) in sequences of
1000 word tokens in the novel Max Havelaar and the corresponding binomial and Poisson
distributions.
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> havelaar.tab = xtabs( ˜ havelaar$Frequency)
> havelaar.tab

1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1 2 2 5 5 8 7 12 8 10 3 4 10 1 5 2 3 1 2 2

25 26 32 36
1 2 1 1

We divide these counts by the total number of text fragments in order to obtain the sample
relative frequencies of the counts for het.

> havelaar.probs = xtabs( ˜ havelaar$Frequency)/nrow(hav elaar)
> round(havelaar.probs, 3)

1 4 5 6 7 8 9 10 11 12
0.010 0.010 0.020 0.020 0.051 0.051 0.081 0.071 0.121 0.081

13 14 15 16 17 18 19 20 21 22
0.101 0.030 0.040 0.101 0.010 0.051 0.020 0.030 0.010 0.020

23 25 26 32 36
0.020 0.010 0.020 0.010 0.010

These proportions properly sum to 1.

> sum(havelaar.probs)
[1] 1

The upper left panel of Figure 3.5 displays the distribution of these proportions.

> plot(as.numeric(names(havelaar.probs)), havelaar.pr obs,
+ xlim=c(0, 40), type="h", xlab="counts", ylab="relative frequency")
> mtext("observed", 3, 1)

The upper right panel shows the corresponding binomial distribution. We first define the
size n of the text fragments for which the occurrences of het were counted, and we also
estimate the overall probability p as the average proportion of tokens of het for batches of
1000 tokens.

> n = 1000
> p = mean(havelaar$Frequency / n)
> p
[1] 0.0134

Counts are in the range 1 − 36. We choose a slightly broader range, 0 − 40, for plotting.

> counts = 0:40
> plot(counts, dbinom(counts, n, p),
+ type = "h", xlab = "counts", ylab = "probability")
+ mtext("binomial (1000, 0.013)", 3, 1)

The lower panel shows the corresponding Poisson distribution. We define λ
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> lambda = n * p

and now use dpois() instead of dbinom() .

> plot(counts, dpois(counts, lambda),
+ type = "h", xlab="counts", ylab="probability")
> mtext("Poisson (13.4)", 3, 1)

Figure 3.5 illustrates, first of all, that the observed counts are much more erratic than
the density functions for the binomial and Poisson distributions. This is to be expected,
because the observed counts constitute a sample of how het was used in this particular
sample of Dekker’s writings. Second, it can be seen that the densities of the binomial and
Poisson distributions are very similar, as expected for large n and small p. Third, there are
obvious gaps in the distribution of observed counts, and their distribution seems to be
somewhat less symmetrical, with more higher counts than one would expect on the basis
of the binomial and Poisson distributions. This raises a question to which we will return
below, namely, how to test more formally (instead of by visual inspection) whether the
differences between what we observe in our data, and what we expect given binomial or
Poisson models, should be attributed to chance, or whether there is reason to reject these
models as inappropriate for this word.

As a final example, suppose a word occurs with a frequency of 100 tokens in a corpus
of one million words. What is the probability that it will occur with at most 80 tokens in
a second corpus of one million words? On the assumption that words are used indepen-
dently, we obtain the desired probability with

> sum(dpois(0:80, 100)) # sum of individual probabilities
[1] 0.02264918

or with

> ppois(80, 100) # joint probability of first 80
[1] 0.02264918

3.3 Continuous distributions

We now turn to consider some important distributions of continuous random variables.
Examples of continuous random variables in language studies are acoustic measurements
of segment durations, response latencies in chronometric experiments, evoked potentials
measured at the scalp, grammaticality judgements measured on a gliding scale, and gaze
durations in eye-tracking experiments. Just as there are many different discrete distribu-
tions, there are many continuous distributions. In this section, we focus on those contin-
uous distributions that play a crucial role in many of the statistical tests that we will use
in later chapters.

The basic concepts for continuous random variables are the same as for discrete ran-
dom variables. As in the preceding section, we often need to know whether the value of
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a particular test statistic (which itself is a random variable) is extreme and surprising. If
the distribution of the test statistic is known, such questions can be answered.

The key difference that sets continuous random variables apart from discrete random
variables centers around a problem that arises when dealing with real numbers. Real
numbers have the mathematical property that there are infinitely many of them in any
interval. This has a far reaching consequence for probabilities. Consider a random vari-
able that assumes any real value in the interval [0, 1] with equal probability, a UNIFORM

RANDOM VARIABLE. Since there is an infinite number of values in this interval, the prob-
ability of any specific value between 0 and 1 is infinitely small, i.e., zero. For a binomial
(n, p) random variable, there are at most n + 1 values to be considered (0, 1, 2, . . . , n) so
each value can be associated with its own probability. For a continuous random variable,
this is not possible.

The solution to this technical problem is to consider the probability that a continuous
variable assumes a value in a given interval of values. For instance, for the uniform
random variable mentioned above, the probability of a value in the interval [0, 0.5] is
equal to the probability of a value in the interval [0.5, 1], and both probabilities are equal
to 0.5. Keep in mind that the probability of a value exactly equal to 0.5 is zero.

This property of continuous random variables has consequences for how we plot their
density functions. For the discrete distributions in the preceding section, we were able to
plot a vertical line representing the probability for each individual value of the random
variable. This is not possible for continuous random variables, as the individual proba-
bilities are all zero. Instead, we plot a continuous curve, as shown in Figure 3.6 for the
most important continuous random variable, the NORMAL random variable.

3.3.1 The normal distribution

The upper left panel of Figure 3.6 shows the NORMAL DISTRIBUTION in its most simple
form, the case in which its two parameters, the MEAN µ and the STANDARD DEVIATION

σ, are 0 and 1 respectively. This specific form of the normal distribution is known as the
STANDARD NORMAL DISTRIBUTION. The mean is represented by a vertical dashed line,
and intersects the curve of the probability density function where it reaches its maximum.
The dotted horizontal line segment represents the standard deviation, the parameter that
controls the width of the curve. We can shift the curve to the left or right by changing the
mean, as shown in the right panel, in which the mean is increased from zero to four. We
can make the curve narrower or broader by changing the standard deviation, as shown in
the bottom panels, where the standard deviation is 0.5 instead of 1.0. For all four panels,
the area enclosed by the horizontal axis and the density curve is equal to 1. It represents
the probability of observing any value. The density curves are symmetrical around the
mean. Thus, the area to the left (or right) of the vertical dashed line that is enclosed by the
curve the horizontal axis represents a probability of 0.5. In other words, the probability
that a random variable assumes a value less than the mean is 0.5. Similarly, the probability
that its value will be greater than the mean is 0.5.
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Figure 3.6: Probability density functions for four normally distributed random variables.

Plotting the density shown in the upper left panel of Figure 3.6 requires that we select
a range of x-values to plot the density for. We select

> x = seq(-4, 4, 0.1)

as values outside the interval (−4, 4) have such an extremely low probability that we can
ignore them for our plot. The y-values are obtained with the density function for the
normal distribution, dnorm() .

> y = dnorm(x)

We called dnorm() without further arguments. If you do not specify mean and standard
deviation explicitly, dnorm() , and also (pnorm() , qnorm() , and rnorm() ) assume that
the mean is zero and the standard deviation is 1. Plotting the density is now straightfor-
ward.
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> plot(x, y, xlab = "x", ylab = "density", ylim = c(0, 0.8),
+ type = "l")) # line type: the quoted character is lower case L
> mtext("normal(0, 1)", 3, 1)

We add two lines to the plot, a vertical line across all values represented on the vertical
axis, and a horizontal line segment. The vertical line is easiest to produce with abline() ,
a function that takes an intercept as first argument and a slope as second argument, and
adds the requested line to the plot. For horizontal or vertical lines, the argument v is
set to specify where a vertical line intersects with the horizontal axis. Alternatively, the
argument h is set to the point where a horizontal line is to intersect the vertical axis. Here,
we set our vertical line to intersect at X = 0. We also request a dashed line with lty (line
type).

> abline(v = 0, lty = 2) # the vertical dashed line

For line segments, we use lines() . This function connects the points specified by the
vector of x-coordinates (its first argument) and the vector of y-coordinates (its second
argument). As X-coordinates, we have −1 and 0, as Y -coordinates, we have the density
for X = −1 for both X-coordinates.

> lines(c(-1, 0), rep(dnorm(-1), 2), lty = 2)

For the remaining panels of Figure 3.6, the range of X-values and the parameters of
dnorm() have to be adjusted. For instance, for the lower left panel, the density curve
is obtained with

> x = seq(0, 8, 0.1)
> y = dnorm(x, mean = 4, sd = 0.5)

Figure 3.7 shows the cumulative distribution function (upper left) and the quantile
function (upper right) for a standard normal random variable. As for discrete random
variables, these functions are each other’s inverse:

> pnorm(-1.96)
[1] 0.02499790
> qnorm(0.02499790)
[1] -1.96

The lower left panel of Figure 3.7 illustrates how we calculate the probability that a
standard normal random variable has a value between −1 and 0, using pnorm() . Since
pnorm() plots the cumulative probability, the shaded area to the left of the dashed ver-
tical line represents the probability of a value in the interval from minus infinity to zero.
This area is too large, however. The appropriate area is highlighted with dark grey. The
desired probability is obtained by subtracting the lightgrey area from the shaded area.

> pnorm(0) - pnorm(-1)
[1] 0.3413447
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Figure 3.7: Cumulative distribution function (left panels), quantile function (upper right
panel), and probability density function (lower right panel) for the standard normal dis-
tribution.

The final panel of Figure 3.7 (have a look at shadenormal.fnc() and its documen-
tation for how this panel was produced) returns to the probability density function. The
shaded areas in the tails of the distribution each represent a probability of 0.025. In other
words, the shaded areas together highlight the 5% most extreme values in the distribu-
tion. The remaining area under the curve that is not shaded represents the 95% of values
that are not extreme, given the rather arbitrary cutoff point of 5% for being extreme.

A fundamental property of the normal distribution is that it is possible to transform a
normal random variable with mean µ 6= 0 and σ 6= 1 into a standard normal random vari-
able with mean µ = 0 and σ = 1. This transformation is called STANDARDIZATION. Given
a vector x , standardization amounts to subtracting the mean from each of its elements,
followed by division by the standard deviation.

> x = rnorm(10, 3, 0.1)
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> x
[1] 2.985037 3.079029 2.895863 2.929407 2.841630 2.996799
[7] 2.934391 3.125997 3.015932 3.072539

> x - mean(x)
[1] -0.002625041 0.091366366 -0.091799655 -0.058255139
[5] -0.146032681 0.009136216 -0.053271546 0.138334988
[9] 0.028269929 0.084876563

> (x - mean(x)) / sd(x)
[1] -0.02943848 1.02462691 -1.02948603 -0.65330150 -1.63 768158
[6] 0.10245798 -0.59741306 1.55135590 0.31703274 0.95184 711

The function sd() provides one’s best guess of the standard deviation σ for the vector
of sampled observations. By subtracting the mean, we move the density curve along the
horizontal axis so that it is centered around zero. By subsequently dividing by the stan-
dard deviation, we reshape the curve to fit the curve of the standard normal. For example,
a normal random random variable with mean 3 and a small standard deviation of 0.1 is
unlikely to have values below zero — in fact, it is highly unlikely to have values more
than 3 standard deviations (0.3) away from the mean (3). After standardization, however,
the new random numbers are nicely centered around the zero. The function in R for stan-
dardization is scale() . When its output is printed in the console, it also lists the mean
and standard deviation as the object’s attributes scaled:center and scaled:scale .

> scale(x)
[,1]

[1,] -0.02943848
[2,] 1.02462691
[3,] -1.02948603
[4,] -0.65330150
...

[10,] 0.95184711
attr(,"scaled:center")
[1] 2.987662
attr(,"scaled:scale")
[1] 0.08917038
> mean(x) == attr(x, "scaled:center")
[1] TRUE
> sd(x) == attr(x1, "scaled:scale")
[1] TRUE

In the past, the standard normal distribution was especially important as it was only
for the standard normal distribution that tables with p-values for the cumulative distribu-
tion function were available. In order to use these tables, one had to standardize first. In
R, this is no longer necessary. We can use pnorm() with the mean and standard deviation
of our choice,

> pnorm(0, 1, 3) - pnorm(-1, 1, 3)
[1] 0.1169488
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or we can standardize first, and then drop mean and standard deviation from pnorm() .

> pnorm(-1/3) - pnorm(-2/3)
[1] 0.1169488

In both cases, the outcome is exactly the same.
The square of the standard deviation is known as the VARIANCE. The variance is cal-

culated with the function var() .

> v = rnorm(20, 4, 2) # repeating this command
# will result in a different vector
# of random numbers

> sd(v)
[1] 2.113831 # sd of sample
> sqrt(var(v)) # square root of variance
[1] 2.113831

Like the standard deviation, the variance is a measure for how much the observations
vary around the mean. At first glance, one might think a measure averaging divergences
from the mean would do a sensible job, but this average is zero:1

> mean(v - mean(v))
[1] -5.32907e-16 # zero

This problem is avoided by the definition of the variance as a kind of average of the
squared divergences from the mean,

> var(v)
[1] 4.46828
> sum( (v - mean(v))ˆ2)/(length(v) - 1)
[1] 4.46828

where we divide, for technical reasons, not by the number of elements in the vector (re-
turned by length() ) but by that number minus one.

3.3.2 The t, F and χ2 distributions

Three other continuous distributions that we will make use of repeatedly in the remainder
of this book are the t, F and χ2 distributions.

The t-DISTRIBUTION is closely related to the normal distribution. It has one parame-
ter, known as its DEGREES OF FREEDOM (often abbreviated to df ). Informally, degrees of
freedom can be understood as a measure of how much precision an estimate has. This pa-
rameter controls the thickness of the tails of the distribution, as illustrated in the upper left
panel of Figure 3.8. The grey line represents the standard normal distribution, the solid
line a t-distribution with 2 degrees of freedom, and the dashed line a t-distribution with 5

1The number -5.32907e-16 is in scientific notation. The part e-16 specifies that the period should be
shifted 16 positions to the left, yielding 0.000000000000000532907 in standard notation.
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degrees of freedom. As the degrees of freedom increase, the probability density function
becomes more and more similar to that of the standard normal. For 30 or more degrees of
freedom, the curves are already very similar, and for more than 100 degrees of freedom,
they are virtually indistinguishable. The t-distribution plays an important role in many
statistical tests, and we will use it frequently in the remainder of this book. R makes the
by now familiar four functions available for this distribution: dt(), pt(), qt() and
rt() . Of these functions, the cumulative distribution function is the one we will use
most. Here, we use it to illustrate the greater thickness of the tails of the t-distribution
compared to the standard normal:

> pnorm(-3, 0, 1)
[1] 0.001349898
> pt(-3, 2)
[1] 0.04773298

The probability of observing extreme values (values less than −3 in this example) is
greater for the t-distribution. This is what we mean when we say that the t-distribution
has thicker tails.

There are many other continuous probability distributions besides the normal and t
distributions. We will often need two of these distributions: the F-DISTRIBUTION and
the χ2-DISTRIBUTION. The F -distribution has two parameters, referred to as DEGREES OF

FREEDOM 1 and DEGREES OF FREEDOM 2. The upper right panel of Figure 3.8 shows the
probability density function of the F -distribution for 4 different combinations of degrees
of freedom. The ratio of two variances is F -distributed, and a question that often arises
in statistical testing is whether the variance in the numerator is so much larger than the
variance in the denominator that we have reason to be surprised.

For instance, if the F ratio is 6, then, depending on the degrees of freedom associ-
ated with the two ratios the probability of this value may be small (surprise) or large (no
surprise).

> 1 - pf(6, 1, 1)
[1] 0.2467517
> 1 - pf(6, 20, 8)
[1] 0.006905409

Here, pf() is the cumulative distribution function, which gives the probability of a ratio
less than or equal to 6 (compare pt() for the t-distribution and ppois() and pbinom()
for the Poisson and binomial distributions). To obtain the probability of a more extreme
ratio, we take the complement probability.

The lower panels of Figure 3.8 show the probability density functions for three χ2-
distributions. The χ2-distribution has a single parameter, which is also referred to as its
degrees of freedom. The lower left panel shows the density function for a single degree
of freedom, the lower right panel gives the densities for 5 (solid line) and 10 (dashed line)
degrees of freedom.

The degree of non-homogeneity of a contingency table (see, e.g., Figure 2.6 in Chap-
ter 2) can be assessed by means of a statistic named chi-squared, which, unsurprisingly
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Figure 3.8: Probability density functions. Upper left: t-distributions with 2 (solid line)
and 5 (dashed line) degrees of freedom, and the standard normal (grey line). Upper right:
F -distributions with 5, 5 (black, solid line), 2, 1 (grey, dashed line), 5, 1 (grey, solid line)
and 10, 10 (black, dashed line) degrees of freedom. Lower left: a χ2-distribution with 1
degree of freedom. Lower right: χ2-distributions with 5 (solid line) and 10 (dashed line)
degrees of freedom.

given its name, follows a χ2-distribution. Given a chi-squared value and its associated de-
grees of freedom, we use the probability density function pchisq() to obtain the proba-
bility gauging the extent to which we have reason for surprise.

> 1 - pchisq(4, 1)
[1] 0.04550026
> 1 - pchisq(4, 5)
[1] 0.549416
> 1 - pchisq(4, 10)
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[1] 0.947347

These examples illustrate that the p-values for one and the same chi-squared value (here
4) depends on the degrees of freedom. As the degrees of freedom increase, p-values de-
crease. This is also evident in the lower panels of Figure 3.8. For 1 degree of freedom, a 4
is already a rather extreme value. But for 5 degrees of freedom, a 4 is more or less in the
center of the distribution, and for 10 degrees, it is in fact a rather low value instead of a
very high value.

3.4 Exercises

The text of Lewis Carroll’s Alice’s Adventures in Wonderland is available as the data set
alice . In this exercise, we study the distribution of three words in this book, Alice, very,
and Hare (the second noun of the collocation March Hare).

> alice[1:4]
[1] "alice’s" "adventures" "in" "wonderland"

The vector alice contains all words (defined as sequences of non-space characters) in
this novel. Our goal is to partition this text into 40 equal-sized text chunks, and to study
the frequencies with which our three target words occur in these 40 chunks.

A text with 25942 words cannot be divided into 40 equal-sized text chunks: We are left
with a remainder of 22 tokens.

> 25942 %% 40 # %% is the remainder operator
[1] 22

We therefore restrict ourselves to the first 25920 tokens, and use cut() to partition the
sequence of tokens into 40 equally sized chunks. The output of cut() is a factor with
as levels the successive equal-sized chunks of data. For each element in its input vec-
tor, i.e., for each word, it specifies the chunk to which that word belongs. We combine
the words and the information about their chunks into a data frame with the function
data.frame() .

> wonderland = data.frame(word = alice[1:25920],
+ chunk = cut(1:25920, breaks = 40, labels = F))
> wonderland[1:4, ]

word chunk
1 alice’s 1
2 adventures 1
3 in 1
4 wonderland 1

We now add a vector of truth values to this data frame to indicate which rows contain the
exact string "alice" .
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> wonderland$alice = wonderland$word=="alice"
word chunk alice

1 alice’s 1 FALSE
2 adventures 1 FALSE
3 in 1 FALSE
4 wonderland 1 FALSE

We count how often the word Alice (alice ) occurs in each chunk.

> countOfAlice = tapply(wonderland$alice, wonderland$ch unk, sum)
> countOfAlice

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
8 7 9 8 4 10 8 8 9 7 8 7 8 14 9 11 6 10 12 14

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
13 13 15 11 11 12 10 7 12 12 16 10 13 8 7 3 8 8 5 6

Finally, we make a frequency table of these counts with xtabs() .

> countOfAlice.tab = xtabs(˜countOfAlice)
countOfAlice

3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 2 5 9 3 4 3 4 3 2 1 1

There is one chunk in which Alice appears only three times (chunk 36), and nine chunks
in which this word occurs eight times (e.g., chunks 1 and 4).

1. Create similar tables for the words hare and very.

2. Make a plot that displays by means of high density lines how often Alice occurs in
the successive chunks. Make similar plots for very and hare. What do you see?

3. Make a plot with the number of times Alice occurs in the chunks on the horizontal
axis (i.e., as.numeric(names(alice.tab)) ), and with the proportion of chunks
with that count on the vertical axis. Use high-density lines. Make similar sample
density plots for very and for hare.

4. Also plot the corresponding densities under the assumption that these words follow
a Poisson distribution with an estimated rate parameter λ equal to the mean of the
counts in the chunks. Compare the Poisson densities with the sample densities.

5. Make quantile-quantile plots for graphical inspection of whether Alice, very and hare
might follow a Poisson distribution. First create the vector of theoretical quantiles
for the X-coordinates, using as percentage points 5%, 10%, 15%, . . . , 100%. Sup-
ply the percentage points as a vector of proportions as first argument to qpois() .
The second argument is λ, estimated by the mean count. The sample quantiles are
obtained with quantile() .
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6. The mean count of Alice is 9.4. In chunk 39, Alice is observed only 5 times. Suppose
we only have this chunk of text available. Calculate the likelihood of observing
Alice more than 10 times in another chunk of similar size. Assume that Alice follows
a Poisson distribution. Recalculate this probability on the basis of the mean count,
and compare the expected number of chunks in which Alice occurs more than 10
times with the actual number of chunks.
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Chapter 4

Basic statistical methods

The logic underlying the statistical tests described in this book is simple. A statistical
test produces a TEST STATISTIC of which the distribution is known.1 What we want to
know is whether the test statistic has a value that is extreme, so extreme that it is unlikely
to be attributable to chance. In the traditional terminology, we pit a NULL-HYPOTHESIS,
actually a straw man, that the test-statistic does not have an extreme value, against an
alternative hypothesis according to which its value is indeed extreme. Whether a test
statistic has an extreme value is evaluated by calculating how far out it is in one of the
tails of the distribution. Functions like pt() , pf() , and pchisq() tell us how far out
we are in a tail by means of p-values, which assess what proportion of the population has
even more extreme values. The smaller this proportion is, the more reason we have for
surprise that our test-statistic is as extreme as it actually is.

However, the fuzzy notion of what counts as extreme needs to be made more precise.
It is generally assumed that a probability begins to counts as extreme by the time it drops
below 0.05. However, opinions differ with respect to how significance should be assessed.

One tradition holds that the researcher should begin with defining what counts as
extreme, before gathering and analysing data. The cutoff probability for considering a
test statistic as extreme is referred to as the α LEVEL or SIGNIFICANCE LEVEL. The α level
0.05 is marked by one asterisk in R. More stringent α levels are 0.01 (marked by two
asterisks) and 0.001 (marked by three asterisks). If the observed value of one’s test statistic
is extreme given this pre-defined α level, i.e., if the associated p-value (obtained with,
for instance, pnorm() ) is less than α), then the outcome is declared to be statistically
significant. If you fix α at 0.05, the α level enforced by most linguistic and psycholinguistic
journals, then all you should do is report whether p < 0.05 or p > 0.05.

However, a cut-off point like 0.05 is quite arbitrary. This is why I have disabled
significance stars in summary tables when the languageR package is attached (with
options(show.signif.stars=FALSE) ). If an experiment that required half a year’s
preparation results in a p-value of 0.052, it would have failed to reveal a statistically sig-

1This chapter introduces tests based on what is known as FREQUENTIST statistical inference. For an
introduction to the alternative school in statistics known as BAYESIAN inference, see Bolstad [2004].
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nificant effect, whereas if it had produced a p-value of 0.048, it would have succeeded in
showing a statistically significant effect. Therefore, many researchers prefer to interpret
p-values as a measure of surprise. Instead of reporting p < 0.10 or p < 0.05 they report
p = 0.052 or p = 0.048. This allows the reader to make up her own mind about how sur-
prising this really is. This is important, because assessing what counts as surprise often
depends on many considerations that are difficult to quantify.

For instance, although most journals will accept a significance level of 0.05, no one
in his right mind would want to cross a bridge that has a mere probability of 0.05 of
collapsing. Nor would anyone like to use a medicine that has fatal side effects for one
out of twenty patients, or even only one out of a thousand patients. When a paper with
a result that is significant at the 5% level is accepted for publication, this is only because
it opens new theoretical possibilities that have a fair chance of being replicated in further
studies. Such replication experiments are crucial for establishing whether a given effect
is really there. The smaller the p-value is, and the greater the POWER of the experiment
(i.e., the greater the number of subjects, items, repetitions, etc.), the more likely it is that
replication studies will also bear witness to the effect. Nevertheless, replication studies
remain essential even when p-values are very small. We also have to keep in mind that
a small p-value does not imply that an observed effect is significant in the more general
sense of being important or applicable. We will return to this issue below.

In practise, one’s a-priori assumptions about how difficult it is to find some hypothe-
sized effect plays a crucial role in thinking about what counts as statistically significant.
In physics, where it is often possible to bring a great many important factors under exper-
imental control, p-values can be required to be very small. For an experiment to falsify an
existing well-established theory, a p-value as small as 0.00001 may not be small enough.
In the social sciences, where it is often difficult if not outright impossible to obtain full ex-
perimental control of the very diverse factors that play a potential role in an experiment,
a p-value of 0.05 can sensibly count as statistically significant.

One assumption that is brought explicitly into the evaluation of p-values is the ex-
pected direction of an effect. Consider, for instance, the effect of frequency of use. A long
series of experiments has documented that higher frequency words tend to be recognized
faster than lower frequency words. If we run yet another experiment in which frequency
is a predictor, we expect to observe shorter latencies for higher frequencies (facilitation)
and not longer latencies (inhibition). In other words, previous experience, irrespective
of whether previous experience has been formalised in the form of a theory, may give
rise to expectations about the direction of an effect: inhibition or facilitation. Suppose
that we examine our directional expectation by means of a test statistic that follows the
t-distribution. Facilitation then implies a negative t-value (the observed value is smaller
than the value given by the null hypothesis), and inhibition a positive t-value (the ob-
served value is greater). Given a t-value of −2 for 10 degrees of freedom, and given that
we expect facilitation, we calculate the probability of observing a t-value of −2 or lower
using the left tail of the t-distribution:

> pt(-2, 10)
[1] 0.03669402
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Since this probability is fairly small, there is reason to be surprised: the observed t-value
is unlikely to be this small by chance. This kind of directional test, for which you should
have very good independent reasons, is known as a ONE-TAILED test.

Now suppose that nothing is known about the effect of frequency, and that it might
equally well be facilitatory or inhibitory. If the only thing we want to test is that frequency
might matter, one way or other, then the p-value is twice as large.

> 2 * pt(-2, 10)
[1] 0.07338803

In this case, we reason that the t-value could just as well have been positive instead of
negative, so we sum the probabilities in both tails of the distribution. This is known as a
two-tailed test. Since the density curve of the t-distribution is symmetrical, the probability
of t being less than −2 is the same as the probability that it is greater than 2. We sum the
probabilities in both tails, and therefore obtain a p-value that is twice as large. Evidently,
the present example now gives us less reason for surprise. Next suppose that we observed
a t-value of 2 instead of −2. Our p-value is now obtained with

> 2 * (1 - pt(2, 10))
[1] 0.07338803

Recall that pt(2,10) is the probability that the t statistic assumes a value less than 2.
We need the complementary probability, so we subtract from 1 to obtain the probability
that t has a value exceeding 2. Again, we multiply the result by 2 in order to evaluate the
likelihood that our t-value is either in the left tail or in the right tail of the distribution.
We can merge the tests for negative and positive values into one generally applicable line
of code by working with the absolute value of the t-value:

> 2 * (1 - pt(abs(-2), 10))
[1] 0.07338803
> 2 * (1 - pt(abs(2), 10))
[1] 0.07338803

Table 4.1 summarizes the different one and two-tailed tests that we will often use in the
remainder of this book.

Any test that we run on a data set involves a statistical model, even the simplest of
the standard tests described in this chapter. There are a number of basic properties of
any statistical model that should be kept in mind at all times. As pointed out by Crawley
[2002] (p. 17):

• All models are wrong.

• Some models are better than others.

• The correct model can never be known with certainty.

• The simpler the model, the better it is.
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Table 4.1: One-tailed and two-tailed tests in R. df denotes the number of degrees of free-
dom, N the normal distribution.

N one-tailed left tail pnorm(value, mean, sd)
one-tailed right tail 1 - pnorm(value, mean, sd)
two-tailed either tail 2 * (1 - pnorm(abs(value), mean, sd))

t one-tailed left tail pt(value, df)
one-tailed right tail 1 - pt(value, df)
two-tailed either tail 2 * (1 - pt(abs(value), df))

F 1 - pf(value, df1, df2)
χ2 1 - pchisq(value, df)

As a consequence, it is important to check whether the model fits the data. This part of
statistical analysis is known as MODEL CRITICISM. A test may yield a very small p-value,
but if the assumptions on which the test is based are violated, the p-value is quite useless.
In what follows, model criticism will therefore play an important role.

In what follows, we begin with discussing tests involving a single vector. We then pro-
ceed with tests addressing the broader range of questions that arise when you have two
vectors of observations. Questions involving more than two vectors are briefly touched
upon, but are discussed in detail in chapters 5–7.

4.1 Tests for single vectors

4.1.1 Distribution tests

It is often useful to know what kind of distribution characterizes one’s data. For instance,
since many statistical procedures assume that vectors are normally distributed, it is of-
ten necessary to ascertain whether a vector of values is indeed approximately normally
distributed. Sometimes, the shape of a distribution is itself of theoretical interest.

By way of example, consider Baayen and Lieber [1997], who studied the frequency
distributions of several Dutch derivational prefixes. The frequencies of 985 words with
the prefix ver- are available in the data set ver . We plot the estimated density with

> plot(density(ver$Frequency))

As can be seen in the left panel of Figure 4.1, we have a highly skewed distribution with a
few high-frequency outliers and most of the probability mass squashed against the verti-
cal axis. It makes sense, therefore, to logarithmically transform these frequencies, in order
to remove at least some of the skewness.

> ver$Frequency = log(ver$Frequency)
> plot(density(ver$Frequency))
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Figure 4.1: Estimated probability density functions for the Dutch suffix ver-.

The result is shown in the right panel of Figure 4.1. We now have a bimodal frequency dis-
tribution with two clear peaks. The question that arises here is what kind of distribution
this might be. Could the logged frequencies follow a normal distribution that happens to
have a second bump due to chance?

There are several ways to pursue this question. Let’s first consider visualization by
means of a quantile-quantile plot. We graph the quantiles of the standard normal distri-
bution (displayed on the horizontal axis) against the quantiles of the empirical distribu-
tion (displayed on the vertical axis). If the empirical distribution is normal (irrespective
of mean or variance), its quantiles should be identical to those of the standard normal,
and the quantile-quantile plot should produce a straight line. The left panel of Figure 4.2
provides an example for 985 random numbers from a normal distribution with mean 4
and standard deviation 3.

> qqnorm(rnorm(length(ver$Frequency), 4, 3))
> abline(v = qnorm(0.025), col = "grey")
> abline(h = qnorm(0.025, 4, 3), col = "grey")

The theoretical and empirical values for the 2.5% percentage points are shown by means
of grey lines. The horizontal axis shows the values of the standard normal, ordered from
small to large. Around −1.96, 2.5% of the data points have been graphed, and around
+1.96, 97.5% of the data points have been covered. The vertical axis shows the quantiles of
the random numbers. In this case, 2.5% of the data points have been covered by the time
you have reached the value −1.87. Whenever you compare the largest values observed
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Figure 4.2: Quantile-quantile plots for a sample of 985 normal (4, 3)-distributed random
numbers (left) and for the logged frequencies of 985 Dutch derived words with the prefix
ver-.

for a given percentage of the ordered data, you will find that the points always lie very
near the same line.

When we make a quantile-quantile plot for the logged frequencies of words with the
Dutch prefix ver-, we obtain a weirdly shaped graph, as shown in the right panel of Fig-
ure 4.2.

> qqnorm(ver$Frequency)

The lowest log frequency, zero, represents 27.8% of the words, and this shows up as a
horizontal bar of points in the graph. It is clear that we are not dealing with a normal
distribution.

Instead of visualizing the distribution, we can make use of two tests. The simplest to
use is the SHAPIRO-WILK TEST FOR NORMALITY:

> shapiro.test(ver$Frequency)
Shapiro-Wilk normality test

data: ver$Frequency
W = 0.9022, p-value = < 2.2e-16

This test makes use of a specific test statistic W , and the probability that W is as large as it
is under chance conditions for a normal distribution is vanishingly small. We can safely
reject the null hypothesis that the log-transformed frequencies of words with -ver follow
a normal distribution.
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A second test that can be used is the KOLMOGOROV-SMIRNOV ONE-SAMPLE TEST. Its
first argument is the observed vector of values, its second argument is the name of the
density function that we want to compare our observed vector with. As we are consider-
ing a normal distribution here, this second argument is pnorm . The remaining arguments
are the corresponding parameters, in this case, the mean and standard deviation which
we estimate from the (log-transformed) frequency vector:

> ks.test(ver$Frequency, "pnorm",
+ mean(ver$Frequency), sd(ver$Frequency))

One-sample Kolmogorov-Smirnov test
data: ver$Frequency
D = 0.1493, p-value < 2.2e-16
alternative hypothesis: two.sided

Warning message: cannot compute correct p-values with ties

This test produces a test statistic D that is so large that it is very unlikely to arise under
the assumption that we would be dealing with a normal distribution.

The warning message arises because there are TIES (observations with the same value)
in our data. This test presupposes that the input vector is continuous, and in a continuous
distribution ties are, strictly speaking, impossible. The reason that we have ties in our data
is that word frequency counts are discrete, even though the probabilities of words that we
try to estimate with our frequency counts are continuous. A workaround to silence this
warning is to add a little bit of noise to the frequency vector with the function jitter() ,
breaking the ties:

> ver$Frequency[1:5]
[1] 5.541264 5.993961 4.343805 0.000000 7.056175
> jitter(ver$Frequency[1:5])
[1] 5.5179064 6.0002591 4.2696683 0.0373808 6.9965528
> ks.test(jitter(ver$Frequency), "pnorm",
+ mean(ver$Frequency), sd(ver$Frequency))

One-sample Kolmogorov-Smirnov test
data: jitter(ver$Frequency)
D = 0.1493, p-value < 2.2e-16
alternative hypothesis: two.sided

When dealing with a vector of counts, we may face the question of whether the prob-
abilities of the things counted are all essentially the same. For instance, the most frequent
words in an earlier version of the introduction to this book are

> intro = c(75, 68, 45, 40, 39, 39, 38, 33, 24, 24)
> names(intro) = c("the", "to", "of", "you", "is", "a",
+ "and", "in", "that", "data")
> the to of you is a and in that data

75 68 45 40 39 39 38 33 24 24
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Are the probabilities of these words (as estimated by their frequencies) essentially the
same? We can investigate this with a CHI-SQUARED TEST:

> chisq.test(intro)
Chi-squared test for given probabilities

data: intro
X-squared = 59.7294, df = 9, p-value = 1.512e-09

Unsurprisingly, the chi-squared test produces a test statistic named X-squared, that fol-
lows a χ2-distribution, in this case with 9 degrees of freedom. (You can check that the
p-value reported in this summary equals 1 - pchisq(59.7294, 9) ). What this test
shows is that the 10 most frequent function words do not all have the same probability
(frequency). The range of values is just too large. By contrast, the counts in the following
vector

> x = c(37, 21, 26, 30, 23, 26, 41, 26, 37, 33)

are much more similar, and the chi-squared test is no longer significant:

> chisq.test(x)
Chi-squared test for given probabilities

data: x
X-squared = 13.5333, df = 9, p-value = 0.1399

4.1.2 Tests for the mean

The question often arises whether the mean of a vector of observations has a particular
value. By way of example, we examine the length in seconds of the n in the Dutch prefix
ont-, available in the data set durationsOnt [Pluymaekers et al., 2005]. We calculate the
mean length of the n:

> meanLengthN = mean(durationsOnt$DurationPrefixNasal)
> meanLengthN
[1] 0.04981508

Suppose that previous research of similar recordings had resulted in a mean of 0.053. Is
the mean observed for the new sample, 0.0498, significantly different from 0.053? An
answer can be obtained with a TWO-TAILED ONE-SAMPLE t-TEST, which requires as input
the vector of lengths and the previously observed mean (mu).

> t.test(durationsOnt$DurationPrefixNasal, mu = 0.053)
One Sample t-test

data: ont$DurationPrefixNasal
t = -1.5038, df = 101, p-value = 0.1358
alternative hypothesis: true mean is not equal to 0.053
95 percent confidence interval:

0.04561370 0.05401646
sample estimates:

mean of x
0.04981508
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The function t.test() carried out a one sample t-test, as we supplied it with only one
vector of data points, the sample of lengths of the n of the prefix ont-. The test statistic
of the t-test is named t, and it follows a t-distribution with, in this case, 101 degrees of
freedom (df ). The p-value given in the summary is easily verified

> 2 * (1 - pt(abs(-1.5038), 101))
[1] 0.1357535

and shows that the newly observed mean, 0.0498, is not significantly different from the
old mean of 0.053.

Rcarries out a two-tailed test by default. It reports that the ALTERNATIVE HYPOTHESIS

(alternative to the NULL HYPOTHESIS that the mean is equal to 0.053) is that the true mean
is not equal to 0.053. If you need a one-tailed test, you have to specify the direction of the
test by adding the option alternative="less" or alternative="greater" .

The next lines of the summary report the 95% CONFIDENCE INTERVAL. This is the in-
terval of values, symmetric around the observed sample mean 0.0498, where we expect
95% of the data points to be located. It is the range of values for which we accept that
there is no significant difference with the previously observed mean. This range is high-
lighted in Figure 4.3. The 5% of data points that are extreme, and where we reject the idea
that there might be no difference, fall outside this confidence interval. These REJECTION

REGIONS are the white tails in Figure 4.3. Since the mean previously observed, 0.053, falls
well within the acceptance region, the p-value of the test is larger than 0.05. We there-
fore have no reason to suppose that the mean length in the new sample differs from that
obtained in the previous sample.

The data frame ont also lists the length of the t, the mean of which is

> mean(durationsOnt$DurationPrefixPlosive)
[1] 0.03633109

We could again use t.test() to test whether this mean is significantly different from,
say, 0.044, and the resulting p-value, 0.008, would support this. Unfortunately, there is a
problem here, as the distribution of the lengths of the t is not normal. Consider Figure 4.4,
which shows the estimated densities for the lengths of the t and those of the n. In the case
of the n, we have a reasonably symmetric density, but in the case of the t, we have a
bimodal density. The Shapiro test

> shapiro.test(durationsOnt$DurationPrefixPlosive)
Shapiro-Wilk normality test

data: ont$DurationPrefixPlosive
W = 0.9248, p-value = 2.145e-05

confirms that we are indeed dealing with a significant departure from normality.
The t-test is an excellent test for data that are more or less normally distributed. But it

should not be used for variables with skewed distributions. For such variables, the ONE

SAMPLE WILCOXON TEST, implemented in the function wilcox.test() , should be used
instead. When we apply the Wilcoxon test, we obtain a p-value that is somewhat larger
(although still small) compared to that of the t-test.
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Figure 4.3: 95% confidence interval for the length (in seconds) of the nasal in the Dutch
prefix ont-. The solid line represents the mean, the dashed line the tested mean, which
falls within the acceptance region.

> wilcox.test(durationsOnt$DurationPrefixPlosive, mu = 0.044)
Wilcoxon signed rank test with continuity correction

data: ont$DurationPrefixPlosive
V = 1871, p-value = 0.01151
alternative hypothesis: true mu is not equal to 0.044

This is usually the case when the p-values of these two tests are compared. The Wilcoxon
test is slightly less good at detecting surprise for normal random variables than the t-test,
it has reduced POWER, but it still does a good job when the t-test is inapplicable. The
Wilcoxon test is a NON-PARAMETRIC test. It makes no assumptions about the distribution
of the population from which a sample was drawn. The PARAMETRIC t-test has greater
power because when its distributional assumptions are justified, it has access to more
sophisticated mathematics to estimate probabilities.

4.2 Tests for two independent vectors

When you have two vectors of observations, it is important to distinguish between IN-
DEPENDENT vectors (random variables) and PAIRED vectors (random variables). In the
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Figure 4.4: Estimated probability density functions for the length in milliseconds of the t
and n in the Dutch prefix ont-.

case of independent vectors, the observations in the one vector are not linked in a sys-
tematic way to the observations in the other vector. Consider, for instance, sampling 100
words at random from a frequency list compiled for Jane Austin’s Pride and Prejudice, and
then sampling another 100 words at random from a frequency list compiled for Herman
Melville’s Moby Dick. The two vectors of frequencies can be compared in various ways
in order to address differences in general frequency of use between the two writers, and
contain independent observations. As an example of paired observations, consider the
case in which a specific list of 100 word types is compiled, with for each word type its
frequency in Pride and prejudice and its frequency in Moby Dick. The observations in the
two vectors are now paired: The frequencies are tied, pairwise, to a given word. For such
paired vectors, more powerful tests are available. In what follows, we first discuss tests
for independent vectors. We then proceed to the case of paired vectors.

4.2.1 Are the distributions the same?

Recall that we observed a bimodal density for the Dutch prefix ver- in Figure 4.1. The
presence of two modes for this distribution can be traced to two distributions having been
mixed together, a distribution of semantically more opaque, non-compositional words,
and a distribution of semantically more transparent, compositional words. The data frame
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ver with word frequencies also contains a column with information about semantic class
(opaque versus transparent). Figure 4.5 plots the densities of the opaque and transparent
words separately. The two distributions are quite dissimilar. There are many transparent
and only a few opaque low-frequency words (recall that a log frequency of 0 represents
a word with frequency 1, which explains the hump of probability mass above the zero in
the graph for transparent formations).

Figure 4.5 requires the following steps. We first partition the words into the two
classes:

> ver.transp = ver[ver$SemanticClass == "transparent",]$ Frequency
> ver.opaque = ver[ver$SemanticClass == "opaque", ]$Frequ ency

Next, we calculate the densities and store these, as we have to determine the limits for the
horizontal and vertical axes before we can begin with plotting.

> ver.transp.d = density(ver.transp)
> ver.opaque.d = density(ver.opaque)
> xlimit = range(ver.transp.d$x, ver.opaque.d$x)
> ylimit = range(ver.transp.d$y, ver.opaque.d$y)
> plot(ver.transp.d, lty = 1, col = "black",
+ xlab = "frequency", ylab = "density",
+ xlim = xlimit, ylim = ylimit, main = "")
> lines(ver.opaque.d, col = "darkgrey")

Before we make too much of the separation visible in our density plot, we should check
whether this separation might have arisen by chance. To avoid complaints about ties with
the TWO-SAMPLE KOLMOGOROV-SMIRNOV TEST, we add some jitter.

> ks.test(jitter(ver.transp), jitter(ver.opaque))
Two-sample Kolmogorov-Smirnov test

data: jitter(ver.transp) and jitter(ver.opaque)
D = 0.3615, p-value = < 2.2e-16
alternative hypothesis: two.sided

The very small p-value provides support for the classification of these words into trans-
parent and opaque subsets, each with its own probability density function.

4.2.2 Are the means the same?

In Chapter 1, we had a first look at the 81 English nouns for which several kinds of ratings
as well as visual lexical decision latencies were collected. Here we visualize how the word
frequencies are distributed for the subsets of simple and complex words cross-classified
by class (plant versus animal ) by means of a trellis boxplot.

> bwplot(Frequency ˜ Class | Complex, data = ratings)
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Figure 4.5: Estimated probability density function of the transparent (black line) and
opaque (grey line) words with the Dutch suffix ver-.

Figure 4.6 suggests that the distributions of frequencies for plants and animals differ for
simplex words, with the animals having somewhat higher frequencies than the plants.
We can ascertain whether we indeed have reason to be surprised by testing whether the
means of these two distributions are different. The boxplots suggest reasonably symmet-
ric distributions, so we use the two-sample version of the t-test and apply it to the subset
of morphologically simple words.

> simplex = ratings[ratings$Complex == "simplex", ]
> freqAnimals = simplex[simplex$Class == "animal", ]$Freq uency
> freqPlants = simplex[simplex$Class == "plant", ]$Freque ncy
> t.test(freqAnimals, freqPlants)

Welch Two Sample t-test
data: freqAnimals and freqPlants
t = 2.674, df = 57.545, p-value = 0.009739
alternative hypothesis: true difference in means is not equ al to 0
95 percent confidence interval:

0.1931830 1.3443152
sample estimates:
mean of x mean of y

5.208494 4.439745
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Figure 4.6: Boxplots for frequency as a function of natural class (animal versus plant)
grouped by morphological complexity for 81 English nouns.

The summary of the t-test begins with the statement that a WELCH TWO-SAMPLE t-TEST

has been carried out. The t-test in its simplest form presupposes that its two input vectors
are normally distributed with the same variance. Often, however, the variances of the two
input vectors are not the same. The Welch two sample t-test corrects for this difference
by adjusting the degrees of freedom. Normally, degrees of freedom are integers. How-
ever, you can see in this example that the Welch adjustment led to a fractional number of
degrees of freedom: 57.545..

The next lines of the summary explain what the t-test did: It calculated the difference
between the two means, and then tested whether this difference is not equal to 0. The 95%
confidence interval around this difference in the means, 5.208494 − 4.439745 = 0.768749,
does not include zero. As expected, the p-value is less than 0.05. If you need to know
another confidence interval, for instance, the 99% confidence interval, this can be specified
with the option conf.level :

> t.test(simplex[simplex$Class == "animal", ]$Frequency ,
+ simplex[simplex$Class == "plant", ]$Frequency,
+ conf.level = 0.99)
t = 2.674, df = 57.545, p-value = 0.009739
alternative hypothesis: true difference in means is not equ al to 0
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99 percent confidence interval:
0.002881662 1.534616532

It is important to keep in mind that the two-sample t-test is appropriate only for rea-
sonably symmetrical distributions. For the opaque and transparent words with the prefix
ver-, where we are dealing with bimodal, and markedly asymmetric distributions, we use
the wilcox.test() :

> wilcox.test(ver.opaque, ver.transp)
Wilcoxon rank sum test with continuity correction

data: ver.opaque and ver.transp
W = 113443.5, p-value = < 2.2e-16
alternative hypothesis: true mu is not equal to 0

This test confirms the conclusion reached above using the Kolmogorov-Smirnov test: We
are dealing with two quite different distributions. These distributions differ in shape, and
they differ in their medians, such that opaque words have the higher average frequency
of use.

In Chapter 1 we started exploring the data set on the dative alternation in English
studied by Bresnan et al. [2007]. We calculated the mean length of the theme for clauses
with animate and inanimate recipients with tapply() .

> tapply(verbs$LengthOfTheme, verbs$AnimacyOfRec, mean )
animate inanimate

1.540278 1.071130

We now use a Welch two-sample t-test to verify that the two means are significantly dif-
ferent.

> t.test(LengthOfTheme ˜ AnimacyOfRec, data = verbs)
Welch Two Sample t-test

data: LengthOfTheme by AnimacyOfRec
t = 5.3168, df = 100.655, p-value = 6.381e-07
alternative hypothesis: true difference in means is not equ al to 0
95 percent confidence interval:

0.2941002 0.6441965
sample estimates:

mean in group animate mean in group inanimate
1.540278 1.071130

Inspection of the distributions by means of a boxplot suggests some asymmetry for the
inanimate group, but, as the reader may verify for herself, a Wilcoxon test also leaves no
doubt that we have ample reason for surprise.
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4.2.3 Are the variances the same?

It may be important to know whether the variances of two normal random variables are
different. Here is an example from the R help for var.test() . Two vectors with stan-
dard normal random numbers with different means and standard deviations are defined
first.

> x <- rnorm(50, mean = 0, sd = 2)
> y <- rnorm(30, mean = 1, sd = 1)

With var.test() we subsequently observe that, as expected, the two variances are not
the same.

> var.test(x, y)
F test to compare two variances

data: x and y
F = 2.7485, num df = 49, denom df = 29, p-value = 0.004667
alternative hypothesis: true ratio of variances is not equa l to 1
95 percent confidence interval:

1.380908 5.171065
sample estimates:
ratio of variances

2.748496

The F -value is the ratio of the two variances,

> var(x)/var(y)
[1] 2.748496

the degrees of freedom are one less than the numbers of observations in each vector, so
we can just as well calculate the p-value directly without invoking var.test() .

> 2 * (1 - pf(var(x)/var(y), 49, 29))
[1] 0.004666579

This test should only be applied to variances of normally distributed random variables.
The help page for var.test() points to other functions that you should consider if this
condition is not met.

4.3 Paired vectors

The tests described above for comparing the distributions of two dependent variables also
apply to paired vectors, vectors with measurements or counts that are pairwise bound to
the same experimental units. There are differences, however, in how we test for differ-
ences in the mean, and new questions arise as to the functional relation between the two
vectors. We discuss these issues in turn.
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4.3.1 Are the means or medians the same?

In order to test whether two paired vectors have the same mean or median, we again use
t.test() and wilcox.test() , respectively, but we now specify that we are dealing
with PAIRED OBSERVATIONS. By way of example, we return to the average weight and
size ratings elicited from English speaking subjects for the 81 nouns denoting animals
and plants. One question we may ask is whether weight ratings are smaller (or perhaps
greater) than size ratings. We address this question using the mean ratings (averaged over
participants) as available in the ratings data set. If we treat the two vectors of ratings
(meanWeightRating and meanSizeRating ) as independent, which they are not, then
there is already some evidence that they are not identical in the mean:

> t.test(ratings$meanWeightRating, ratings$meanSizeRa ting)
Welch Two Sample t-test

data: ratings$meanWeightRating and ratings$meanSizeRat ing
t = -2.1421, df = 159.092, p-value = 0.0337

alternative hypothesis: true difference in means is not equ al to 0
95 percent confidence interval:

-0.64964319 -0.02637656
sample estimates:
mean of x mean of y

2.570370 2.908380

When we apply the appropriate test, and take into account (by specifying paired = T )
the important information that these ratings were elicited for the same set of 81 nouns,
we obtain much stronger evidence that the two vectors differ in the mean:

> t.test(ratings$meanWeightRating, ratings$meanSizeRa ting, paired = T)
Paired t-test

data: ratings$meanWeightRating and ratings$meanSizeRat ing
t = -36.0408, df = 80, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equ al to 0
95 percent confidence interval:

-0.3566737 -0.3193460
sample estimates:
mean of the differences

-0.3380099

Note that the paired t-test reports the difference between the two means. In fact, you get
exactly the same results by applying a one sample t-test to the vector of paired differences:

> t.test(ratings$meanWeightRating - ratings$meanSizeRa ting)
One Sample t-test

data: ratings$meanWeightRating - ratings$meanSizeRatin g
t = -36.0408, df = 80, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
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-0.3566737 -0.3193460
sample estimates:

mean of x
-0.3380099

In this example, the paired differences are less than zero for all 81 words,

> sum(ratings$meanWeightRating - ratings$meanSizeRatin g < 0)
[1] 81

which explains why we get such an extremely small p-value.
Thus far, we have assumed that the two vectors of ratings are normally distributed. In

order to check whether this assumption is justified, we inspect the boxplot shown in the
left panel of Figure 4.7. There is some asymmetry here: The horizontal lines representing
the medians are not located in the centers of the two boxes.

> par(mfrow=c(1,2))
> boxplot(ratings$meanWeightRating, ratings$meanSizeR ating,
+ names=c("weight", "size"), ylab = "mean rating")
> boxplot(ratings$meanWeightRating - ratings$meanSizeR ating,
+ names="difference", ylab = "mean rating difference")
> par(mfrow=c(1,1))
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Figure 4.7: Boxplots for the distributions of mean size and mean weight ratings (averaged
over subjects; left panel) and their difference (right panel) for 81 English nouns denoting
animals, plants and vegetables.

Fortunately, most of this asymmetry is absent from the vector of paired differences, as
witnessed by the mild p-value of the Shapiro-Wilk test and the boxplot shown in the right
panel of Figure 4.7.
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Figure 4.8: Scatterplot for mean weight and size ratings (left), and the same data points
with regression line (right).

> shapiro.test(ratings$meanWeightRating-ratings$mean SizeRating)
Shapiro-Wilk normality test

data: ratings$meanWeightRating - ratings$meanSizeRatin g
W = 0.9644, p-value = 0.02374

Although we could rerun the test with the Wilcoxon signed rank test, with paired = T ,

> wilcox.test(ratings$meanWeightRating, ratings$meanS izeRating,
+ paired = T)

Wilcoxon signed rank test with continuity correction
data: ratings$meanWeightRating and ratings$meanSizeRat ing
V = 0, p-value = 5.463e-15
alternative hypothesis: true mu is not equal to 0

the paired t-test is perfectly adequate.

4.3.2 Functional relations: linear regression

Instead of comparing just the means of the size and weight ratings, or comparing their
distributions by means of boxplots, we can graph the individual data points in a scatter-
plot, as shown in the left panel of Figure 4.8.
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> plot(ratings$meanWeightRating, ratings$meanSizeRati ng,
+ xlab = "mean weight rating", ylab = "mean size rating")

What this panel shows is that the data points pattern into a nearly straight line. In other
words, we observe an exceptionally clear linear functional relation between estimated
size and weight . This functional relation can be visualized by means of a line drawn
through the scatter of data points in such a way that the line is as close as possible to
each of these data points. The question that arises here is how to obtain this regression
line. In order to answer this question, we begin with recapitulating how a straight line is
characterized.

Slope and intercept

Consider the two lines shown in Figure 4.9. For the dashed line, the INTERCEPT is 2 and
the slope −2. For the dotted line, the intercept is −2 and the slope 1. It is easy to see that
the intercept is the Y -coordinate of the line where it crosses the vertical axis. The slope of
the line specifies the direction of the line in terms of how far you have to move along the
horizontal axis for a unit change in the vertical direction. For the dashed line, two units
down corresponds to one unit to the right. Using ∆y and ∆x to denote the change in y
corresponding to a change in x, we find that we have a slope of ∆y/∆x = −2/1 = −2. For
the dotted line, moving two units up corresponds with moving two units to the right, so
the slope is ∆y/∆x = 2/2 = 1.

The function abline() adds parametrically specified lines to a plot. It takes two
arguments, first the intercept, and then the slope. This is illustrated by the following
code, which produces Figure 4.9.

> plot(c(-4, 4), c(-4, 4), xlab = "x", ylab = "y", type = "n")
# set up the plot region

> abline(2, -2, lty = 2) # add the lines
> abline(-2, 1, lty = 3)
> abline(h = 0) # and add the axes
> abline(v = 0)
> abline(h = -2, col = "grey") # and ancillary lines in grey
> abline(h = 2, col = "grey")
> abline(v = 1, col = "grey", lty = 2)
> abline(v = 2, col = "grey", lty = 2)

The right panel of Figure 4.8 shows a straight line that has been drawn through the
data points in such a way that all the data points are as close to the line as possible. Its
intercept is 0.527 and its slope is 0.926.

> plot(ratings$meanWeightRating, ratings$meanSizeRati ng,
+ xlab = "mean weight rating", ylab = "mean size rating",
+ col = "darkgrey")
> abline(0.527, 0.926)

The question, of course, is how to determine this slope and intercept.
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Figure 4.9: Straight lines are defined by intercept and slope.

Estimating slope and intercept

We estimate slope and intercept with the help of the function for linear modeling, lm() .
This function needs to be told what variable is the dependent variable (the variable on
the Y -axis) and what variable is the predictor (the variable on the X-axis). We provide
this information by means of a formula that we supply as the first argument to lm() .

> ratings.lm = lm(meanSizeRating ˜ meanWeightRating, data = ratings)

The formula specifies that meanSizeRating is to be modelled as a function of, or de-
pending on, meanWeightRating . The second argument tells R to look for these two
variables in the data frame ratings . The output of lm() is a LINEAR MODEL object that
we name after its input and the function that created it. By typing ratings.lm to the
prompt, we get to see the coefficients of the desired LEAST SQUARES REGRESSION LINE.
(The term LEAST SQUARES refers to the way in which slope and intercept are estimated,
namely, by minimizing the squared vertical differences between the data points and the
line.)

> ratings.lm
Call:
lm(formula = meanSizeRating ˜ meanWeightRating, data = rat ings)
Coefficients:

(Intercept) meanWeightRating
0.5270 0.9265

We can extract from the model object a vector with just the intercept and slope with the
function coef() , which returns the model’s COEFFICIENTS.
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> coef(ratings.lm)
(Intercept) meanWeightRating

0.5269981 0.9264743

In order to add this regression line to our scatterplot, we simply type

> abline(ratings.lm)

as abline() is smart enough to extract slope and intercept from the linear model object
by itself.

Correlation

You now know how to estimate the intercept and the slope of a regression line. There is
much more to be learned from a linear model than just this. We illustrate this by looking
in some more detail at scatterplots of paired standard normal random variables. Each
panel of Figure 4.10 plots random samples of such paired vectors. The technical name for
such paired distributions is a BIVARIATE STANDARD NORMAL DISTRIBUTION. The dashed
line in these panels represents the line Y = X , the solid line the regression line. In the
upper left panel, we have a scatter of points roughly in the form of a disc. Many points
are far away from the regression line, which happens to have a negative slope. The upper
right panel also shows a wide scatter, but here the regression line has a positive slope. The
points in the lower left panel are somewhat more concentrated and closer to the regression
line. The regression line itself is becoming more similar to the line Y = X . Finally, the
lower right panel has a regression line that has crept even closer to the dashed line, and
the data points are again much closer to the regression line.

The technical term for the degree to which the data points cluster around the regres-
sion line is CORRELATION. This degree of correlation is quantified by means of a CORRE-
LATION COEFFICIENT. The correlation coefficient of a given population is denoted by ρ,
and that of a sample from that population by r. The correlation coefficient is bounded
by −1 (a perfect negative correlation) and +1 (a perfect positive correlation). When the
correlation is −1 or +1, all the data points lie exactly on the regression line, and in that
case the regression line is equal to the line Y = −X and Y = X respectively. This is a
limiting case that never arises in practice.

The sample correlation r for each of the four scatterplots in Figure 4.10 is listed above
each panel, and varies from −0.07 in the upper left to 0.89 in the lower right. You can
regard r as a measure of how useful it is to fit a straight line to the data. If r is close to
zero, the regression line does not help at all to predict where the data points will be for
a given value of the predictor variable. This is easy to see by comparing the upper and
lower panels. In the upper panels, the scatter along the Y -axis is very large for almost all
values of X . For a large majority of observed data points, the predicted value (somewhere
on the regression line) is going to be way off. This changes in the lower panels, where the
regression line starts to become predictive. Another way of thinking about r is that it
tells us something about how much of the scatter we get a handle on. In fact, the appro-
priate measure for evaluating how much of the scatter is accounted for, or explained, by
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Figure 4.10: Scatterplots for four paired standard normal random variables with different
population correlations (ρ = 0.0, 0.2, 0.5, 0.9). The correlations shown above each panel
are the sample correlations.
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the model is not r itself, but r2 (often denoted by R2). More precisely, R2 quantifies the
proportion of the variance in the data that is captured and explained by the regression
model.

Let’s pause for a moment to think about what it means to explain variance. When
we try to fit a model to a data set, the goal is to be able to predict what the value of the
dependent variable is given the predictors. The better we succeed in predicting, the better
the predictors succeed in explaining the variability in the dependent variable. When you
are in bad luck, with lousy predictors, there is little variability that your model explains.
In that case, the values of the dependent variable jump around almost randomly. In this
situation, R2 will be close to zero. The better the model, the smaller the random variation,
the variation that we do not yet understand, will be, and the closer R2 will be to one.

Scatterplots like those shown in the panels of Figure 4.10 can be obtained with the help
of mvrnormplot.fnc() ,

> mvrnormplot.fnc(r = 0.9)

a convenience function mvrnormplot.fnc() defined in the languageR package. As
we are dealing with random numbers, your output will be somewhat different each
time you run this code, even for the same r. You should try out mvrnormplot.fnc()
with different values of r to acquire some intuitions about what correlations of different
strengths look like.

Summarizing a linear model object

We return to our running example of mean size and weight ratings. Recall that we created
a linear model object, ratings.lm , and extracted the coefficients of the regression line
from this object. If we summarize the model with summary() , we obtain much more
detailed information, including information about R2.

> summary(ratings.lm)
Call:

lm(formula = meanSizeRating ˜ meanWeightRating, data = rat ings)
Residuals:

Min 1Q Median 3Q Max
-0.096368 -0.020285 0.002058 0.024490 0.075310

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.526998 0.010632 49.57 <2e-16
meanWeightRating 0.926474 0.003837 241.45 <2e-16

Residual standard error: 0.03574 on 79 degrees of freedom
Multiple R-Squared: 0.9986, Adjusted R-squared: 0.9986
F-statistic: 5.83e+04 on 1 and 79 DF, p-value: < 2.2e-16

In what follows, we will walk through this summary line by line.
The first thing that the summary does is remind us of how the object was created. We

then get a brief summary of the distribution of the residuals. We postpone to Chapter 6
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the discussion of what the residuals are and why they are so important to be mentioned
in the summary of the model.

Next, we see a table with the coefficients of the model: a coefficient for the intercept
(0.527) and a coefficient for the slope (0.926). Each coefficient comes with three other
numbers: its standard error, a t-value, and a p-value. The p-value tells us whether the
coefficient is significantly different from zero. If the coefficient for a predictor is zero,
there is no relation at all between the predictor and the dependent variable, in which case
it is worthless as a predictor. In order to ascertain whether a coefficient is significantly
different from zero, and hence potentially useful, a two-tailed t-test is carried out, using
the t-value and the associated degrees of freedom (79, this number is listed further down
in the summary). The t-value itself is the value of the coefficient divided by its standard
error. This standard error is a measure of how sure we are about the estimate of the
coefficient. The smaller the standard error, the smaller the confidence interval around the
estimate, the less likely that zero will be included in the acceptance region, and hence the
smaller the probability that it might just as well be zero.

Sometimes, it is useful to be able to access the different parts of the summary. You can
identify the components of the summary with names(summary(ratings.lm)) , and
we can extract these components from the summary with the help of the $ operator. For
instance, we obtain the table of coefficients with $coef .

> summary(ratings.lm)$coef
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5269981 0.010632282 49.56585 2.833717e-61
meanWeightRating 0.9264743 0.003837106 241.45129 4.3807 25e-115

Because this table is a matrix, we can access the t-values or the estimates of the coefficients
themselves:

> summary(ratings.lm)$coef[ ,3]
(Intercept) meanWeightRating

49.56585 241.45129
> summary(ratings.lm)$coef[ ,1]

(Intercept) meanWeightRating
0.5269981 0.9264743

Since summary(ratings.lm)$coef is not a data frame, we cannot reference columns
by name with the $ operator, unfortunately. To do so, we first have to convert it explicitly
into a data frame.

> data.frame(summary(ratings.lm)$coef)$Estimate
[1] 0.5269981 0.9264743

Let’s return to the summary, and proceed to its last three lines. The RESIDUAL STAN-
DARD ERROR is a measure of how unsuccesful the model is, it gauges the variability in
the dependent variable that we can’t handle through the predictor variables. The better
a model is, the smaller its residual standard error will be. The next line states that the
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multiple R-squared equals 0.9986. This R-squared is the squared correlation coefficient,
r2, which quantifies, on a scale from 0 to 1, the proportion of the variance that the model
explains. We get the value of the correlation coefficient r by taking the square root of
0.9986, which is 0.9993. This is a bit cumbersome, but, fortunately, there are quicker ways
of calculating r. The function cor() returns the correlation coefficient,

> cor(ratings$meanSizeRating, ratings$meanWeightRatin g)
[1] 0.9993231

and cor.test() provides the correlation coefficient and also tests whether it is signifi-
cantly different from zero. It also lists a 95% confidence interval.

> cor.test(ratings$meanSizeRating, ratings$meanWeight Rating)
Pearson’s product-moment correlation

data: ratings$meanSizeRating and ratings$meanWeightRat ing
t = 241.4513, df = 79, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:

0.9989452 0.9995657
sample estimates:

cor
0.9993231

There is also a distribution free, non-parametric correlation test, which does not depend
on the input vectors being approximally normally distributed, the Spearman correlation
test, which is based on the ranks of the observations in the two vectors. It is carried out
by cor.test() when you specify the option method="spearman" :

> cor.test(ratings$meanSizeRating, ratings$meanWeight Rating,
+ method = "spearman")

Spearman’s rank correlation rho
data: ratings$meanSizeRating and ratings$meanWeightRat ing
S = 118, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.9986676
Warning message: p-values may be incorrect due to ties

We could have avoided the warning message by adding some jitter to the ratings, but
given the very low p-value, this is superfluous. The Spearman correlation coefficient is
often referenced as rs.

Returning to the summary of ratings.lm and leaving the discussion of the adjusted
R-squared to Chapter 6, we continue with the last line, which lists an F -value. This
F value goes with an overall test of whether the linear model as a whole succeeds in
explaining a significant portion of the variance. Given the small p-value listed in the
summary, there is no question about lack of statistical significance.
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Figure 4.11: Scatterplots for singular and plural frequency with regression lines. Solid
lines represent ordinary least squares regression on all data points, the dashed line rep-
resents an ordinary least squares regression with 4 outliers excluded, and dotted lines
represents robust regression lines obtained with lmsreg() .

Problems and pitfalls of linear regression

Now that we have seen how to fit a linear model to a data set with paired vectors, we
proceed to two more complex examples that illustrate some of the problems and pitfalls
of linear regression. First consider the left panel of Figure 4.11, which plots the frequency
of the plural against the frequency of the singular for the 81 nouns for animals and plants
in the ratings data frame. The problem that we are confronted with here is that there
is a cluster of observations near the origin combined with a handful of atypical points
with very high values. The presence of such OUTLIERS may mislead the algorithm that
estimates the coefficients of the linear model. If we fit a linear model to these data points,
we obtain the solid line. But if we exclude just the 4 words with singular frequencies
greater than 500, and then refit the model, we obtain the dashed line. The two lines tell
a rather different story which suggests that these 4 words are atypical with respect to
the lower-frequency words. There are various regression techniques that are more robust
with respect to outliers than is lm() . The dotted line illustrates the lmsreg() function,
which, unfortunately, does not tell us whether the predictors are significant. From the
graph we can tell that it considers rather different words to be outliers, namely, the words
with high plural frequency but singular frequency less than 500.

Before we move on to a better solution for this regression problem, let’s first review
the code for the left panel of Figure 4.11.

> plot(ratings$FreqSingular, ratings$FreqPlural)
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> abline(lm(FreqPlural ˜ FreqSingular, data = ratings), lt y = 1)
> abline(lm(FreqPlural ˜ FreqSingular,
+ data = ratings[ratings$FreqSingular < 500, ]), lty = 2)

In order to have access to lmsreg() , we must first load the MASSpackage.

> library(MASS)
> abline(lmsreg(FreqPlural ˜ FreqSingular, data = ratings ), lty = 3)

The problem illustrated in the left panel of Figure 4.11 is that word frequency distri-
butions are severely skewed. There are many low-probability words and relatively few
high-probability words. This skewness poses a technical problem to lm() . A few high-
probability outliers become overly influential, and shift the slope and intercept to such an
extent that it becomes suboptimal for the majority of data points. The technical solution
is to apply a logarithmic transformation in order to remove at least a substantial amount
of this skewness by bringing many straying outliers back into the fold. The right panel of
Figure 4.11 visualizes these benefits of the logarithmic transforms. We now have a regres-
sion line that captures the main trend in the data quite well. The robust regression line has
nearly the same slope, albeit a slightly higher intercept. It is influenced less by the four
data points with exceptionally low plural frequencies given their singular frequencies,
which have a small but apparently somewhat disproportionate effect on lm() ’s estimate
of the intercept. In Chapter 6, we will discuss in more detail how undue influence of po-
tential outliers can be detected and what measures can be taken to protect one’s model
against them.

The second example addresses the relation between the mean familiarity rating and
mean size rating for our 81 nouns in the ratings data set. The question of interest is
whether it is possible to predict how heavy people think an object is from how frequently
they think the name for that object is used in the language. We address this question with
lm() ,

> ratings.lm = lm(meanSizeRating ˜ meanFamiliarity, data = ratings)

extract the table of coefficients from the summary, and round it to four decimal digits.

> round(summary(ratings.lm)$coef, 4)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.7104 0.4143 8.9549 0.0000
meanFamiliarity -0.2066 0.1032 -2.0014 0.0488

The summary presents a negative coefficient for meanFamiliarity that is just signif-
icant at the 5% level. This suggests that objects that participants judge to have more
familiar names in the language receive somewhat lower size ratings.

This conclusion is, however, unwarranted as there are lots of things wrong with this
analysis. But this becomes apparent only by graphical inspection of the data and of the
predictions of the model. Let’s make a scatterplot of the data, the first thing that we
should have done anyway. The scatterplot smoother (lowess() ) shown in the upper left
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Figure 4.12: Scatterplots for mean rated size as a function of mean familiarity, with scat-
terplot smoothers (left panels) and linear (upper right, lower left) and quadratic (lower
right) fits. The upper panels show fits to all data points, the lower panels show fits to the
words for plants (p) and animals (a) separately.
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panel of Figure 4.12 suggests a negative correlation, but what is worrying is that there are
no points close to the line in the center of the graph. The same holds for the regression
line for the model that we just fitted to the data with lm() , as shown in the upper right
panel.

If you look carefully at the scatterplots, you can see that there seem to be two separate
strands of data points, one with higher size ratings, and one with lower size ratings. This
intuition is explored in the lower panels, where we link this difference to the two kinds
of nouns in ratings . The nouns naming plants and those naming animals (as specified
by the factor Class ) now receive their own separate regression lines.

First consider the lower left panel of Figure 4.12. We set up the axes, their labels, and
tick marks, but we prohibit displaying the data points with type = "n" .

> plot(ratings$meanFamiliarity, ratings$meanSizeRatin g,
+ xlab = "mean familiarity", ylab = "mean size rating",
+ type = "n")

Since we want to consider the plants and animals by themselves, we create separate data
frames,

> plants = ratings[ratings$Class == "plant", ]
> animals = ratings[ratings$Class == "animal", ]

add the points for the plants together with a scatterplot smoother,

> points(plants$meanFamiliarity, plants$meanSizeRatin g,
+ pch = ’p’, col = "darkgrey")
> lines(lowess(plants$meanFamiliarity, plants$meanSiz eRating),
+ col = "darkgrey")

and repeat the process for the animals:

> points(animals$meanFamiliarity, animals$meanSizeRat ing,
+ pch = ’a’)
> lines(lowess(animals$meanFamiliarity, animals$meanS izeRating))

Finally, we fit separate models and add their regression lines as well.

> plants.lm = lm(meanSizeRating ˜ meanFamiliarity, plants )
> abline(coef(plants.lm), col = "darkgrey", lty = 2)
> animals.lm = lm(meanSizeRating ˜ meanFamiliarity, anima ls)
> abline(coef(animals.lm), lty = 2)

The pattern revealed in the lower left panel of Figure 4.12 makes a lot more sense. The
plants and the animals received very different size ratings. Within each subset, there
seems to be a positive correlation with mean familiarity, as shown by the smoothers (solid
lines) and the linear regression lines (dashed).

However, we are still not there. If you inspect the two kinds of regression lines care-
fully, you will see that the smoother is slightly curved, both for the animals and also for
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the plants. Fitting a straight line through these data points may not be justified — after
all, we have no theoretical reasons to suppose that this relation must be strictly linear. In
the lower right panel of Figure 4.12, we have relaxed the linearity assumption by allowing
for the possibility that the curve is part of a PARABOLA.

Figure 4.13 illustrates two parabola, one with a minimum (represented by the black
line) and one with a maximum (represented by a grey line). Given a series of X-values,

> xvals = seq(-4, 4, 0.1)

we obtain the corresponding Y -values by summing an intercept, a weighted term with
xvals , and a weighted term with xvals -squared.

> yvals1 = 0.5 + 0.25 * xvals + 0.6 * xvalsˆ2
> yvals2 = 2.5 + 0.25 * xvals - 0.2 * xvalsˆ2

We plot the points for the first parabola, connect them with a line (type = "l" ), and
add the line for the second parabola using a separate call to lines() .

> plot(xvals, yvals1, xlab = "x", ylab = "y",
+ ylim = range(yvals1, yvals2), type = "l")
> lines(xvals, yvals2, col = "darkgrey")

Each parabola has an intercept, which determines where the parabola intersects with the
Y -axis. It also has a slope, the number before xvals , just as do straight lines. But in
addition, it has a second slope for xvals squared. This is the QUADRATIC term that
brings the curvature into the graph. If this second slope is positive, the curve is shaped
like a cup, if it is negative, the curve is shaped like a cap.

In order to do justice to the curvature that we observed in the lower panels of Fig-
ure 4.12, we assume that the data points of, e.g., the nouns denoting plants are close to
part of the curve of a parabola. Instead of feeding lm() with a formula describing a
straight line, we feed it a formula describing a parabola by adding a quadratic term, the
square of meanFamiliarity . Because the ∧ operator has a different function in formu-
las (see Chapter 6), we include meanFamiliarity ∧2 within the scope of the protective
I() operator.

> plants.lm = lm(meanSizeRating ˜ meanFamiliarity +
+ I(meanFamiliarityˆ2), data = plants)
> summary(plants.lm)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.1902476 1.28517759 4.038545 0.0003142449
meanFamiliarity -1.6717053 0.59334724 -2.817415 0.00822 90129
I(meanFamiliarityˆ2) 0.2030369 0.06659252 3.048944 0.00 45826280

Instead of the familiar two coefficients, we now have three coefficients, one for the inter-
cept, one for the LINEAR COMPONENT, and one for the QUADRATIC COMPONENT. Note
that the linear and the quadratic components of meanFamiliarity are both significant,
as you can tell by inspecting their p-values. Their joint effect is shown by the grey solid
line in the lower right panel of Figure 4.12, where we use the function predict() to
obtain the size ratings predicted by the model.

103 D
R

A
FT−4 −2 0 2 4

−
2

0
2

4
6

8
10

x

y

Figure 4.13: Two parabola.

> plot(ratings$meanFamiliarity, ratings$meanSizeRatin g,
+ xlab = "mean familiarity", ylab = "mean size rating", type = "n")
> points(plants$meanFamiliarity, plants$meanSizeRatin g,
+ pch = ’p’, col = "darkgrey")
> plants$predict = predict(plants.lm)
> plants = plants[order(plants$meanFamiliarity), ]
> lines(plants$meanFamiliarity, plants$predict, col = "d arkgrey")

In a similar way, we can fit a quadratic function to the data points for the animals, extract
the fitted values, and add these to the plot. What is unsatisfactory about this analysis,
however, is that we have fitted two models to a single data set, instead of one. In sec-
tion 4.4.1 we will return to this data set to show how to specify a model can handle all
data points simultaneously.

At this point, you may have started to wonder about the term ’linear’ in LINEAR

MODEL, as we have just used a linear model to produce a curve and not a straight line.
In fact, the term ’linear’ does not say anything about the relation between the depen-
dent variable and the predictor(s). What ’linear’ denotes is that the dependent variable
can be expressed as the sum of a series of weighted (possibly transformed) predictor
variables. The technical term for this is that the dependent variable is a LINEAR COM-
BINATION of its predictors. The weights of the predictors are the coefficients that lm()
estimates. Thus, in our model fit to the words for plants, the meanSizeRating is linear
in meanFamiliarity and I(meanFamiliarity ∧2) . It may help to compare the for-
mula that drives lm() and the resulting equation that tells us how to predict the mean
size rating for a given word i from the mean familiarity rating of that word given the
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coefficients of the fitted model:

meanSizeRating ∼ meanFamiliarity + I(meanFamiliarity ∧2)

meanSizeRating i = 5.19 − 1.67 ∗ meanFamiliarity i +

+0.20 ∗ meanFamiliarity 2

i

Note that we don’t have to specify the intercept in the formula, as lm() adds an intercept
term by default. The corresponding equation has the estimated intercept, followed by the
same terms as in the formula, but now each term is preceded by its weight, its estimated
coefficient that is listed in the summary.

Let’s wrap up with a summary of four basic rules of conduct for the analysis of paired
vectors.

1. Visualize! Make scatterplots, add non-parametric smoothers, look at your data.

2. Beware of outliers! If your distributions are skewed, transform them to bring the
outliers back into the fold. Outliers due to experimental flaws should be removed
from the data set.

3. Do not impose linearity a-priori! Straight lines are often a convenient simplification
at best: curves are ubiquitous in nature.

4. Keep your model as simple as possible! Don’t add unnecessary quadratic terms.

4.3.3 What does the joint density look like?

When you have two vectors that are paired, the question arises of what their joint density
looks like. Recall that when we are dealing with the density of a single random variable,
the area enclosed by the density curve and the X-axis is equal to 1. When we have two
paired vectors, the density is a surface, and the volume between the density surface and
the plane spanned by the X and Y axes is now equal to 1. The upper left panel of Fig-
ure 4.14 illustrates what the density of a random sample of 1000 bivariate standard normal
variates might look like. In what follows, we go through the steps required to make this
density plot. Along the way, some new functions and concepts will be introduced.

First of all, we need a function for bivariate normal random numbers. The function
rnorm() is not useful here. We could use it to generate two vectors of random numbers,
but these vectors will be uncorrelated. A function for generating two or more correlated
vectors (brought together in a matrix), we need to load tho MASSpackage, so that the
function mvrnorm() becomes available to us. We use mvrnorm() to generate a random
sample of n = 1000 paired random numbers sampled from populations with means of 0,
variances of 1, and a correlation of 0.8.

> library(MASS)
> x = mvrnorm(n = 1000, mu = c(0, 0),
+ Sigma = cbind(c(1, 0.8), c(0.8, 1)))
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Figure 4.14: Random samples of a bivariate standard normal and a lognormal-Poisson
variate (upper panels). The lower left panel shows the joint distribution of phonologi-
cal neighborhood size and rank in the neighborhood for 4-phoneme Dutch wordforms,
the lower right panel shows the joint distribution for singular and plural frequency for
monomorphemic Dutch nouns.
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> head(x)
[,1] [,2]

[1,] 0.5694554 0.7122192
[2,] -1.8851621 -2.2727134
[3,] -1.7352253 -1.7685805
[4,] -1.2654685 -0.1380204
[5,] -0.2449445 -0.7448824
[6,] -1.1241598 -1.0330096

We use cor() to check that the correlation between the two column vectors is indeed
close to the population parameter (0.8) that we specified in the call to mvrnorm() .

> cor(x[,1], x[,2])
[1] 0.7940896

The third argument of mvrnorm() , Sigma ,

> Sigma
[,1] [,2]

[1,] 1.0 0.8
[2,] 0.8 1.0

created with cbind() , which binds vectors column-wise, is the VARIANCE-COVARIANCE

matrix of our bivariate standard normal sample x . The Sigma matrix has the variances
on the main diagonal, and the COVARIANCES on the subdiagonal. The covariance is a
measure that is closely related to the correlation. But whereas the correlation is scaled so
that its values are between −1 and +1, the value of the covariance can range between −∞
and +∞, and depends on the scales of its input vectors. We can illustrate the difference
between the covariance and the correlation by means of the output of mvrnorm() , which
as we saw previously is a two-column matrix. The correlation of the two column vectors
is the same, irrespective of whether we scale any of the vectors up, or down:

> cor(x[, 1], x[, 2])
[1] 0.7940896
> cor(x[, 1], 100 * x[, 2])
[1] 0.7940896
> cor(0.001 * x[, 1], 100 * x[, 2])
[1] 0.7940896

In contrast, the covariance changes substantially by these changes in scale:

> cov(x[, 1], x[, 2])
[1] 0.7940896
> cov(x[, 1], 100 * x[, 2])
[1] 80.10768
> cov(0.003 * x[, 1], 100 * x[, 2])
[1] 0.2403230
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It is only when the two variances are equal to 1, as in the above variance-covariance
matrix, that the covariance and the correlation are identical.

Now that we have seen how to create bivariate normal random numbers, we pro-
ceed to estimate the corresponding density surface with the two-dimensional analogue
of density() , the function kde2d() . The output of kde2d() is a list with X coordi-
nates, Y coordinates, and the Z coordinate for each combination of the X and Y . The
number of X coordinates (and Y coordinates) is specified with the parameter n, which
we set to 50. Jointly, the X, Y and Z coordinates define the estimated density surface. We
plot this surface with persp() , which produces a PERSPECTIVE PLOT.

> persp(kde2d(x[, 1], x[, 2], n = 50),
+ phi = 30, theta = 20, # angles defining viewing direction
+ d = 10, # strength of perspective
+ col = "lightblue", # color for the surface
+ shade = 0.75, ltheta = -100, # shading for viewing direction
+ border = NA, # we use shading, so we disable border
+ expand = 0.5, # shrink the vertical direction by 0.5
+ xlab = "X", ylab = "Y", zlab = "density") # add labels
+ mtext("bivariate standard normal", 3, 1) # and add title

The wide range of options of persp() is described in detail on its help page. You will also
find the command demo(persp) useful, which gives some examples of what persp()
can do, including examples of the required code.

Paired vectors need not follow a bivariate normal distribution. The upper right panel
of Figure 4.14 plots a bivariate density that is LOGNORMAL-POISSON DISTRIBUTED[cf.
Baayen et al., 463–484]. This is a distribution that provides a reasonable first approxi-
mation for paired word frequency counts obtained, e.g., by calculating the frequencies
of a set of words in two equally sized text corpora. A LOGNORMAL RANDOM VARIABLE

is a variate that is normally distributed after the logarithmic transformation. Given the
(simplifying) assumption that word frequencies are lognormally distributed, we gener-
ate n = 1000 lognormally distributed random numbers with rlnorm() with which we
model the Poisson rates λ at which 1000 words are used in texts. In other words, for a
given word, we model its token frequency in a text corpus as being Poisson-distributed.
In order to simulate the frequency of a given word in two corpora, we generate two ran-
dom numbers with rpois() for that word, given its usage rate λ.

Let’s make this more concrete by showing how this works in R. We begin with defining
the number of words n, the corresponding vector of usage rates lambdas , and a two-
column matrix of zeros in which we will store the two simulated frequencies of a given
word.

> n = 1000 # number of words
> lambdas = rlnorm(n, 1, 4) # lognormal random numbers
> mat = matrix(nrow = n, ncol = 2) # define matrix with zeros

We proceed with a FOR LOOP to store the two frequencies for each word i in mat . The
variable i in the loop starts at 1, ends at n, and is incremented in steps of 1. For each
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value of i , we fill the i-th row of mat with two Poisson random numbers, both obtained
for the same Poisson rate given by the i-th λ.

> for (i in 1:n) { # loop over each word index
+ mat[i,] = rpois(2, lambdas[i]) # store Poisson frequencie s
+ }
> mat[1:10,]

[,1] [,2]
[1,] 319 328
[2,] 22 18
[3,] 0 0
[4,] 3 2
[5,] 307 287
[6,] 29 29
[7,] 240 223
[8,] 2 1
[9,] 1 0

[10,] 523 527

The first row of mat lists the frequencies for the first word, the second row those for the
second word, and so on. Now that mat has been properly filled with simulated frequen-
cies of occurrence, we use it as input to the density estimation function. Before we do so,
it is essential to apply a logarithmic transformation to remove most of the skew. As there
are zero frequencies in mat , and as the logarithm of zero is undefined, we back off from
zero by adding 1 to all cells of mat before taking the log.

> mat = log(mat+1)

We now use the same code as previously for the bivariate normal density,

> persp(kde2d(mat[, 1], mat[, 2], n = 50),
+ phi = 30, theta = 20, d = 10, col = "lightblue",
+ shade = 0.75, box = T, border = NA, ltheta = -100, expand = 0.5,
+ xlab = "log X", ylab = "log Y", zlab = "density")

but change the accompanying text.

> mtext("bivariate lognormal-Poisson", 3, 1)

The lower panels of Figure 4.14 illustrate two empirical densities. The left panel con-
cerns the phonological similarity space of 4171 Dutch word forms with four phonemes.
For each of these words, we calculated the type count of four-phoneme words that differ
in only one phoneme, its phonological neighborhood size. For each word, we also cal-
culated the rank of that word in its neighborhood. (If the word was the most frequent
word in its neighborhood, its rank was 1, etc.) After removal of words with no neigh-
bors and log transforms, we obtain a density that is clearly not strictly bivariate normal,
but that might perhaps be considered as sufficiently approximating a bivariate normal
distribution when considering a regression model.
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The lower right panel of Figure 4.14 presents the density for the (log) frequencies of
4633 Dutch monomorphemic noun stems in the singular and plural form. This distribu-
tion has the same kind of shape as that of the lognormal-Poisson variate in the upper
right.

4.4 A numerical vector and a factor: analysis of variance

Up till now, we have considered the functional relation between two numerical vectors.
In this section, we consider how to analyse a numerical vector that is paired with a factor.
Consider again mean familiarity ratings and the class of the words in the ratings data
frame:

> ratings[1:5, c("Word", "meanFamiliarity", "Class")]
Word meanFamiliarity Class

23 almond 3.72 plant
70 ant 3.60 animal
12 apple 5.84 plant
76 apricot 4.40 plant
79 asparagus 3.68 plant

We can use the lm() function to test whether there is a difference in mean familiarity
between nouns for plants and nouns for animals. This is known as a ONE-WAY ANALYSIS

OF VARIANCE.

> summary(lm(meanFamiliarity ˜ Class, data = ratings))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5122 0.1386 25.348 < 2e-16
Classplant 0.8547 0.2108 4.055 0.000117

The summary shows two highly significant p-values, so we may infer that the difference
between the two group means must somehow be significant. But let’s delve a little deeper
into what is happening here. After all, Class is a factor and not a numerical variable
representing a line for which a slope and an intercept make sense.

What lm() does for us with the factor Class is to recode its factor levels into one
or more numerical vectors. Because Class has only two levels, one numerical vector
suffices, a vector with zeros for the animals and with ones for the plants. This numerical
vector is labeled as Classplant , and lm() carries out its standard calculations with this
vector just as it would for any other numerical variable. Hence, it reports an intercept
and a slope. However, intercept and slope receive a special interpretation that crucially
depends on how the factor levels are recoded numerically.

The numerical recoding of factor levels is referred to as DUMMY CODING. There are
many different algorithms for dummy coding. (The help page for contr.treatment()
provides further information.) The kind of dummy coding used in this book is known as
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TREATMENT CODING. Rhandles dummy coding automatically for us, but by way of illus-
tration we add treatment dummy codes to our data frame by hand. For convenience, we
first make a copy of ratings with only the columns relevant for the current discussion
included.

> dummy = ratings[,c("Word", "meanFamiliarity", "Class") ]

We now add the dummy codes: a 1 for plants , and a 0 for animals, in a vector named
Classplant , following R’s naming conventions.

> dummy$Classplant = 1
> dummy[dummy$Class == "animal",]$Classplant = 0
> dummy[1:5, ]

Word meanFamiliarity Class Classplant
23 almond 3.72 plant 1
70 ant 3.60 animal 0
12 apple 5.84 plant 1
76 apricot 4.40 plant 1
79 asparagus 3.68 plant 1

It does not matter which factor level is assigned a 1 and which a 0. Some decision has
to be made, R bases its decision on alphabetical order. Hence animal is singled out
as the DEFAULT or REFERENCE LEVEL that is contrasted with the level plant . R labels
the dummy vector with the factor name followed by the non-default factor level, hence
the name Classplant . If we now run lm() on dummywith Classplant as predictor
instead of Class , we obtain exactly the same table of coefficients as above:

> summary(lm(meanFamiliarity ˜ Classplant, data = dummy))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5122 0.1386 25.348 < 2e-16
Classplant 0.8547 0.2108 4.055 0.000117

Let’s now study this table in some more detail. It lists two coefficients. First consider the
coefficient labeled intercept. Since all we are doing is comparing the ratings for the two
levels of the factor Class , the term ’intercept’ must have a more general interpretation
than ’the Y -value of a line when X = 0. What the intercept actually represents here is the
group mean for the default level, animal . In other words, the intercept is nothing else
but the mean familiarity for the subset of animals:

> mean(ratings[ratings$Class == "animal",]$meanFamilia rity)
[1] 3.512174
> coef(ratings.lm)[1]

(Intercept)
3.512174
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The t-value and its corresponding p-value answer the question whether the group mean
for the animals, 3.5122, is significantly different from zero. It clearly is, but this informa-
tion is not that interesting to us as we are concerned with the difference between the two
group means.

Consider therefore the second coefficient in the model, 0.8547. The value of this coef-
ficient represents the contrast (i.e., the difference) between the group mean of the plants
and that of the animals. When a word does not belong to the default class, i.e., it denotes
a plant instead of an animal, then the mean has to be adjusted upwards by adding 0.8547
to the intercept, the group mean for the animals. In other words, the group mean for
the nouns denoting plants is 4.3669 (3.5122 + 0.8547). What the t-test in the above table
of coefficients tells us is that this adjustment of 0.8547 is statistically significant. In other
words, we have ample reason to suppose that the two group means differ significantly.

The t-value and p-value obtained here are identical to those for a straightforward t-test
when we force t.test() to treat the variances of the familiarity ratings for plants and
animals as identical:

> t.test(animals$meanFamiliarity, plants$meanFamiliar ity,
+ var.equal = TRUE)
t = -4.0548, df = 79, p-value = 0.0001168
alternative hypothesis: true difference in means is not equ al to 0
95 percent confidence interval:

-1.2742408 -0.4351257
sample estimates:
mean of x mean of y

3.512174 4.366857

Note once more that the mean for animals is identical to the coefficient for the intercept,
and that the mean for plants is the sum of the intercept and the coefficient adjusting for
the level plant of the factor Class .

Whereas the function t.test() is restricted to comparing two group means, the
lm() function can be applied to a factor with more than two levels. By way of example,
consider the auxiliaries data set, which provides information on 285 Dutch verbs.

> head(auxiliaries)
Verb Aux VerbalSynsets Regularity

1 blijken zijn 1 irregular
2 gloeien hebben 3 regular
3 glimmen zijnheb 2 irregular
4 rijzen zijn 4 irregular
5 werpen hebben 3 irregular
6 delven hebben 2 irregular

The column labeled Aux specifies what the appropriate auxiliary for the perfect tense is
for the verb listed in the first column. Dutch has two auxiliaries for the perfect tense,
zijn (’be’) and hebben (’have’), and verbs subcategorize as to whether they select only zijn,
only hebben, or both (depending on the aspect of the clause and the inherent aspect of
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the verb). The column VerbalSynsets specifies the number of verbal synsets in which
a given verb appears in the Dutch WordNet. The final column categorizes the verbs as
regular versus irregular.

We test whether the number of verbal synsets varies significantly with auxiliary by
modeling VerbalSynsets as a function of Aux .

> auxiliaries.lm = lm(VerbalSynsets ˜ Aux, data = auxiliari es)

Let’s first consider the general question whether Aux helps explain at least some of the
variation in the number of verbal synsets. This question is answered with the help of the
anova() function.

> anova(auxiliaries.lm)
Analysis of Variance Table

Response: VerbalSynsets
Df Sum Sq Mean Sq F value Pr(>F)

Aux 2 117.80 58.90 7.6423 0.0005859
Residuals 282 2173.43 7.71

The anova() function reports an F -value of 7.64, which, for 2 and 282 degrees of free-
dom, is highly significant (compare 1-pf(7.6423, 2, 282) ). What this test tells us is
that there are significant differences in the mean number of synsets for the three kinds of
verbs. However, it does not specify which of the — in this case 3 — possible differences in
the means might be involved: hebben – zijn , hebben – zijnheb and zijn – zijnheb .
Some information as to which of these means are really different can be gleaned from the
summary:

> summary(auxiliaries.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.4670 0.1907 18.183 < 2e-16
Auxzijn 0.5997 0.7417 0.808 0.419488
Auxzijnheb 1.6020 0.4114 3.894 0.000123

From the summary we infer that the default or reference level is hebben : hebben
precedes zijn and zijnheb in the alphabet. This explains why there is no row labeled
with Auxhebben in the summary table. Since hebben is the default, the intercept (3.4670)
represents the group mean for hebben . There are two additional coefficients, one for the
contrast between the group mean of hebben versus zijn , represented by the vector of
dummy contrasts labeled Auxzijn , and one for the contrast between the group mean for
hebben and that of zijnheb , represented by the dummy vector Auxzijnheb . Hence,
we can reconstruct the other two group means from the table of coefficients. The mean
for zijn is 3.4670 + 0.5997, and the mean for verbs allowing both auxiliaries is 3.4670 +
1.6020. The t-test for the intercept tells us that 3.4670 is unlikely to be zero, which is not of
interest to us here. The coefficient of 0.5997 (for the verbs taking zijn ) is not significant
(p > 0.40). This indicates that there is no reason to suppose that the means of the verbs
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taking hebben and those taking zijn are different. The coefficient for verbs taking both
auxiliaries is significant, so we know that this mean is really different from the mean for
verbs selecting only hebben .

There is one comparison that is left out in this example: (zijn versus zijnheb ).
When a factor has more than three levels, there will be more comparisons that do not
appear in the table of coefficients. This is because this table lists only those pairwise
comparisons that involve the default level, the reference level that is mapped onto the
intercept.

A question that often arises when a factor has more than two levels is which group
means are actually different. In the present example, one might consider renaming the
factor levels so that the missing comparison appears in the table of coefficients. This is
not recommended, however, for two reasons. The first is that it is cumbersome to do so,
the second is that there is a statistical snag when MULTIPLE COMPARISONS are carried out
on the same data.

Recall that we accept the outcome of a statistical experiment as surprising when its p-
value is extreme, for instance, below α = 0.05. When we are interested in the differences
between, for instance, three group means, we have to be careful how to define what we
count as extreme. The proper definition of an extreme probability is, in this case, that at
least one of the outcomes is truly surprising. Now, if we simply carry out three separate
t-tests with α = 0.05, the probability of surprise for at least one comparison, increases
from 0.05 to 0.143. To see this, we model our statistical experiment as a random variable
with a probability of success equal to 0.05 and a probability of failure equal to 0.95. The
probability of at least one success is the same as one minus the probability of no successes
at all, hence

> 1 - pbinom(0, 3, 0.05)
[1] 0.142625

In other words, the probability that at least one out of three experiments will be success-
ful in producing a p-value less than 0.05 just by chance is 0.14. This example illustrates
that when we carry out multiple comparison we run the risk of serious INFLATION IN

SURPRISE. This is not what we want.
There are several remedies, of which I discuss two. The first is known as BONFER-

RONI’S CORRECTION. For n comparisons, simply divide α by n. Any comparison that
produces a p-value less than α/n is sure to be significant at the α significance level. Ap-
plied to our example, we begin with noting that Aux has 3 levels and therefore 3 pairwise
comparisons of two means are at issue. Since n = 3, any pairwise comparison that yields
a p-value less than 0.05/3 = 0.0167 can be accepted as significant. If Aux would have had
4 levels, the number of possible pairwise comparisons would be 6, so α = 0.0083 would
have been appropriate.

The second remedy is to make use of TUKEY’S HONESTLY SIGNIFICANT DIFFERENCE,
available in Ras TukeyHSD() . This method has greater power to detect significant differ-
ences than the Bonferroni method, but has as disadvantage that the means for each level
of the factor should be based on equal numbers of observations. The implementation
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of Tukey’s HSD in R incorporates an adjustment for sample size that produces sensible
results also for mildly unbalanced designs.

For the present example, the counts of verbs, cross-classified by the auxiliary they
select, point to a very unbalanced design.

> xtabs(˜ auxiliaries$Aux)
auxiliaries$Aux

hebben zijn zijnheb
212 15 58

Hence, the Bonferroni adjustment is required. We could apply TukeyHSD() to these data,
but the results would be meaningless. To illustrate how to carry out multiple comparisons
using Tukey’s honestly significant difference, consider the following (simplified) example
from the help page of TukeyHSD() . From the built-in data sets in R, we select the data
frame named warpbreaks , which gives the number of warp breaks per loom, where a
loom corresponds to a fixed length of yarn. For more information on this data set, type
?warpbreaks . We run a one-way analysis of variance.

> warpbreaks.lm = lm(breaks ˜ tension, data = warpbreaks)
> anova(warpbreaks.lm)
Analysis of Variance Table

Response: breaks
Df Sum Sq Mean Sq F value Pr(>F)

tension 2 2034.3 1017.1 7.2061 0.001753
Residuals 51 7198.6 141.1
> summary(warpbreaks.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.39 2.80 12.995 < 2e-16
tensionM -10.00 3.96 -2.525 0.014717
tensionH -14.72 3.96 -3.718 0.000501

Residual standard error: 11.88 on 51 degrees of freedom
Multiple R-Squared: 0.2203, Adjusted R-squared: 0.1898
F-statistic: 7.206 on 2 and 51 DF, p-value: 0.001753

The table of coefficients suggests that there are significant contrasts of medium and high
tension compared to low tension. In order to make use of TukeyHSD() , we have to rerun
this analysis using a function specialized for analysis of variance, aov() .

> warpbreaks.aov = aov(breaks ˜ tension, data = warpbreaks)

The summary of the aov object gives exactly the same output as the anova function
applied to the lm object:

> summary(warpbreaks.aov)
Df Sum Sq Mean Sq F value Pr(>F)

tension 2 2034.3 1017.1 7.2061 0.001753
Residuals 51 7198.6 141.1
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Also note that the F -test in this summary yields the same results as the F -test following
the table of coefficients in the summary of warpbreaks.lm . Both F -values tell exactly
the same story: There are statistically significant differences in the number of breaks as a
function of the amount of tension. Let’s now apply TukeyHSD() :

> TukeyHSD(warpbreaks.aov)
Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = breaks ˜ tension, data = warpbreaks)

$tension
diff lwr upr p adj

M-L -10.000000 -19.55982 -0.4401756 0.0384598
H-L -14.722222 -24.28205 -5.1623978 0.0014315
H-M -4.722222 -14.28205 4.8376022 0.4630831

This table lists the differences in the means, the lower and upper end points of the con-
fidence intervals, and the adjusted p-value. A comparison of the adjusted p-values for
the M-L and H-L comparisons with the p-values listed in the table of coefficients for
warkbreaks.lm above shows that the adjusted p-values are more conservative. For
visualization, see Figure 4.15, simply type

> plot(TukeyHSD(warpbreaks.aov))

Above, we fitted a linear model to the auxiliary data using lm() . Alternatively, we
could have used the aov() function. However, both methods, which are underlyingly
identical, may be inappropriate. We have already seen that the numbers of observations
for the three levels of Aux differ widely. More importantly, there are also substantial
differences in their variances.

> tapply(auxiliaries$VerbalSynsets, auxiliaries$Aux, v ar)
hebben zijn zijnheb

5.994165 18.066667 11.503932

It is crucial, therefore, to check whether a non-parametric test also provides support for
differences in the number of synsets for verbs with different auxiliaries. The test we illus-
trate here is the KRUSKAL-WALLIS RANK SUM TEST:

> kruskal.test(auxiliaries$VerbalSynsets, auxiliaries $Aux)
Kruskal-Wallis rank sum test

data: auxiliaries$VerbalSynsets and auxiliaries$Aux
Kruskal-Wallis chi-squared = 11.7206, df = 2, p-value = 0.00 2850

The small p-value supports our intuition that the numbers of synsets are not uniformly
distributed over the three kinds of verbs.
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Figure 4.15: Family-wise 95% confidence intervals for Tukey’s honestly significant dif-
ference for the warpbreaks data. The significant differences are those for which the
confidence intervals do not intersect the dashed zero line.

4.4.1 Two numerical vectors and a factor: analysis of covariance

In this section, we return to the analysis of the mean size ratings. What we have done thus
far is to analyse these data either with linear regression (the first example in section 4.3.2)
or with analysis of variance (section 4.4). In linear regression, we used a numerical vector
as predictor, in analysis of variance, the predictor was a factor. The technical term for anal-
yses with both numeric predictors and factorial predictors is ANALYSIS OF COVARIANCE.
In R, the same function lm() is used for all three kinds of analyses (regression, analysis
of variance, and analysis of covariance), as all three are built on the same fundamental
principles.

Recall that we observed a non-linear relation between familiarity and size rating, and
that we fitted a linear model with a quadratic term to the subset of nouns denoting plants.
We could fit a separate regression model to the subset of nouns denoting animals, but
what we really need is a model that tailors the regression lines to both subsets of nouns
simultaneously. This is accomplished in the following linear model, in which we include
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both meanFamiliarity and the factor Class as predictors.

> ratings.lm = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2), data = ratings)
> summary(ratings.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.42894 0.54787 8.084 7.6e-12
meanFamiliarity -0.63131 0.29540 -2.137 0.03580
I(meanFamiliarityˆ2) 0.10971 0.03801 2.886 0.00508
Classplant -1.01248 0.41530 -2.438 0.01711
meanFamiliarity:Classplant -0.21179 0.09779 -2.166 0.03 346
---
Residual standard error: 0.3424 on 76 degrees of freedom
Multiple R-Squared: 0.8805, Adjusted R-squared: 0.8742
F-statistic: 140 on 4 and 76 DF, p-value: < 2.2e-16

Let’s consider the elements of this model by working through the table of coefficients.
As usual, there is an intercept, which represents a modified group mean for the subset
of nouns denoting animals. We are dealing with a modified group mean because this
mean is calibrated for words with zero meanFamiliarity . As familiarity ratings range
between 1 and 7 in this experiment, this group mean is a theoretical construct. The next
two coefficients define the nonlinear effect of meanFamiliarity , one for the linear term,
and one for the quadratic term. These coefficients likewise concern the subset of nouns
for animals.

The last two coefficients summarizes how the preceding coefficients should be modi-
fied in order to make them more precise for the nouns that fall into the plant category.
The coefficient of Classplant tells us that we should subtract −1.012 from the inter-
cept in order to obtain the (modified) group mean for the plants. The final coefficient,
meanFamiliarity:Classplant , tells us that the coefficient for meanFamiliarity
should be decreased by −0.212 in order to make it precise for the plants. This last coeffi-
cient illustrates what is referred to as an INTERACTION, in this case an interaction between
meanFamiliarity and Class . In the formula that we specified for lm() , this interac-
tion was specified by means of the asterisk:

meanFamiliarity * Class

This is shorthand for

meanFamiliarity + Class + meanFamiliarity:Class

where the colon specifies the interaction of the predictors to its left and right. In the table
of coefficients, all terms in the model are spelled out separately, including the interaction
of meanFamiliarity by Class .

meanFamiliarity:Classplant

118



D
R

A
FT

Since meanFamiliarity is numeric vector, its name appears as such in the interaction.
Class , by contrast, is a factor, and therefore the level to which the interaction applies is
added to the factor name.

What the interaction tells us is that the linear coefficient of meanFamiliarity has
to be adjusted downwards when dealing with plants rather than with animals. For an-
imals, this coefficient is −0.63, for plants, we add the coefficient for the interaction of
meanFamiliarity by Class to this coefficient: −0.631 −0.212 = −0.843. In other
words, the linear term of meanFamiliarity differs for plants and animals. As there
is no adjustment of the quadratic term in this model, the plants and animals share its
coefficient (0.109).

Figure 4.16 shows what we have accomplished. We have a group difference between
the plants and the animals (the plants have lower size ratings), we have a nonlinear func-
tional relation between the ratings for familiarity and size, and we have fine-tuned the
curves for plants and animals by adjusting the linear term only. It is left as an exercise to
show that an adjustment to the squared term is not necessary. The present model is both
parsimonious and adequate.

A first step for producing Figure 4.16 is to add the values for the mean size ratings that
are predicted by the model to the data frame. These predicted values, often referred to as
the FITTED values, are extracted from the model object with the function fitted() .

> ratings$fitted = fitted(ratings.lm)

As before, we set up the axes and plot the data points for plants and animals separately.

> plot(ratings$meanFamiliarity, ratings$meanSizeRatin g,
+ xlab = "mean familiarity", ylab = "mean size rating", type = "n")
> text(ratings$meanFamiliarity, ratings$meanSizeRatin g,
+ substr(as.character(ratings$Class), 1, 1), col = ’darkg rey’)

With substr() we extracted the first letter of the names of the factor levels. Its second
argument specifies the first position of the substring that is to be extracted from the string
(or vector of strings) supplied as first argument. Its third argument specifies the last
position in the string that is to be extracted. We proceed with creating separate data
frames for the plants and the animals,

> plants = ratings[ratings$Class == "plant", ]
> animals = ratings[ratings$Class == "animal", ]

which we sort by meanFamiliarity.

> plants = plants[order(plants$meanFamiliarity),]
> animals = animals[order(animals$meanFamiliarity),]

As the vectors of the X and Y values are now in the appropriate order to serve as input
to lines() , we finally add the regression curves to the plot.

> lines(plants$meanFamiliarity, plants$fitted)
> lines(animals$meanFamiliarity, animals$fitted)
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Figure 4.16: Analysis of covariance for size rating as a function of Class (plant versus
animal) and familiarity rating.

4.5 Two vectors with counts

The examples in the preceding sections concerned various kinds of measurements result-
ing in real numbers. When you are dealing with counts (integers) instead of measure-
ments, different techniques are called for. Continuing with the data set of Dutch verbs
(auxiliaries ), we cross-tabulate the verbs by regularity and auxiliary choice.

> xt = xtabs(˜ Aux + Regularity, data = auxiliaries)
> xt

Regularity
Aux irregular regular

hebben 94 118
zijn 12 3
zijnheb 36 22

Recall that tables with proportions by row or by column are obtained with prop.table() ,

> prop.table(xt, 1) # rows add up to 1
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Regularity
Aux irregular regular

hebben 0.4433962 0.5566038
zijn 0.8000000 0.2000000
zijnheb 0.6206897 0.3793103

> prop.table(xt, 2) # columns add up to 1
Regularity

Aux irregular regular
hebben 0.6619718 0.8251748
zijn 0.0845070 0.0209790
zijnheb 0.2535211 0.1538462

and that the overall proportions are calculated by dividing the table by its sum.

> xt/sum(xt)
Regularity

Aux irregular regular
hebben 0.32982456 0.41403509
zijn 0.04210526 0.01052632
zijnheb 0.12631579 0.07719298

There are more regular verbs with hebben than irregular verbs, while there are more
irregular verbs with zijn compared to regular verbs. This difference is clearly visible in
the mosaic plot shown in the left panel of Figure 4.17.

> mosaicplot(xt, col=TRUE)

The mosaic plot shows very clearly that the smallest subset of verbs, those selecting zijn
as auxiliary, are also the verbs with the greatest proportion of irregulars.

Suppose that we had observed the following fictitious counts.

> x = data.frame(irregular = c(100, 8, 30),
+ regular = c(77, 6, 22))
> rownames(x) = c("hebben", "zijn", "zijnheb")
> x

irregular regular
hebben 100 77
zijn 8 6
zijnheb 30 22

The mosaic plot of these counts, shown in the right panel of Figure 4.17, shows that the
six blocks are divided by nearly straight horizontal and vertical lines. The proportions of
verbs that are regular are approximately the same across all the three classes of auxiliaries.
Similarly, the proportions of verbs with a given auxiliary are very similar across regulars
and irregulars. The counts in the various rows are nearly proportional, and the same
holds for the columns.

The mosaic plots of Figure 4.17 suggest that there is reason for surprise for the actual
data, but not for the artificial counts. Formal tests for the presence of non-proportionalities
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Figure 4.17: Mosaic plots for Dutch verbs cross-classified by regularity and auxiliary (left
panel) and a fictitious data set (right panel).

in contingency tables are the chi-squared test and Fisher’s exact test of independence. The
chi-squared test is carried out with chisq.test() , the same function that we encoun-
tered previously. It is also reported when the output of xtabs() is summarized.

> chisq.test(xt)
Pearson’s Chi-squared test

data: xt
X-squared = 11.4929, df = 2, p-value = 0.003194
> summary(xt)
Call: xtabs(formula = ˜Aux + Regularity, data = auxiliaries )
Number of cases in table: 285
Number of factors: 2
Test for independence of all factors:

Chisq = 11.493, df = 2, p-value = 0.003194

The small p-value suggests that the counts in the two columns (or rows) are indeed not
proportional given the total number of observations in each row (or column). Applied to
the artificial data, we obtain a large p-value, as expected.

> chisq.test(x)
Pearson’s Chi-squared test

data: x
X-squared = 0.0241, df = 2, p-value = 0.988

For tables with not too large counts, a test of independence of rows (or columns) that
produces more precise p-values is FISHER’S EXACT TEST.

> fisher.test(xt)
Fisher’s Exact Test for Count Data
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data: xt
p-value = 0.002885
alternative hypothesis: two.sided

For this example, the exact probability (given the row and column totals) is slightly
smaller than the probability as estimated using the chi-squared test.

4.6 A note on statistical significance

When a statistical test returns a statistically significant p-value, this does not imply that
the tested effect is actually useful. The smaller the p-value is, the more likely it is that
the effect is replicable. But the magnitude of the effect can be so small to be useless for
practical applications. By way of example, we simulate regression data, with n = 100
equally spaced x coordinates, and y coordinates that are one third of the x coordinates
with substantial RANDOM NOISE superimposed. The random noise is obtained by adding,
to each y value, a random number from a normal distribution with mean 0 and a standard
deviation of 80.

> n = 100
> x = seq(1, 100, length = n)
> y = 0.3 * x + rnorm(n, 0, 80)

A simulation run will typically produce non-significant results, such as

> model100 = lm(y ˜ x)
> summary(model100)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.5578443 16.7875448 -0.2715015 0.7865764
x 0.4621986 0.2886052 1.6014910 0.1124869

Although there is a linear relation between y and x — we built it into the data set ourselves
— the amount of noise that we superimposed is so large that we cannot detect it. A way
around this is to increase the number of observations.

> n = 1000
> x = seq(1, 100, length = n)
> y = 0.3 * x + rnorm(n, 0, 80)
> model1000 = lm(y ˜ x)
> summary(model1000)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.30845 4.90536 -0.471 0.638031
x 0.30795 0.08452 3.644 0.000283

Residual standard error: 76.46 on 998 degrees of freedom
Multiple R-Squared: 0.01313, Adjusted R-squared: 0.01214
F-statistic: 13.28 on 1 and 998 DF, p-value: 0.0002827
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The effect of x is now significant. However, even at this sample size it is virtually im-
possible to predict y from x. This is immediately evident from the scatterplot shown in
Figure 4.18,

> plot(x, y)
> abline(lm(y ˜ x))

and it is also indicated by the very small value of R2: The regression model explains a
mere 1% of the variance.
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Figure 4.18: Simulated regression data with significant p-value (p < 0.01) and no explana-
tory value (R2 = 0.008).

In order to assess the magnitude of an effect, p-values are clearly not appropriate.
From a rather pessimistic point of view, a p-value merely reflects the sample size. To
this, we should add that the null-hypothesis is often nothing more than a straw man. If
we want to ascertain the effect of a given predictor that is worth running an experiment
for, it is rather unlikely that we are truly interested in knowing whether its coefficient is
exactly zero or not exactly zero. What we are more likely to be interested in is how close the
predictor is to zero. Therefore, confidence intervals are at least as important as p-values,
because they inform us straightforwardly about how different our estimated coefficient
actually is from zero. For the above two regression models, we obtain the confidence
intervals for the coefficients with the help of the function confint() .

> confint(model100)
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2.5 % 97.5 %
(Intercept) -37.872181 28.756492
x -0.110529 1.034926
> confint(model1000)

2.5 % 97.5 %
(Intercept) -11.9344605 7.317552
x 0.1420982 0.473801

For the model with 100 observations, we have a wide confidence interval that straddles
zero. We can also see that the coefficient is more likely to be positive than negative. This
is confirmed by the model with 1000 observations, which has a confidence interval that
is much smaller and hence also more informative about the slope that we built into the
model (0.3).

Whether a slope of 0.3 is meaningful and has any practical or theoretical significance
remains an open question that can only be resolved given sufficient background informa-
tion about the nature and the purposes of the experiment that is being evaluated statisti-
cally. For instance, Frauenfelder et al. [1993] showed that a word’s frequency of use is a
significant predictor for the density of its similarity neighborhood. For practical applica-
tions this result is pretty useless in the light of the very low R2 of the regression model.
However, from a certain theoretical perspective, the presence of this correlation is in fact
expected, and the fact that the correlation is weak is not at all surprising. Similarly, in
reaction time experiments, the amount of the total variance explained by linguistic pre-
dictors tends to be minute compared to the variance that is tied to the participants and
their response execution, i.e., variance that is due to a very noisy measurement technique.
Even though effects may be tiny, if they consistently replicate across experiments and lab-
oratories, they may nevertheless be informative for theories of lexical representation and
processing.

4.7 Exercises

1. In chapter 1, we made a contingency table cross-tabulating the animacy of the re-
cipient and the realization of the recipient for the subset of English verbs in the data
set of Bresnan and colleagues that had inanimate themes. The following commands
recreate this table.

> verbs.xtabs = xtabs( ˜ AnimacyOfRec + RealizationOfRec,
+ data = verbs[verbs$AnimacyOfTheme != "animate", ])
> verbs.xtabs

RealizationOfRec
AnimacyOfRec NP PP

animate 517 300
inanimate 33 47
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Animate recipients seem to have a slight preference for the NP realization, inanimate
recipients for the PP realization. Evaluate whether this asymmetry is statistically
significant.

2. In section 3.2, we visualized the density of the frequency of the determiner het in
the Dutch novel Max Havelaar (see Figure 3.5). Are the frequencies in the vector
havelaar$Frequency Poisson-distributed?

3. Pluymaekers et al. [2005] studied the acoustic durations of affixes in derived Dutch
words. The data for the prefix ge- are available in the data set durationsGe . The
DurationOfPrefix is the dependent variable, Frequency is the key predictor.

> colnames(durationsGe, 3)
[1] "Word" "Frequency" "Speaker"
[4] "Sex" "YearOfBirth" "DurationOfPrefix"
[7] "SpeechRate" "NumberSegmentsOnset"

The general question of interest is whether the frequency with which a word is used
codetermines the durations of its constituent morphemes. Is the same morpheme,
here ge-, shorter in higher-frequency words? Address this question by means of a
regression model. Keep in mind that you should carefully check whether the distri-
butions of the predictors are roughly symmetrical and take appropriate measures if
not so before fitting the model to the data.

4. Show that an interaction of Class by the squared term of meanFamiliarity is su-
perfluous for the covariance model discussed for the ratings data in section 4.4.1.

5. The exercise accompanying Chapter 3 addressed the frequency distributions for
three words in Alice’s adventures in wonderland: alice , very , and hare . Use the
Kolmogorov-Smirnov test to test formally whether these words follow a Poisson
distribution.

6. Run a one-way analysis of variance to ascertain whether naming latencies in the
english data set differ for the young and old age groups in the data on English
monomorphemic and monosyllabic nouns and verbs. Age group is labeled as Age
Subject , the (log) naming latencies are labeled RTnaming . What is (in log units)
the difference between the group means for the young and old subjects? What are
the two group means?

7. The Dutch prefix ont- is subject to acoustic reduction in spontaneous speech. For
instance, the plosive or the nasal may not be present in the speech signal. Pluy-
maekers et al. [2005] measured the acoustic durations of the vowel, the nasal and
the plosive of this prefix in derived words extracted from a corpus of spoken Dutch.
Carry out an analysis of covariance to investigate whether the duration of the nasal
is affected by the word’s frequency and the presence of the plosive. Exclude the five
outlier words for which the nasal was absent from the data in durationsOnt .
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Chapter 5

Clustering and classification

The previous chapter introduced various techniques for analyzing data with one or two
vectors. The remaining chapters of this book discuss various ways of dealing with data
sets with more than two vectors. Data sets with many vectors are typically brought to-
gether in matrices. These matrices list the observations on the rows, with the vectors
(column variables) specifying the different properties of the observations. Data sets like
this are referred to as multivariate data.

There are two approaches for discovering the structure in multivariate data sets that
we discuss in this chapter. In one approach, we seek to find structure in the data in terms
of groupings of observations. These techniques are UNSUPERVISED in the sense that we
do not prescribe what groupings should be there. We discuss these techniques under
the heading of CLUSTERING. In the other approach, we know what groups there are in
theory, and the question is whether the data support these groups. This second group of
techniques can be described as SUPERVISED, because the techniques work with a grouping
that is imposed by the analyst on the data. We will refer to these techniques as methods
for CLASSIFICATION.

5.1 Clustering

5.1.1 Tables with measurements: Principal components analysis

Words such as goodness and sharpness can be analyzed as consisting of a stem good, sharp
and an affix, the suffix -ness. Some affixes are used in many words, -ness is an example.
Other affixes occur only in a limited number of words, for instance, the -th in warmth and
strength. The extent to which affixes are used and available for the creation of new words
is referred to as the productivity of the affix. Baayen [1994] addressed the question of
the extent to which the productivity of an affix is co-determined by stylistic factors. Do
different kinds of texts favor the use of different kinds of affixes?

The data set affixProductivity lists, for 44 texts with varying authors and genres,
a productivity index for 27 derivational affixes. The 44 texts represent four different text
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types: religious texts (e.g., the book of Mormon, coded B), books written for children (e.g.,
Alice’s adventures in Wonderland, coded C), literary texts (e.g., novels by Austin, Conrad,
James, coded L), and other texts (including officialese from the US government account-
ing office), coded O. The classification codes are given in the column labeled Registers .

> affixProductivity[c("Mormon", "Austen", "Carroll", "G ao"), c(5:10, 29)]
ian ful y ness able ly Registers

Mormon 0 0.1887 0.5660 2.0755 0.0000 2.2642 B
Austen 0 1.2891 1.5654 1.6575 1.0129 6.2615 L
Carroll 0 0.2717 1.0870 0.2717 0.4076 6.3859 C
Gao 0 0.3306 1.9835 0.8264 0.8264 4.4628 O

The question of interest is whether there is any structure in this 44 by 27 table of numbers
that sheds light on the relation between productivity and style. The tool that we will use
here is PRINCIPAL COMPONENTS ANALYSIS.

Figure 5.1: Different distributions of points (highlighted in grey) in a cube.

In order to understand the main idea underlying principal components analysis, con-
sider Figure 5.1. The upper left panel shows a cube, and the grey coloring of the cube
indicates that data points are spread out everywhere in the cube. In order to describe a
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point in the cube, we need all three axes. The cube in the upper right describes the situa-
tion in which all the points are located on the grey plane. We could describe the location
of a point on this plane using the three axes of the cube. But we can also choose new
axes in this plane, in which case we can still describe each and every relevant point. This
description is more economical, as it dispenses with the superfluous third dimension.
The cube in the lower left panel also involves a plane, but now there is more variation (a
greater range of values) in the Y and Z direction than in the X direction. The final cube
depicts the case where all the points are located on a line. To describe the location of these
points, a single axis (the line through these points) is sufficient. Here, we have only one
dimension left.

What principal components analysis does is try to reduce the number of dimensions
required for locating the approximate positions of the data points. For the upper left
cube, this is impossible. For the upper right cube, this is possible: We can get rid of one
dimension. The way in which principal components achieves this is by rotating the axes
in such a way that you get two new axes in the diagonal plane of the original, unrotated,
axes. If you imagine the points to be fixed in their location, while the cube itself can be
moved around, then what happens is that the cube is rotated so that all the data points
are lying on the bottom.

In the case of the lower left panel of Figure 5.1, principal components analysis will
rotate the cube so that all the points are on its floor. It will then choose the dimension
with most variation as its first axis (named principal component 1, henceforth PC1), in
this example the axis going up and back. The second axis (PC2) will be, in this example,
the original X axis. The third axis of the rotated cube (PC3) is one we don’t need anymore,
as it does not account for any variability in the data.

Of course, this example simplifies what happens in real data sets. It rarely happens
that all data points are exactly on a plane, there is nearly always a little scatter around
the plane. And instead of three dimensions, there may be many more dimensions, and
the plane around which points cluster may be a hyperplane instead of a standard two-
dimensional plane. But the key idea remains the same: we rotate our hypercube, and
work with a reduced set of dimensions, ordered by how much variability they account
for.

Returning to our data, we can regard the 44 texts as 44 points in a 27-dimensional
space. Do we need all these 27 dimensions, or can we reduce the number of dimensions
to a (much) smaller number? And do these new dimensions tell us something about how
affixes are used in different kinds of texts?

Let’s consider how we can address this question with the function prcomp() , which
requires a matrix (or a data frame, but then only the numerical columns in that data
frame) as input. As the last two colums of our data frame affixes contain descriptions
of labels for authors and text types, we select only colums 1:27 as input.

> affixes.pr = prcomp(affixProductivity[, 1:(ncol(affix Productivity)-3)])

We now have created a principal components object that has several components, as
shown when we request a list of the names of these components with the function names() .
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> names(affixes.pr)
[1] "sdev" "rotation" "center" "scale" "x"

Let’s consider these components step by step. The first component, sdev , is the standard
deviation corresponding to each PC.

> round(affixes.pr$sdev, 4)
[1] 1.8598 1.1068 0.7044 0.5395 0.5320 0.4343 0.4095 0.3778
[9] 0.3303 0.2952 0.2574 0.2270 0.2113 0.1893 0.1617 0.1503

[17] 0.1265 0.1126 0.1039 0.0870 0.0742 0.0674 0.0585 0.042 9
[25] 0.0260 0.0098 0.0087

These standard deviations are also listed by summary() , only part of the output is shown.

> summary(affixes.pr)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 1.860 1.107 0.7044 0.5395 0.5320 0.4343
Proportion of Variance 0.512 0.181 0.0734 0.0431 0.0419 0.0 279
Cumulative Proportion 0.512 0.693 0.7663 0.8094 0.8512 0.8 791
...

PC23 PC24 PC25 PC26 PC27
Standard deviation 0.05853 0.04292 0.0260 0.00977 0.00872
Proportion of Variance 0.00051 0.00027 0.0001 0.00001 0.00 001
Cumulative Proportion 0.99960 0.99987 1.0000 0.99999 1.00 000

The proportions of variance are simply the squared standard deviations divided by the
sum of the squared standard deviations, compare

> props = round((affixes.pr$sdevˆ2/sum(affixes.pr$sdev ˆ2)), 3)
> props[1:6]
[1] 0.512 0.181 0.073 0.043 0.042 0.028

The first principal component explains more than half of the variance, the last component
has no explanatory value whatsoever. The question we now have to address is which
dimensions are relevant, and which irrelevant. There is a rule of thumb stating that only
those principal components are important that account for at least 5% of the variance.
Figure 5.2 plots the proportions of variance accounted for by the principal components,
the ’significant’ components are shown in black.

> barplot(props, col = as.numeric(props > 0.05),
+ xlab = "principal components",
+ ylab = "proportion of variance explained")
> abline(h = 0.05)

A very similar plot is obtained with

> plot(affixes.pr)
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Another rule of thumb is to locate the cutoff point where there is a clear discontinuity as
you move from right to left. In the present example, the first minor discontinuity is at
the fifth PC, and the first large discontinuity at the third PC. From the summary, we learn
that we can reduce 27 dimensions to 3 dimensions without losing much of the structure
in the data: The first three PCs jointly account for slightly more than three quarters of
the variance (76.6%). In other words, with just three dimensions, we can already get very
close to the location of our 44 texts in the original 27-dimensional productivity space.
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Figure 5.2: Screeplot for the principal components analysis of texts in affix productivity
space.

The coordinates of the texts in the new three-dimensional space spanned by the new
axes, the first three principal components, are available in the component of affixes.pr
labeled x. This component lists the coordinates on all 27 PCs, here we only need the first
three.

> affixes.pr$x[c("Mormon", "Austen", "Carroll", "Gao"), 1:3]

PC1 PC2 PC3
Mormon -3.7613247 1.5552693 1.4117837
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Austen -0.1745206 -1.5247233 0.3285241
Carroll 0.3363524 1.5711792 -0.2937536
Gao -1.8250509 -0.8581186 -1.2897237

Figure 5.3 plots the texts in this 3-dimensional space by means of a scatterplot matrix
displaying all three pairs of combinations of PCs. You can think of this as looking into
a cube from three different sides: once from the top, once from the front, and once from
the side. We can observe some clustering, especially in the panel for PC1 and PC2 (first
panel of second row). The literary texts are in the center, the religious texts in the upper
left, the texts for children are more to the lower right, and the officialese tends towards
the bottom of the graph.

Visualization with scatterplot matrices is an important part of exploratory data anal-
ysis with principal components analysis. Figure 5.3 was made with a trellis function,
splom() (for scatterplot matrices). This is a powerful function with many options that
are explained in the on-line help. We first load the lattice package.

> library(lattice)

The next line of code figures out about how points should be represented in terms of plot
symbols and color coding. If you are using the Rgraphics window, it will figure out to use
color coding. If you are saving the plot as PostScript or jpeg, it will use plotting symbols
in black and white instead.

> super.sym = trellis.par.get("superpose.symbol")

The plot itself can now be produced with the following lines of code:

> splom(data.frame(affixes.pr[,1:3]),
+ groups = affixProductivity$Registers,
+ panel = panel.superpose,
+ key = list(
+ title = "texts in productivity space",
+ text = list(c("Religious", "Children",
+ "Literary", "Other")),
+ points = list(pch = super.sym$pch[1:4],
+ col = super.sym$col[1:4])))

A third important component of a principal components object is the rotation matrix,
which looks like this:

> dim(affixes.pr$rotation)
[1] 27 27
> affixes.pr$rotation[1:10, 1:3]

PC1 PC2 PC3 PC4
semi 0.0018753121 -0.001359615 0.003074151 -0.003384123 7
anti -0.0003107270 -0.002017771 -0.002695399 0.00059291 62
ee -0.0019930399 0.001106277 -0.017102260 -0.0033997410
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Scatter Plot Matrix
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Figure 5.3: Scatterplot matrix for the distribution of texts in the space spanned by the
three first principal components of affix productivity scores.
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Figure 5.4: Biplot with principal components 1 and 2 for authors in productivity space,
and the loadings of the affixes on these principal components.

ism 0.0087251807 -0.046360929 0.046553003 0.0300832267
ian -0.0459376905 -0.008605163 -0.010271978 -0.09374417 73
ful 0.0334764289 0.013734791 0.010000845 -0.0966573851
y 0.1113180755 -0.043908360 -0.276324337 -0.5719405630
ness 0.0297280626 -0.112768134 0.700249340 -0.137473462 1
able 0.0084568997 -0.124364821 0.012313097 0.1119376764
ly 0.9729027985 -0.111160032 -0.020500850 0.1585457448

This matrix lists the LOADINGS of the affixes on each principal component. These loadings
are proportional to the correlation of the original productivity values of an affix with the
PC. Therefore, you can get some idea of what a PC might indicate by looking at which
affixes have large positive or negative loadings. For instance, the suffix -ly (as in badly)
has a very high positive loading on PC1 compared to the other affixes shown above.

What makes principal components analysis attractive is the insights offered when we
plot affixes and texts together in a BIPLOT. As you can see in Figure 5.4, the variation
on PC1 is dominated by the suffix -ly, which seems to have been favored especially in
the Barrie novel. There is somewhat more diversification on PC2. Comparatives and
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superlatives are somewhat more characteristic for texts with high values on PC2, such as
Kipling, Carroll and Grimm. On the other hand, -ation emerges as characteristic for the
Federalist papers and also the texts by James and Austen.

The biplot shown in Figure 5.4 is obtained with the biplot() function, which in its
simplest form simply takes the principal components object as input. Here, we make use
of a number of options to fine-tune the plot.

> biplot(affixes.pr, scale = 0, var.axes = F,
+ col = c("darkgrey", "black"), cex = c(0.9, 1.2))

By default, biplot() rescales the principal components and the loadings. This rescal-
ing is disabled with scale = 0 . I have also disabled the displaying of arrows pointing
to the affixes with var.axes = F . The parameter col controls the colors for the texts
(darkgrey) and the affixes (black), and the parameter cex controls the font sizes. Note
that the primary coordinate system (bottom and left axes) represents the principal com-
pononts, and that the secondary coordinate system (upper and right axes) represents the
corresponding loadings.

When carrying out a principal components analysis, there are two things that should
be kept in mind. First, the variables should have reasonably symmetric distributions.
Second, and more importantly, it is almost always advisable to scale the columns. If the
columns contain variables with very different ranges, then the columns with the greatest
ranges may dominate the results. We have seen for the present data that two affixes
dominate the first two principal components, -ly on PC1 and -ation on PC2. This lopsided
effect of a few variables is avoided by running the prcomp() function with the option
scale = TRUE . Technically, this amounts to running the analysis not on the covariance
matrix, but on the correlation matrix. The upper panel of Figure 5.5 shows the biplot for
a principal components analysis when the correlation matrix is used.

> affixes.pr = prcomp(affixProductivity[ ,1:27], scale = T , center = T)
> biplot(affixes.pr, var.axes = F, col = c("darkgrey", "bla ck"),
+ cex = c(0.6, 1), xlim = c(-0.42, 0.38))

The loadings of the affixes now reveal more interesting structure. Native affixes (e.g.,
-ness, -less, -er) tend to occur more in the upper and right parts of the plot. Nonnative
affixes (e.g., -ation, super-, anti-) tend to occur in the lower left of the biplot. The use
of nonnative affixes is more typical for officialese (e.g., congress hearings (Hearing ) and
formal texts such as the Federalist papers. Native affixes are more typical for, for instance,
the stories for children by Carroll and Baum. In other words, nonnative affixes are more
productive in more formal and educated registers.

5.1.2 Tables with measurements: Factor analysis

An extension of principal components analysis is EXPLORATORY FACTOR ANALYSIS. Fac-
tor analysis has been used extensively by Biber [1988] and Biber [1995] to study regis-
ter variation. Factor analysis also plays an important role in an important technique for
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Figure 5.5: Upper panel: Biplot for the principal components analysis of texts and affixes
based on productivity scores, now using the correlation matrix instead of the covariance
matrix. Lower panel: The loadings of the affixes on the first two factors in a factor analy-
ses using varimax (left) and promax factor rotation.
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corpus-based computational semantics, latent semantic analysis [Landauer and Dumais,
1997].

In principal components analysis, the total variance is partitioned among the PCs.
Therefore, the proportion of variance explained by a PC is given by that PC’s variance
divided by the summed variance of all PCs, as we saw above. In factor analysis, how-
ever, an error term is added to the model in order to do justice to the possibility that there
is noise in the data. As a consequence, there is no unique set of principal components
(now called factors) and loadings. Instead, various alternative factors (and loadings) are
available thanks to a technique called FACTOR ROTATION. Factor rotation serves the pur-
pose of making the interpretation of the factor model as simple as possible. Interpretation
becomes more straightforward if the variables have high loadings on only a few factors,
and if the loadings on a given dimension are either large or near zero.

To make this more concrete, we carry out a factor analysis on the productivity data
with the function factanal() . This function expects the user to specify how many
factors are required. We choose three, and summarize the resulting object by typing its
name to the Rprompt.

> affixes.fac = factanal(affixProductivity[ ,1:27], fact ors = 3)
> affixes.fac

Call:
factanal(x = affixes[, 1:27], factors = 3)

Uniquenesses:
semi anti ee ism ian ful y ness ...

0.865 0.909 0.934 0.244 0.705 0.688 0.964 0.633 ...

Loadings:
Factor1 Factor2 Factor3

semi 0.348
anti 0.278
ee -0.246
ism 0.493 0.467 0.543
ian 0.229 -0.490
ful -0.522 0.196
y -0.184
...
est -0.180 -0.266 -0.126
ment 0.486 0.324 -0.139
ify 0.196 0.126
re 0.359 -0.372
ation 0.888 0.211 -0.269
in. 0.758 0.134
ex 0.476 0.284 -0.108
en 0.382 -0.127
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be -0.142 -0.336 0.107

Factor1 Factor2 Factor3
SS loadings 4.186 2.242 1.853
Proportion Var 0.155 0.083 0.069
Cumulative Var 0.155 0.238 0.307

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 308.11 on 273 degrees of freedom.
The p-value is 0.0707

The summary repeats the original function call, and then reports the uniquenesses for
the affixes, the by-affix amounts of error variance. Next, the factor loadings are listed.
Loadings that are too close to zero are not shown. The table of loadings is followed by
a table reporting the proportions of variance explained by the factors. Finally, a test is
reporting for whether three factors are sufficient for this data. As the associated p-value
is greater than 0.05, we conclude that we do not need more factors for this data set.

The lower left panel of Figure 5.5 plots the loadings of the affixes on the first two
factors.

> loadings = loadings(affixes.fac)
> plot(loadings, type = "n", xlim = c(-0.4, 1))
> text(loadings, rownames(loadings), cex = 0.8)

From this plot, the distinction between native and nonnative affixes emerges perhaps
more clearly than from the biplot in the upper left panel. Nonnative affixes tend to the
upper right part of the plot, native affixes cluster more to the lower left. In other words,
nativeness is a hidden, LATENT, variable determining affixal productivity, but thus far it
is expressed by means of two factors. By choosing a different factor rotation, promax , we
can rearrange the affixes such that nativeness is expressed primarily by the second factor,
as shown in the lower right panel of Figure 5.5.

> affixes.fac2 = factanal(affixProductivity[ ,1:27], fac tors = 3,
+ rotation = "promax")
> loadings2 = loadings(affixes.fac2)
> plot(loadings2, type = "n", xlim = c(-0.4, 1))
> text(loadings2, rownames(loadings))
> abline(h = -0.1, col = "darkgrey")

Most nonnative affixes are located below the horizontal grey line, most native affixes are
found above this line.

There are no hard and fast rules for choosing a particular kind of rotation. The vari-
max rotation builds on the assumption that the rotated factors are uncorrelated. It is
preferentially used when the researcher is interested primarily in the generalizability of
the results. The promax rotation allows the factors to be correlated, and tends to be se-
lected when the primary concern is to obtain a factor model that provides a close fit to the
data.
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5.1.3 Tables with counts: Correspondence Analysis

In the preceding section we used principal components analysis for analyzing a two-
way table of measurements (i.e., real-valued numbers). For two way contingency tables,
correspondence analysis provides an attractive alternative. Like principal components
analysis, correspondence analysis seeks to provide a low-dimensional map of the data.

The correspondence map is made in two steps. First, two matrices of distances are cal-
culated, one for the distances between columns, and one for the distances between rows.
In daily life, you may have encountered distance matrices for geographical distances be-
tween major cities. The cities are listed in both margins of the table. Hence, a distance
matrix is always a square matrix. The distances on the main diagonal are zero, as the
distance of a city to itself is zero. Furthermore, the distances above the main diagonal are
the flip image of the distances below the main diagonal: A distance matrix is symmetric.
Hence, some distance tables for cities show only the upper or the lower triangle of the
distance matrix.

In correspondence analysis, we regard row vectors (or column vectors) as profiles
of ’cities’, and calculate the distances between them. There are many different ways in
which distances (or dissimilarities) between vectors can be computed, the on-line help
pages for dist() document a range of options. The distance measure that is used in
correspondence analysis is the so-called chi-squared distance. Given a contingency table
with 20 rows and 5 columns, correspondence analysis constructs two distance matrices, a
20 by 20 matrix specifying the distances between the rows, and a 5 by 5 matrix specifying
the distances between the columns.

The second step in correspondence analysis is to represent these distances as faithfully
as possible in a two-dimensional scatterplot, a low-dimensional map. The larger the dis-
tance between two rows, the further these two rows should be apart in the map for rows.
Likewise, dissimilar columns should be far apart, while similar columns should be near
to each other in the map for columns. In correspondence analysis, we superimpose the
row and column maps, analogous to the superposition of the PC scores and the loadings
on these PCs in the biplot. Thanks to the chi-squared distance measure, we ensure that
proximity between rows and columns in the merged map is as good an approximation as
possible of the correlation between rows and columns. The set of functions illustrated in
the following examples extend the code of Murtagh [2005].

Ernestus et al. [2006] studied register variation and diachronic variation in the use of
syntactic constructions in Medieval French. For 29 authors (some of which are anony-
mous), and often for several manuscripts versions of the same text, the counts of the 35
most frequent tag trigrams were calculated. Texts with more than 2000 words were sub-
divided into chunks of 2000 words.

The data of this study are available in the form of two data frames. The oldFrench
data frame contains the counts of tag trigrams (columns) for 342 texts. The oldFrench
Meta data frame provides meta data on these texts, including information on author,
region of origin, data of composition, register and topic.

> oldFrench[1:3, 1:4]
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T30.16.00 T00.31.51 T16.00.31 T00.60.31
Abe.2 11 2 1 6
Abe.3 13 4 6 5
Abe.4 7 1 4 2
> oldFrenchMeta[1:3, ]

Textlabels Codes Author Topic Genre Region Year
1 Abe Abe.2 Meun 12 prose R2 1325
2 Abe Abe.3 Meun 12 prose R2 1325
3 Abe Abe.4 Meun 12 prose R2 1325

In both data frames, rows represent text fragments. Rows are ordered alphabetically by
the codes for the fragments. As a consequence, the information in the two data frames
is perfectly aligned. As will become apparent below, this alignment allows us to select
subsets of rows from oldfrench using information in oldFrenchMeta with R’s sub-
scripting mechanism.

The columns of oldfrench represent the frequencies of the tag trigrams in the text
fragments. What we would like to know is whether there are systematic differences in the
frequencies of these tag trigrams as a function of author, topy, genre, region, and time. As
a first step, we make use of the function corres.fnc() , which takes a data frame with
counts as input and produces as output a correspondence analysis object. This object can
be subsequently be summarized and plotted.

> oldFrench.ca = corres.fnc(oldFrench)

Let’s first inspect the summary. As its output is rather voluminous, we specify head =
TRUE, so that only the first six lines of relevant tables are shown.

> summary(oldFrench.ca, head = TRUE)

Call:
corres.fnc(oldfrench)

Eigenvalue rates:

0.1704139 0.1326913 0.06854973 0.05852097 0.05394474 ...

Factor 1

coordinates correlations contributions
T30.16.00 -0.113 0.074 0.012
T00.31.51 -0.560 0.464 0.103
T16.00.31 -0.139 0.053 0.006
T00.60.31 -0.122 0.050 0.006
T16.00.33 -0.085 0.020 0.003
T02.00.30 0.293 0.227 0.027
...
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Factor 2

coordinates correlations contributions
T30.16.00 0.119 0.082 0.017
T00.31.51 0.205 0.062 0.018
T16.00.31 0.255 0.179 0.024
T00.60.31 0.162 0.090 0.014
T16.00.33 -0.220 0.139 0.029
T02.00.30 0.166 0.073 0.011
...

The summary of oldfrench.ca begins with listing EIGENVALUES RATES. These rates
have a similar interpretation as the proportions of the variance explained by the principal
components in principal components analysis. The larger the rate, the more succesful a
factor is in accounting for differences among the distances between the texts. The first
rate pertains to the first factor, the X-axis in a correspondence map, the second rate to the
second factor, the Y -axis in the map. Higher dimensions are seldom considered in corre-
spondence analysis. (For inspection of higher dimensions, specify n=a and the summary
will display the first a dimensions.)

The summary then proceeds with two tables that specify, for the first two factors, how
the distances between the columns relate to the distances between rows. As we called
summary() with head=T , only the first six tag trigrams are shown. For each tag trigram,
its coordinate on the relevant axis is listed first, followed by its correlation with that axis.
These correlations, however, are not standard correlations. They are more comparable
to the loadings in principal components analysis, and as such they provide an important
guide to the interpretation of the dimensions. The final column provides a measure for
the extent to which a row (tag trigram) contributes to the explanatory value of the factor.

The attractiveness of correspondence analysis resides in the possibilities it offers for
visualization. For instance, we can query whether the difference between prose and po-
etry is reflected in the frequencies with which particular tag trigrams are used. Figure 5.6
shows that there is a clear separation of prose and poetry on the first factor, which is
carried primarily by the tag trigrams T00.30.01 , T00.31.51 and T51.10.00 .

This correspondence plot has a number of features that are controlled by a range of
options. First, the texts of the two genres are shown with different colors. Second, tags
are represented with their own font size, and also with another color. Third, we have
not shown all 35 tags, which would clutter the center of the plot, but only those tags that
drive the separation of the genres. Although

> plot(oldFrench.ca)

is sufficient to obtain a correspondence plot, the result, with 342 texts and 35 tag trigrams,
is an extremely cluttered scatterplot. We therefore consider the plot method for corre-
spondence objects in some more detail.
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It is often useful to plot text properties as specified in the meta data rather than the
identifiers of the texts themselves: By default, plot() uses the rownames of the data
frame serving as input to corres.fnc() for labeling the row data points in the scatter-
plot. We override this default with the option for row labels, which we set to point to, for
instance, the genre labels in oldFrenchMeta by setting rlabels = oldFrenchMeta$
Genre .

The option for row colors, rcol , allows us to specify different colors for the levels of
Genre . This option should point to a vector that specifies, for each row (text) the color
with which it is to be displayed. For instance, we can convert the factor oldFrenchMeta$
Genre into a numerical vector with as.numeric() . The first factor level will now be
paired with a 1, the second factor level with a 2, and so on. We then use these numbers as
identifiers of colors by setting rcol = as.numeric(oldFrenchMeta$Genre) .

We scale down the row font size with rcex = 0.5 . As it makes no sense to add 35
column names to the plot, we restrict the tag trigrams to be shown to those that have
extreme values in the first or last decile on either axis with extreme = 0.1 . Finally, we
set the color for the column names to blue (ccol = "blue" ). This completes our plot
instructions.

> plot(oldFrench.ca, rlabels = oldFrenchMeta$Genre,
+ rcol = as.numeric(oldFrenchMeta$Genre), rcex = 0.5,
+ extreme = 0.1, ccol = "blue")

In Figure 5.6, colors have been changed to greyscales, the colors will be shown on your
computer screen when the preceding lines of code are used.

When we zoom in on the prose, we find indications of diachronic change. As a first
step, we exclude those texts for which the approximate date of composition is not known.
Because the rows of oldFrench and oldFrenchMeta are synchronized, we subscript
oldFrench with information in oldFrenchMeta .

> prose = oldFrench[oldFrenchMeta$Genre == "prose" &
+ !is.na(oldFrenchMeta$Year),]

Texts for which we have no information on their approximate date of origin are labeled
as missing data with NA. The function is.na() returns TRUEfor those cells in its input
vector that contain missing data. By negating this vector of truth values, we obtain a
condition on the rows that allows only non-missing information into the new data frame.
We likewise create a version of oldFrenchMeta that is synchronized with prose ,

> proseinfo = oldFrenchMeta[oldFrenchMeta$Genre=="pros e" &
+ !is.na(oldFrenchMeta$Year),]

and because the chronological information is coarse, we set a major boundary at the year
1250.

> proseinfo$Period = as.factor(proseinfo$Year <= 1250)

We apply corres.fnc() and plot the result, disabling the addition of the column names
with addcol = F .
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Figure 5.6: Correspondence analysis of the frequencies of 35 tag trigrams in 342 Old
French text fragments. Text fragments are labeled by register (prose versus poetry), only
highly predictive tag trigrams are displayed.

> prose.ca = corres.fnc(prose)
> plot(prose.ca, addcol = F, rcol = as.numeric(proseinfo$P eriod) + 1,
+ rlabels = proseinfo$Year, rcex = 0.7)

As can be seen in Figure 5.7, the texts from 1250 or before, shown in light grey (or green
on the computer screen), reveal some separation from texts dated after 1250, shown in
dark grey (or red on the computer screen).

Let’s now consider the prose text for which the approximate date of composition is
unknown — labeled as NAin oldFrenchMeta$Year . Can anything be said about their
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date of composition? To address this issue, we first select the relevant texts and store them
in a separate data frame.

> proseSup = oldFrench[oldFrenchMeta$Genre == "prose" &
+ is.na(oldFrenchMeta$Year),]

We add these additional data to the correspondence plot with corsup.fnc() , a function
for adding so-called SUPPLEMENTARY ROWS or SUPPLEMENTARY COLUMNS.

> corsup.fnc(prose.ca, bycol = F, supp = proseSup, font = 2,
+ cex = 0.8, labels = substr(rownames(proseSup), 1, 4))

By default, corsup.fnc() proceeds on the assumption that we add supplementary
columns. In the present example, we are dealing with supplementary rows, so we change
the default by specifying bycol = F . The supplementary rows themselves are specified
with supp = proseSup , and we label them with the manuscript identifiers provided by
the row names, after stripping off the fragment numbers with substr() . Figure 5.7 lo-
cates the fragments more or less at the transition area of the early and late texts, perhaps
with a slight bias towards the late texts. The advantage of not including the undated texts
from the beginning in the correspondence analysis is that we establish a correspondence
map on the basis of known data, against which we pit unknown supplementary data.

Finally consider a sociolinguistic data set, variationLijk , which provides the fre-
quency counts in eight subcorpora of spoken Dutch for 32 words ending in the Dutch
suffix -lijk [Keune et al., 2005]. The subcorpora are constructed with contrasts along three
dimensions: country (Flanders versus the Netherlands), sex (male versus female), and
education level (high versus mid). We load the data, and display the first four columns
for the first five lines.

> variationLijk[1:5, 1:4]
nlfemaleHigh nlfemaleMid nlmaleHigh nlmaleMid

afhankelijk 1 1 3 4
belachelijk 7 4 7 3
dadelijk 8 13 6 10
degelijk 1 1 1 1
duidelijk 11 6 14 8

The full set of column names

> colnames(variationLijk)
[1] "nlfemaleHigh" "nlfemaleMid" "nlmaleHigh" "nlmaleMi d"
[5] "vlfemaleHigh" "vlfemaleMid" "vlmaleHigh" "vlmaleMi d"

reflects the design of this data set, with nl representing the Netherlands, and vl rep-
resenting Flanders. A chi-squared test shows that the words in -lijk are not uniformly
distributed over the subcorpora.

> chisq.test(variationLijk)
...
X-squared = 575.3482, df = 217, p-value < 2.2e-16
...
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Figure 5.7: Correspondence analysis of the frequencies of 35 tag trigrams in 125 Old
French prose fragments. Text fragments are labeled by approximate date of origin, texts
dating from 1250 or earlier are shown in light grey, texts located later in time are shown
in dark grey. The texts in black represent supplementary rows representing texts of un-
known date.

This chi-squared test is rather uninformative, however. We have lots and lots of data
points, so it is unlikely a-priori that the test will report a non-significant p-value. Further-
more, all that this test tells us is that the counts are not proportionally distributed in the
table. The correspondence plot shown in Figure 5.8 is much more revealing,

> variationLijk.ca = corres.fnc(variationLijk)
> plot(variationLijk.ca)

The subcorpora from the Netherlands (labels beginning with nl ) cluster at the left hand
side of the plot, and those from Flanders (vl ) cluster at the right hand side of the plot.
Vriendelijk, ’friendly’, emerges from this plot as characteristic for female speakers from
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Figure 5.8: Correspondence analysis of the frequencies of 32 words ending in the Dutch
suffix -lijk in 8 subcorpora of spoken conversational Dutch.

Flanders with a medium education level.

5.1.4 Tables with distances: Multi-dimensional scaling

Multi-dimensional scaling is a technique for tracing structure in a matrix of distances.
Like principal components analysis, it is a technique for dimension reduction, usually to
two or three dimensions. As in correspondence analysis, which is in fact a special case of
multidimensional scaling, the idea is to create a representation in, for instance, a plane,
such that the distances between the points in that plane mirror as best as possible the
distances between the points in the original multi-dimensional space.

By way of example, we consider the similarities in conversational Dutch between 165
speakers as available in a corpus of spoken Dutch. We are interested in whether the
age and sex of the speaker are reflected in a quantitative measure of textual dissimilarity
based on the notion of cross-entropy of two texts[Juola, 2003], a measure that gauges the
extent to which the one text can be predicted from the other. Meta-data on the speakers
are available as dutchSpeakersDistMeta , dutchSpeakersDist provides the matrix
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of between-speaker cross-entropy distances. We convert this matrix of distances into a
distance object with as.dist()

> dutchSpeakersDist.d = as.dist(dutchSpeakersDist)

and supply it as input to cmdscale() , the function that carries out standard multidi-
mensional scaling. We request a reduction to 3 dimensions with k = 3.

> dutchSpeakersDist.mds = cmdscale(dutchSpeakersDist.d , k = 3)

The result is a matrix with 3 columns and 165 rows: the coordinates of the speakers in the
reduced three-dimensional space that we requested.

> head(dutchSpeakersDist.mds)
[,1] [,2] [,3]

1 -0.68954160 -0.10911462 0.5577156
2 -0.40487679 -0.16424549 -0.3747578
3 -0.25708988 0.06313037 0.2857530
4 -0.37567012 -0.10035375 -0.1644606
5 -0.39665853 -0.08165329 -0.1193554
6 0.02534566 0.09426173 -0.4670765

Do these dimensions reflect differences in the age and sex of the speakers? Before ad-
dressing this question, we first convert this matrix into a data frame and add speaker
information.

> dat = data.frame(dutchSpeakersDist.mds,
+ Sex = dutchSpeakersDistMeta$Sex,
+ Year = dutchSpeakersDistMeta$AgeYear,
+ EduLevel = dutchSpeakersDistMeta$EduLevel)
> dat = dat[!is.na(dat$Year),]
> dat[1:2, ]

X1 X2 X3 Sex Year EduLevel
1 -0.6895416 -0.10911462 0.5577156 female 1952 high
2 -0.4048768 -0.16424549 -0.3747578 male 1952 high

Two exploratory plots, shown in Figure 5.9, are now straightforward to make.

> par(mfrow=c(1,2))
> plot(dat$Year, dat$X1, xlab="year of birth",
+ ylab = "dimension 1", type = "p")
> lines(lowess(dat$Year, dat$X1))
> boxplot(dat$X3 ˜ dat$Sex, ylab = "dimension 3")
> par(mfrow=c(1,1))

These plots suggest that there is indeed some interpretable structure in the dimensions
obtained with multidimensional scaling. The first dimension seems to capture an ef-
fect of age: younger speakers tend to have somewhat higher scores on the first dimen-
sion. Furthermore, the sex of the speaker seems to be represented to some extent on the
third dimension. These visual impressions are supported by formal tests of significance,
a Spearman rank-correlation test for Year :
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> cor.test(dat$X1, dat$Year, method="sp")

Spearman’s rank correlation rho

data: dat$X1 and dat$Year
S = 392556.7, p-value = 9.435e-10
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.4561149

and a t-test for the speaker’s Sex :

> t.test(dat$X3˜dat$Sex)

Welch Two Sample t-test

data: dat$X3 by dat$Sex
t = 2.1384, df = 155.156, p-value = 0.03405
alternative hypothesis: true difference in means is not equ al to 0
95 percent confidence interval:

0.008260503 0.208387229
sample estimates:
mean in group female mean in group male

0.04567817 -0.06264569

5.1.5 Tables with distances: Hierarchical cluster analysis

The final technique for tracing groups in numerical tables that we consider in this chapter
is hierarchical cluster analysis. Hierarchical cluster analysis is the name for a family of
techniques for clustering data and displaying them in a tree-like format. Just as multidi-
mensional scaling, these techniques require a distance object as input.

There are many different ways to form clusters. One way is to begin with an initial
cluster containing all data points, and then to proceed with successively PARTITIONING

clusters into smaller clusters. One of the functions in R that uses this DIVISIVE CLUSTER-
ING approach is diana() . This method is reported to have difficulties finding optimal
divisions for smaller clusters. However, when the goal is to find a few large clusters, it is
an attractive method.

More commonly, clustering begins small, with single points, which are then agglom-
erated into groups, and these groups into larger groups, and so on. AGGLOMERATIVE

CLUSTERING is implemented in the function hclust() . The clustering depends to a
considerable extent on the criteria used for combining points and groups of points into
larger clusters. Which criteria hclust() should use is specified by means of the option
method . The default in R is complete , which evaluates the dissimilarity between two
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Figure 5.9: Year of birth and sex as reflected in the first and third dimension of a multi-
dimensional scaling of string-based cross-entropies for the spontaneous spoken Dutch of
165 speakers.

clusters as the maximum of the dissimilarities between the individual members of these
clusters.

By way of example, we consider 23 lexical measures characterizing 2233 monomor-
phemic and monosyllabic English words as available in the english data set. For con-
venience, the information pertaining to just the words and their associated measures are
available separately as the data set lexicalMeasures . Brief information on these mea-
sures can be obtained with ?lexicalMeasures or help(lexicalMeasures) .

> lexicalMeasures[1:5, 1:6]
Word CelS Fdif Vf Dent Ient

1 doe 3.912023 1.0216510 1.386294 0.14144 0.02114
2 whore 4.521789 0.3504830 1.386294 0.42706 0.94198
3 stress 6.505784 2.0893560 1.609438 0.06197 1.44339
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4 pork 5.017280 -0.5263339 1.945910 0.43035 0.00000
5 plug 4.890349 -1.0445450 2.197225 0.35920 1.75393

All these measures are correlated to some extent. A matrix listing all pairwise correlations
between these variables, the CORRELATION MATRIX of this data set, is obtained simply
with cor() applied to measures after excluding the first column, which is not numeric:

> lexicalMeasures.cor = cor(lexicalMeasures[, -1])
> lexicalMeasures.cor[1:5, 1:5]

CelS Fdif Vf Dent Ient
CelS 1.00000000 0.04553879 0.66481876 0.25211726 -0.0466 2943
Fdif 0.04553879 1.00000000 -0.13101020 -0.02376464 -0.12 678869
Vf 0.66481876 -0.13101020 1.00000000 0.68828793 0.084848 06
Dent 0.25211726 -0.02376464 0.68828793 1.00000000 -0.065 82160
Ient -0.04662943 -0.12678869 0.08484806 -0.06582160 1.00 000000

Even correlations that seem quite small, such as the correlation of CelS (frequency) and
Ient (inflectional entropy) are significant, thanks to the large number of words in this
data set.

> cor.test(lexicalMeasures$CelS, lexicalMeasures$Ient )

Pearson’s product-moment correlation

data: measures$CelS and measures$Ient
t = -2.2049, df = 2231, p-value = 0.02757
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:

-0.087940061 -0.005158676
sample estimates:

cor
-0.04662943

The question of interest to Baayen et al. [2006] was whether word frequency (CelS ) enters
into stronger correlations with measures of a word’s form (such as its length) or with
measures of its meaning (such as its morphological family size or its number of synsets
in WordNet). The answer to this question may contribute to understanding the role of
frequency in lexical processing. The ubiquitous effect of word frequency in a reaction time
experiments has often been interpreted as reflecting the processing load of a word’s form.
But if word frequency happens to be more tightly correlated with semantic measures, this
would suggest that it might be useful to reconceptualize frequency as a measure of one’s
familiarity with a word’s meaning. In an experimental task such as lexical decision, it
might then be thought of as gauging, at least in part, semantic processing load.

A hierarchical cluster analysis is ideal for exploring the correlational structure of these
23 measures. However, the above correlation matrix is not the best starting point for a
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Figure 5.10: Agglomerative hierarchical cluster analysis of 23 lexical variables.

cluster analysis. Correlations can be both positive and negative. For a matrix of dis-
tances, it is desirable to have only non-negative values. This requirement is easy to sat-
isfy by squaring the correlation matrix. (When we square the matrix, each of its element
is squared.)

> (lexicalMeasures.corˆ2)[1:5, 1:5]
CelS Fdif Vf Dent Ient

CelS 1.000000000 0.002073781 0.441983979 0.063563114 0.0 02174303
Fdif 0.002073781 1.000000000 0.017163673 0.000564758 0.0 16075372
Vf 0.441983979 0.017163673 1.000000000 0.473740272 0.007 199192
Dent 0.063563114 0.000564758 0.473740272 1.000000000 0.0 04332483
Ient 0.002174303 0.016075372 0.007199192 0.004332483 1.0 00000000

Another consideration is that cor() works best for reasonably symmetric vectors. How-
ever, many of the present measures have skewed distributions or distributions with more
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than one peak (MULTIMODALITY). Therefore, it makes sense to make use of Spearman
correlations.

> lexicalMeasures.cor = cor(lexicalMeasures[,-1], metho d="spearman")ˆ2
> lexicalMeasures.cor[1:5, 1:5]

CelS Fdif Vf Dent Ient
CelS 1.0000000000 0.0004464715 0.44529233 0.097394824 0. 003643291
Fdif 0.0004464715 1.0000000000 0.02163948 0.001183269 0. 017550778
Vf 0.4452923284 0.0216394843 1.00000000 0.533855660 0.01 1743931
Dent 0.0973948244 0.0011832693 0.53385566 1.000000000 0. 001875520
Ient 0.0036432911 0.0175507780 0.01174393 0.001875520 1. 000000000

The last preparatory step is to convert this matrix into a distance object.

> lexicalMeasures.dist = dist(lexicalMeasures.cor)

The cluster analysis itself is straightforward. First consider agglomerative clustering, for
which we use hclust() to carry out the cluster analysis, and plclust() to plot the
dendrogram.

> lexicalMeasures.clust = hclust(lexicalMeasures.dist)
> plclust(lexicalMeasures.clust)

Figure 5.10 shows that the highest split separates three measures of orthographic con-
sistency from all other measures. The next split isolates another four measures of ortho-
graphic consistency, and the same holds for the next split as well. The fourth split starts to
become interesting, in that its left branch groups together four semantic measures: fam-
ily size (Vf ), derivational entropy (Dent ), and two synset counts (NsyS, NsyC ). It also
contains frequency (CelS ). The right branch dominates various measures of form such as
the count of neighbors (Ncou) and word length (Len ). But this right branch also contains
two measures that are not measures of form, inflectional entropy (Ient , a measure of
the complexity of a word’s inflectional paradigm), and the ratio of the word’s frequency
as a noun and as a verb (NVratio ). In other words, the clustering algorithm that we
used shows some structure, but a clear separation of measures of form and measures of
meaning is not obtained.

Let’s now consider divisive clustering with the diana() function from the cluster
package. We feed the output of diana() into pltree() , which handles the graphics.
The result is shown in Figure 5.11.

> library(cluster)
> pltree(diana(lexicalMeasures.dist))

Divisive clustering succeeds in bringing all measures that do not pertain to meaning to-
gether in one cluster at the left of the dendrogram, the left branch of the third main split.
Again, frequency (CelS ) does not side with the measures of word form.

If you want to know to which clusters the variables are assigned, you first have to de-
cide how many clusters you think you need, and use this number as the second argument
for cutree() . Here, we opt for five clusters.
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Figure 5.11: Divisive hierarchical cluster analysis of 23 lexical variables.

> cutree(diana(lexicalMeasures.dist), 5)
[1] 1 2 1 1 1 1 1 2 2 2 2 3 3 4 4 3 3 5 5 4 4 5 1

When combined with the names of the measures, and with the classification of these
measures in the data set lexicalMeasuresClasses , we obtain a very close correspon-
dence between the class of the variable and cluster number, with as only exception the
Fdif measure, which gauges the difference between a word’s frequency in speech ver-
sus writing.

> x = data.frame(measure = rownames(lexicalMeasures.cor) ,
+ cluster = cutree(diana(lexicalMeasures.dist), 5),
+ class = lexicalMeasuresClasses$Class)
> x = x[order(x$cluster), ]
> x

measure cluster class
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1 CelS 1 Meaning
3 Vf 1 Meaning
4 Dent 1 Meaning
5 Ient 1 Meaning
6 NsyS 1 Meaning
7 NsyC 1 Meaning
23 NVratio 1 Meaning
2 Fdif 2 Meaning
8 Len 2 Form
9 Ncou 2 Form
10 Bigr 2 Form
11 InBi 2 Form
12 spelV 3 Form
13 spelN 3 Form
16 friendsV 3 Form
17 friendsN 3 Form
14 phonV 4 Form
15 phonN 4 Form
20 fbV 4 Form
21 fbN 4 Form
18 ffV 5 Form
19 ffN 5 Form
22 ffNonzero 5 Form

As a second example of cluster analysis, we consider data published by Dunn et al.
[2005] on the phylogenetic classification of Papuan and Oceanic languages using gram-
matical features. The vocabularies of Papuan languages are so different that classification
based on the amount of lexical overlap using basic word lists is bound to fail. Dunn and
colleagues showed that it is possible to probe the classification of Papuan languages in an
interesting and revealing way using nonlexical, grammatical traits. Their data set, avail-
able as phylogeny , contains 125 binary features for 15 Papuan and 16 Oceanic languages
(columns). The first column specifies the language, the second the language family, and
the remaining 125 colums the grammatical properties, such as whether a language has
prenasalized stops. Presence is coded by 1, absence by 0.

> phylogeny[1:5, 1:5]
Language Family Frics PrenasalizedStops PhonDistBetween LAndR

1 Motuna Papuan 1 0 0
2 Kol Papuan 1 0 1
3 Rotokas Papuan 1 0 0
4 Ata Papuan 1 0 0
5 Kuot Papuan 1 0 1

The left panel of Figure 5.12 shows the dendrogram obtained by applying divisive clus-
tering using diana() . We first create a distance object appropriate for binary data,

> phylogeny.dist = dist(phylogeny[ ,3:ncol(phylogeny)], method="binary")
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and we also create a vector of language names with the names for Papuan languages in
upper case with toupper() .

> plotnames = as.character(phylogeny$Language)
> plotnames[phylogeny$Family=="Papuan"] =
+ toupper(plotnames[phylogeny$Family=="Papuan"])

Divisive clustering and visualization is now straightforward:

> library(cluster)
> plot(diana(dist(phylogeny[, 3:ncol(phylogeny)],
+ method = "binary")), labels = plotnames, cex = 0.8,
+ main = " ", xlab= " ", col = c("black", "white"), which.plot = 2)

We note a fairly clear separation of Papuan and Oceanic languages.
The right panel of Figure 5.12 shows an unrooted tree obtained with an algorithm

known as neighbor-joining that is often used for phylogeny estimation. In what follows,
we use the ape package developed by Paradis and described in detail, together with other
packages for phylogenetic analysis, in Paradis [2006]. We load the ape package, the only
package in this book that is not loaded automatically. (This is because the ape package
depends on the the nlme package, which is incompatible with the lme4 package that is
loaded by languageR .) We then apply the nj() function to obtain a phylogenetic tree
object.

> library(ape)
> phylogeny.dist.tr = nj(phylogeny.dist)

The plot method for phylogenetic tree objects has a wide variety of options. One option,
illustrated in the right panel of Figure 5.12, is to use different fonts to highlight subsets
of observations. Since the leaf nodes (or tips) of the tree are labeled by default with the
row numbers of the observations in the input distance matrix, we need to do some extra
preparatory work to get the names of the languages into the plot. We begin with the
row numbers, which are available in the form of a character vector in the tree object as
tip.label . We then use these row numbers to reconstruct the names of the language
families,

> families = as.character(
+ phylogeny$Family[as.numeric(phylogeny.dist.tr$tip. label)])

and also the names of the languages themselves:

> languages = as.character(
+ phylogeny$Language[as.numeric(phylogeny.dist.tr$ti p.label)])

We substitute the language names for the row names in the tree object,

> phylogeny.dist.tr$tip.label = languages

and plot the tree.
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Figure 5.12: Divisive clustering with diana() (in the cluster package) and the corre-
sponding unrooted tree obtained with the neighbor-joining algorithm nj() (in the ape
package) of 16 Oceanic and 15 Papuan languages using 125 grammatical traits [Dunn
et al., 2005].

> plot(phylogeny.dist.tr, type="u",
+ font = as.numeric(as.factor(families)))

The option type="u" requests an unrooted tree. In unrooted trees, all nodes have at least
three connecting branches, and there is no longer a single root node that can be considered
as the common ancestor of all tip nodes. It is easy to see that the two dendrograms shown
in Figure 5.12 point to basically the same topology.

As mentioned above, the focus of the study of Dunn and colleagues was the internal
classification of the Papuan languages, as it is here that traditional word-based classifi-
cation fails most dramatically. The tree presented in the upper left of Figure 5.13 shows
that the unrooted phylogenetic tree groups languages according to geographic region, as
indicated by different fonts (plain: Bismarck Archipelago; bold: Bougainville; italic: Cen-
tral Solomons; bold italic: Louisiade Archipelago). This striking result is reproduced as
follows.

> papuan = phylogeny[phylogeny$Family == "Papuan",]

156



D
R

A
FT

Yeli Dnye

Nasioi
Buin

Motuna

KolSulka

Mali

Ata

Anem

Kuot

Lavukaleve

Touo

Savosavo

Bilua

Rotokas

Yeli Dnye

Nasioi
Buin

Motuna

KolSulka

Mali

Ata

Anem

Kuot

Lavukaleve

Touo

Savosavo

Bilua

Rotokas

Anem

Ata

Bilua

BuinNasioi

Motuna
Kol

Sulka

Mali

Kuot

Lavukaleve
Rotokas

Savosavo
Touo

Yeli Dnye

Figure 5.13: Unrooted phylogenetic trees for the subset of Papuan languages in the
data of Dunn et al. [2005], obtained with the node-joining algorithm. The fonts repre-
sent geographical areas (plain: Bismarck Archipelago; bold: Bougainville; italic: Central
Solomons; bold italic: Louisiade Archipelago). The upper right tree adds thermometers
for bootstrap support to the tree in the upper left. The lower left tree is a consensus tree
across 200 bootstrap trees.

157 D
R

A
FT

> papuan$Language = as.factor(as.character(papuan$Lang uage))
> papuan.meta = papuan[ ,1:2]
> papuan.mat = papuan[, 3:ncol(papuan)]
> papuan.meta$Geography = c(
+ "Bougainville", "Bismarck Archipelago", "Bougainville ",
+ "Bismarck Archipelago", "Bismarck Archipelago", "Centr al Solomons",
+ "Bougainville", "Louisiade Archipelago", "Bougainvill e",
+ "Bismarck Archipelago", "Bismarck Archipelago",
+ "Bismarck Archipelago", "Central Solomons", "Central So lomons",
+ "Central Solomons")
> papuan.dist = dist(papuan.mat, method = "binary")
> papuan.dist.tr = nj(papuan.dist)
> fonts = as.character(papuan.meta$Geography[as.numeri c(
+ papuan.dist.tr$tip.label)])
> papuan.dist.tr$tip.label =
+ as.character(papuan.meta$Language[as.numeric(
+ papuan.dist.tr$tip.label)])
> plot(papuan.dist.tr, type = "u", font = as.numeric(as.fa ctor(fonts)))

The clustering techniques that we have considered in this section are not based on a
formal model, but on reasonable but nevertheless heuristic procedures. As a consequence,
there are no hard and fast criteria to help decide what kind of clustering (agglomerative
or divisive) is optimal for a given data set. When a cluster analysis is reported, only one
dendrogram tends to be shown, even though the authors may have tried out a variety
of clustering techniques. Typically, the dendogram shown is the one that fits best the
authors’ hypothesis about the data. This is fine, as long as the reader keeps in mind that
the dendrogram probably depicts an optimal solution.

A technique that provides a means for validating a cluster analysis is the BOOTSTRAP.
The bootstrap is a general technique that we will also use in the chapters on regression
modeling. The basic idea of the bootstrap as applied to the present data is that we sample
(with replacement) from the columns of our data matrix. For each sample, we construct
the distance matrix and grow the corresponding unrooted tree with the node-joining al-
gorithm. Finally, we compare our original dendrogram with the dendrograms for the
bootstrap samples, and calculate the proportions of boostrapped dendrograms that sup-
port the groupings (subtrees, or clades in the terminology of phylogenetics) in the original
trees. In this way, we obtain insight in the extent to which the clustering depends on the
idiosyncracies of the set of grammatical traits that happened to be selected for analysis.

The proportion of support for the different subtrees is shown in the upper right panel
of Figure 5.13 by means of thermometers: the higher the temperature, the greater the
proportional support for a subtree. The boostrap analysis underlying this panel closely
follows the example of Paradis, 2006:117. We begin with defining the number of bootstrap
runs, and prepare a list in which we save the bootstrap trees.

> B = 200
> btr = list()
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> length(btr) = B

We now create 200 bootstrap trees, sampling with replacement from the columns of our
data matrix.

> for (i in 1:B) {
+ trB = nj(dist(papuan.mat[ ,sample(ncol(papuan.mat), re place = TRUE)],
+ method = "binary"))
+ trB$tip.label = as.character(papuan.meta$Language[as .numeric(
+ trB$tip.label)])
+ btr[[i]] = trB
+ }

The proportions of bootstrap trees that support the subtrees of our original tree are ob-
tained with the help of prop.clades() .

> props = prop.clades(papuan.dist.tr, btr)/B
> props

[1] 1.000 0.600 0.865 0.050 0.100 0.115 0.200 0.315 0.555 0.6 80 0.625
[12] 0.445 0.920

We plot the original tree

> plot(papuan.dist.tr, type = "u", font = as.numeric(as.fa ctor(fonts)))

and add the thermometers with nodelabels() .

> nodelabels(thermo = props, piecol = c("black", "grey"))

The proportion of bootstrap support decreases as one moves to the center of the graph.
This points to a lack of consensus with respect to how subtrees should be linked. A dif-
ferent way of bringing this uncertainty out into the open is to plot a CONSENSUS TREE.
In a consensus tree, subgroups that are not observed in all bootstrap trees (strict consen-
sus) or in a majority of all bootstrap trees (majority-rule consensus) will be collapsed.
The result is a tree with multichotomies. The lower left tree of Figure 5.13 shows such a
multichotomy in the center, where 8 branches come together. The ape package provides
the function consensus() for constructing a consensus tree for a list of trees, given a
proportion p specifying the required level of consensus.

> btr.consensus = consensus(btr, p = 0.5)

Consensus trees come with a plot method, and can be visualized straightforwardly with
plot() . Some extra steps are required to plot the tree with fonts representing geograph-
ical areas.

> x = btr.consensus$tip.label
> x

[1] "Anem" "Ata" "Bilua" "Buin" "Nasioi"
[6] "Motuna" "Kol" "Sulka" "Mali" "Kuot"
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[11] "Lavukaleve" "Rotokas" "Savosavo" "Touo" "Yeli_Dnye "
> x = data.frame(Language = x, Node = 1:length(x))
> x = merge(x, papuan.meta, by.x = "Language", by.y = "Langua ge")
> head(x)

Language Node Family Geography
1 Anem 1 Papuan Bismarck Archipelago
2 Ata 2 Papuan Bismarck Archipelago
3 Bilua 3 Papuan Central Solomons
4 Buin 4 Papuan Bougainville
5 Kol 7 Papuan Bismarck Archipelago
6 Kuot 10 Papuan Bismarck Archipelago
> x = x[order(x$Node),]
> x$Geography = as.factor(x$Geography)
> plot(btr.consensus, type = "u", font = as.numeric(x$Geog raphy))

The consensus tree shows that the grouping of Bilua, Kuot, Lavukaleve, Rotokas, and
Yeli Dnye is inconsistent across bootstrap runs. We should at the same time keep in mind
that a given bootstrap run will make use of roughly 80 of the 125 available grammatical
traits. A loss of about a third of the available grammatical markers may have had severe
adverse consequences for the goodness of the clustering. Therefore, replication studies
with a larger set of languages and an even broader range of grammatical traits may well
support the interesting similarity in geographical and grammatical topology indicated by
the original tree constructed with all 125 traits currently available.

5.2 Classification

In the previous section, we have been concerned with discerning clusters and groupings
for data points described by the rows of numerical matrices. When we visualized data,
we often used color coding or changes in font size to distinguish subsets of data points.
But information on these subsets was never used in the calculations. We only added it
to our plots afterwards. In this section, we change our perspective from CLUSTERING

to CLASSIFICATION, and take information on subsets (classes) of data points as point of
departure. Our aim is now to ascertain whether the class of a data point can be predicted.

5.2.1 Classification trees

In Chapters 1 and 2 we started exploring data on the dative alternation in English [Bres-
nan et al., 2007]. The dependent variable in this study is a factor with as levels n (the
dative is realized as an NP, as in John gave Mary the book) and p (the dative is realized as
a PP, as in John gave the book to Mary). For 3263 verb tokens in corpora of written and
spoken English, the values of a total of 12 variables were determined, in addition to the
realization of the dative, coded as RealizationOfRecipient in the data set dative .

> colnames(dative)
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[1] "Speaker" "Modality"
[3] "Verb" "SemanticClass"
[5] "LengthOfRecipient" "AnimacyOfRec"
[7] "DefinOfRec" "PronomOfRec"
[9] "LengthOfTheme" "AnimacyOfTheme"

[11] "DefinOfTheme" "PronomOfTheme"
[13] "RealizationOfRecipient" "AccessOfRec"
[15] "AccessOfTheme"

Short descriptions of these variables are available with ?dative . The question that we
address here is whether the realization of the recipient as NP or PP can be predicted from
the other variables. The technique that we introduce here is CART analysis, an acronym for
Classification And Regression Trees. This section restricts itself to discussing classification
trees. (When the dependent variable is not a factor but a numerical variable, the same
principles apply and the result is a regression tree.)

An initial classification tree for the dative alternation is shown in Figure 5.14. The tree
outlines a decision procedure for determining the realization of the recipient as NP or PP.
Each split in the tree is labeled with a decision rule. The decision rule at the root, the top
node of the tree, asks whether or not the factor AccessOfRec has the level given . If
so, follow the left branch, otherwise, follow the right branch. At each next branch a new
decision rule is considered that directs us to a new branch in its subtree. This process
is repeated until a leaf node, a node with no further splits, is reached. A data point for
which the accessibility of the recipient is given , for which the accessibility of the theme
is given , and for which the pronominality of the theme is nonpronominal , we go left,
right, and left at which point we reach a leaf node for which the predicted outcome is NP.
This outcome is supported by 119 observations and contradicted by only 17 observations.

The leaf nodes of the tree specify a partition of the data, i.e., a division of the data set
into a series of non-overlapping subsets that jointly comprise the full data set. Hence,
CART analysis is often referred to as RECURSIVE PARTITIONING. For any node, the algo-
rithm for growing a tree inspects all predictors and selects the one that is most useful.
The algorithm begins with the root node, which represents the full data set, and creates
two subsets. For each of these subsets, it creates two new subsets, for which in turn new
subsets are created, and so on. Without a stopping criterion, the tree would keep grow-
ing until its leaves would contain single observations only. Such leaves would be pure,
in the sense that only one level of the dependent variable would be represented at any
leaf node. But such leaf nodes would also be trivially pure, and would not allow general-
ization: The tree would severely overfit the data. Therefore, the tree growing algorithm
stops when there are too few observations at a node, by default 20. In addition, the tree
growing algorithm refuses to implement useless splits. For a split to be useful, the daugh-
ter nodes should be purer than the mother node, in the sense that the ratio of NP to PP

realizations in the daughter nodes should be more extreme (i.e., closer to 1 or to 0) than in
the mother node. How exactly NODE IMPURITY is assessed is a technical issue that need
not concern us here. What is important is that the usefulness of a predictor is assessed by
its success in reducing the impurity in the mother node, and its success in creating purer
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daughter nodes. The vertical parts of the branches in the tree diagram are proportional to
the achieved reduction in node heterogeneity, and provide a graphical representation of
the explanatory value of a split.

|
AccessOfRec=given

AccessOfTheme=accessible,new

PronomOfTheme=nonpronominal

SemanticClass=a,c

SemanticClass=a,c,f,p

LengthOfTheme>=4.5

LengthOfRecipient< 2.5

Modality=spoken

NP
1861/116

NP
119/17

NP
43/16

PP
7/123

NP
165/44

NP
86/44

PP
25/40

PP
23/104

PP
85/345

Figure 5.14: Initial (unpruned) CART tree for the realization of the recipient in English
clauses (NP or PP) in written and spoken English.

The tree shown in Figure 5.14 was grown by the function rpart() from the rpart
package.

> library(rpart)
> dative.rp = rpart(RealizationOfRecipient ˜ .,
+ data = dative[ ,-c(1, 3)]) # exclude the columns with subjec ts, verbs

In this formula, the dot following the equation is shorthand for all variables in the data
frame with the exception of the dependent variable. The tree object dative.rp is visu-
alized with plot() and labeled with text() .
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Figure 5.15: Cost-complexity cross-validation plot for the unpruned CART tree (Fig-
ure 5.14) for the realization of the recipient in English.

> plot(dative.rp, compress = T, branch = 1, margin = 0.1)
> text(dative.rp, use.n = T, pretty = 0)

The plot options are explained in detail in the help for plot.rpart() , and the options
for labelling in the help for text.rpart() . When the option use.n is set to TRUE,
counts are added to the leaf nodes. By setting pretty to zero, we force the use of the full
names of the factor levels, instead of the codes that rpart() produces by default.

The problem with this initial tree is that it still overfits the data. It implements too
many splits that have no predictive value for new data. To increase the prediction accu-
racy of the tree, we have to prune it by snipping of useless branches. This is done with
the help of an algorithm known as COST-COMPLEXITY PRUNING. Cost-complexity prun-
ing pits the size of the tree (in terms of its number of leaf nodes) against its success in
reducing the impurity in the tree by means of a cost-complexity parameter cp . The larger
the value of cp , the greater the number of branches that is pruned. For very large cp , all
that remains of the tree is its root stump. When cp is very low, it is too small to induce
any pruning.

How should we evaluate the balance between success in classification accuracy on the
one hand and the complexity of one’s theory (gauged by its number of leaf nodes) on
the other hand? The answer to this question is 10-fold cross-validation. For successive
values of cp , and hence for successive tree sizes, we take the data, and randomly divide
it into 10 equally-sized parts. We then select the first part, put it aside, and build a tree for
the remaining 9 parts lumped together. Next, we evaluate how well this tree predicts the
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realization of the recipient for the held-out part by comparing its misclassification rate
with the misclassification rate for the root model, the simplest possible model without
any predictors. The result is a relative error score. We repeat this process for each of the
nine remaining parts. What we end up with is, for each tree size, 10 relative error scores
that inform us how well the model generalizes to unseen data. Of course, it would be
better to evaluate the model against new data, but in the absence of a second equivalent
data set, cross-validation provides a way of assessing predictivity anyway.

Figure 5.15, obtained with plotcp() , plots the means of these error scores.

> plotcp(dative.rp)

The horizontal axis displays the values of the cost-complexity parameter cp at which
branches are pruned. The corresponding sizes of the pruned tree are shown at the top of
the plot. The vertical axis represents the cross-validation error. The small vertical lines for
each point mark one standard error above and below the mean. The dotted line represents
one standard error above the mean for the lowest point in the graph. A common selection
rule for the cost-complexity parameter is to select the leftmost point that is still under this
dotted line. In this example, this leftmost point would also be the rightmost point. To be a
little conservative, we prune the tree (with prune() ) for cp = 0.041 , and obtain a tree
with 6 leaves, as shown in Figure 5.16.

> dative.rp1 = prune(dative.rp, cp = 0.041)
> plot(dative.rp1, compress = T, branch = 1, margin = 0.1)
> text(dative.rp1, use.n = T, pretty = 0)

We accept the predictors in this tree as statistically significant, and note that here cross-
validation has taken over the function of the p-values associated with classical statistics
associated with the t, F or chi-squared distributions.

A verbal summary of the model is obtained by typing the object name to the prompt.

> dative.rp1
n= 3263

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 3263 849 NP (0.74 0.26)
2) AccessOfRec=given 2302 272 NP (0.88 0.12)

4) AccessOfTheme=accessible,new 1977 116 NP (0.94 0.06) *
5) AccessOfTheme=given 325 156 NP (0.52 0.48)

10) PronomOfTheme=nonpronominal 136 17 NP (0.88 0.12) *
11) PronomOfTheme=pronominal 189 50 PP (0.26 0.74) *

3) AccessOfRec=accessible,new 961 384 PP (0.40 0.60)
6) SemanticClass=a,c,f,p 531 232 NP (0.56 0.44)

12) LengthOfTheme>=4.5 209 44 NP (0.79 0.21) *
13) LengthOfTheme< 4.5 322 134 PP (0.42 0.58) *

7) SemanticClass=t 430 85 PP (0.20 0.80) *
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The first line mentions the number of data points. The second line provides a legend for
the remainder, each line of which consists of a node number, the splitting criterion, the
number of observations in the subtree dominated by the node, a measure of the reduction
in node impurity effected by the split, and the probabilities of the NP and PP realizations.

|
AccessOfRec=given

AccessOfTheme=accessible,new

PronomOfTheme=nonpronominal

SemanticClass=a,c,f,p

LengthOfTheme>=4.5

NP
1861/116

NP
119/17

PP
50/139

NP
165/44

PP
134/188

PP
85/345

Figure 5.16: Cost-complexity pruned CART tree for the realization of the recipient in En-
glish.

How successful is the model in predicting the realization of the recipient? To answer
this question, we pit the predictions of the CART tree against the actually observed real-
izations. We extract the predictions from the model with predict() .

> head(predict(dative.rp1))
n p

[1,] 0.9413252 0.05867476
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[2,] 0.9413252 0.05867476
[3,] 0.9413252 0.05867476
[4,] 0.9413252 0.05867476
[5,] 0.9413252 0.05867476
[6,] 0.9413252 0.05867476

Each row of the input data frame is paired with probabilities, one for each level of the
dependent variable. In the present example, we have a probability for the realization as
NP and one for the realization as PP. We choose the realization with the largest probability
(see section 7.4 for a more precise evaluation method using the somers2() function).
Our choice is therefore NP if the first column has a value greater than or equal to 0.5, and
PP otherwise.

> choiceIsNP = predict(dative.rp1)[,1] >= 0.5
> choiceIsNP[1:6]
[1] TRUE TRUE TRUE TRUE TRUE TRUE

We combine this vector with the original observations

> preds = data.frame(obs = dative$RealizationOfRecipient , choiceIsNP)
> head(preds)

obs choiceIsNP
1 n TRUE
2 n TRUE
3 n TRUE
4 n TRUE
5 n TRUE
6 n TRUE

and cross-tabulate.

> xtabs( ˜ obs + choiceIsNP, data = preds)
choiceIsNP

obs FALSE TRUE
n 269 2145
p 672 177

On a total of 3263 data points, only 269+177 = 446 are misclassified, 13.7%. This compares
favorably to a baseline classifier that simply predicts the most likely realization for all data
points, and therefore is in error for all and only all data points with PP as realization.

> xtabs( ˜ RealizationOfRecipient, dative)
RealizationOfRecipient

n p
2414 849

The misclassification rate for this baseline model is 849/3263 = 26%.
An important property of cart trees is that they deal very elegantly with interac-

tions. Interactions arise when the effects of two predictors are not independent, i.e.,

166



D
R

A
FT

when the effect of one predictor is codetermined by the value of another predictor. Fig-
ure 5.16 illustrates many interactions. For instance, SemanticClass appears only in the
right branch of the tree, hence it is relevant only for clauses in which the accessibility of
the recipient is not given . Hence, we have here an interaction of SemanticClass by
AccessOfRec . The other three predictors in the model also interact with AccessOfRec .
Furthermore, LengthOfTheme interacts with SemanticClass , and PronomOfTheme
with AccessOfTheme . Whereas such complex interactions can be quite difficult to un-
derstand in regression models, they are transparent and easy to grasp in classification and
regression trees.

5.2.2 Discriminant analysis

Discriminant analysis is used to predict an item’s class on the basis of a set of numerical
predictors. As in principal components analysis, the idea is to represent the items in a
low-dimensional space, typically a plane that can be inspected with the help of a scatter-
plot. Instead of principal components, the analysis produces LINEAR DISCRIMINANTS. In
both PCA and discriminant analysis, the new axes are linear combinations of the original
variables. But in discriminant analysis, the idea is to choose the linear discriminants such
that the means of the groups are as different as possible while the variance around these
means within the groups is as small as possible. We illustrate the use of discriminant
analysis by a study in authorship attribution [Spassova, 2006].

Five texts from three Spanish writers were selected for analysis. Metadata on the texts
are given in spanishMeta .

> spanishMeta = spanishMeta[order(spanishMeta$TextName ),]
> spanishMeta

Author YearOfBirth TextName PubDate Nwords FullName
1 C 1916 X14458gll 1983 2972 Cela
2 C 1916 X14459gll 1951 3040 Cela
3 C 1916 X14460gll 1956 3066 Cela
4 C 1916 X14461gll 1948 3044 Cela
5 C 1916 X14462gll 1942 3053 Cela
6 M 1943 X14463gll 1986 3013 Mendoza
7 M 1943 X14464gll 1992 3049 Mendoza
8 M 1943 X14465gll 1989 3042 Mendoza
9 M 1943 X14466gll 1982 3039 Mendoza
10 M 1943 X14467gll 2002 3045 Mendoza
11 V 1936 X14472gll 1965 3037 VargasLLosa
12 V 1936 X14473gll 1963 3067 VargasLLosa
13 V 1936 X14474gll 1977 3020 VargasLLosa
14 V 1936 X14475gll 1987 3016 VargasLLosa
15 V 1936 X14476gll 1981 3054 VargasLLosa

From each text, fragments of approximately 3000 words were extracted. These text frag-
ments were tagged, and the relative frequencies of tag trigrams were obtained. These
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relative frequencies are available as the data set spanish , rows represent tag trigrams
and colums represent text fragments.

> dim(spanish)
[1] 120 15
> spanish[1:5, 1:5]

X14461gll X14473gll X14466gll X14459gll X14462gll
P.A.N4 0.027494 0.006757 0.000814 0.024116 0.009658
VDA.J6.N5 0.000786 0.010135 0.003257 0.001608 0.005268
C.P.N5 0.008641 0.001126 0.001629 0.003215 0.001756
P.A.N5 0.118617 0.118243 0.102606 0.131833 0.118525
A.N5.JQ 0.011783 0.006757 0.014658 0.008039 0.000878

As we are interested in differences and similarities between texts, we transpose this ma-
trix, so that we can consider the texts to be points in tag space.

> spanish.t = t(spanish)

It is intructive to begin with an unsupervised exploration of these data, for instance with
principal components analysis.

> spanish.pca = prcomp(spanish.t, center = T, scale = T)
> spanish.x = data.frame(spanish.pca$x)
> spanish.x = spanish.x[order(rownames(spanish.x)), ]
> library(lattice)
> super.sym = trellis.par.get("superpose.symbol")
> splom(˜spanish.x[ , 1:3], groups = spanishMeta$Author,

+ panel = panel.superpose,
+ key=list(
+ title=" ",
+ text=list(levels(spanishMeta$FullName)),
+ points = list(pch = super.sym$pch[1:3],
+ col = super.sym$col[1:3])
+ )
+ )

Figure 5.17 suggests some authorial structure: Cela and Mendoza occupy different re-
gions in the plane spanned by PC1 and PC2. VargasLLosa , however, seems to be indis-
tinguishable from the other two authors.

Let’s now replace unsupervised clustering by supervised classification. We order
the rows of spanish.t so that they are synchronized with the author information in
spanishMeta , and load the MASSpackage in order to have access to the function for
linear discriminant analysis, lda() .

> spanish.t = spanish.t[order(rownames(spanish.t)),]
> library(MASS)

lda() takes two arguments, the matrix of numerical predictors and a vector with class
labels. A first attempt comes with a warning about collinearity.
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Figure 5.17: Principal components analysis of 15 Spanish texts from 3 authors.
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Figure 5.18: Linear discriminant analysis of 15 Spanish texts by author.

> spanish.lda = lda(spanish.t, spanishMeta$Author)
Warning message:
variables are collinear in: lda.default(x, grouping, ...)

The columns in spanish.t are too correlated for lda() to work properly. We there-
fore continue our analysis with the first 8 principal components, which, as revealed by
the summary (not shown) of the PCA objects, capture almost 80% of the variance in the
data. These principal components are, by definition, uncorrelated, so the warning mes-
sage should disappear.

> spanish.pca.lda = lda(spanish.x[ , 1:8], spanishMeta$Au thor)
> plot(spanish.pca.lda)

Figure 5.18 shows a clear separation of the texts by author. We can query the model for
the probability with which it assigns texts to authors with predict() , supplied with the
model object as first argument, and the input data as second argument. A table with the
desired probabilities is available under the name posterior , which we round to four
decimal digits for ease of interpretation.

> round(predict(spanish.pca.lda,
+ spanish.x[ ,1:8])$posterior, 4)

C M V
X14458gll 1.0000 0.0000 0.0000
X14459gll 1.0000 0.0000 0.0000
X14460gll 1.0000 0.0000 0.0000
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X14461gll 1.0000 0.0000 0.0000
X14462gll 0.9999 0.0000 0.0001
X14463gll 0.0000 0.9988 0.0012
X14464gll 0.0000 1.0000 0.0000
X14465gll 0.0000 0.9965 0.0035
X14466gll 0.0000 0.9992 0.0008
X14467gll 0.0000 0.8416 0.1584
X14472gll 0.0000 0.0001 0.9998
X14473gll 0.0000 0.0000 1.0000
X14474gll 0.0000 0.0014 0.9986
X14475gll 0.0000 0.0150 0.9850
X14476gll 0.0001 0.0112 0.9887

It is clear that each text is assigned to its own author with a very high probability.
Unfortunately, this table is rather misleading because the model seriously overfits the

data. It has done its utmost to find a representation of the data that separates the groups
as best as possible. This is fine as a solution for this particular sample of texts, but it
does not guarantee that prediction will be accurate for unseen text fragments as well.
The existence of a problem lurking in the background is indicated by scrutinizing the
group means, as provided by a summary of the discriminant object, abbreviated here for
convenience.

> spanish.pca.lda
...
Group means:

PC1 PC2 PC3 PC4 PC5
C -4.820024 -2.7560056 1.3985890 -0.94026140 0.2141179
M 3.801425 2.9890677 0.6494555 -0.01748498 0.4472681
V 1.018598 -0.2330621 -2.0480445 0.95774638 -0.6613860

PC6 PC7 PC8
C -0.02702131 -0.5425466 0.86906543
M 1.75549883 -0.6416654 0.09646039
V -1.72847752 1.1842120 -0.96552582
...

There are differences among these group means, but they are not that large, and we may
wonder whether any are actually significant. A statistical test appropriate for answering
this question is a MULTIVARIATE ANALYSIS OF VARIANCE, available in R as the function
manova() . It considers a group of numerical vectors as the dependent variable, and takes
one or more factors as predictors. We use it to ascertain whether there are significant
differences in the mean among the dependent variables. (Running a series of separate
one-way analyses of variance, one for each PC, would run into the same problem of in-
flated p-values as discussed in Chapter 4 for a series of t-tests where a one-way analysis
of variance is appropriate.)

> spanish.manova =
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+ manova(cbind(PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8) ˜ Auth or,
+ data = spanish.x)

There are several methods for evaluating the output of manova() , we use R’s default,
which makes use of the Pillai-Bartlett statistic, which approximately follows an F -distribution.

Df Pillai approx F num Df den Df Pr(>F)
Author 2 1.6283 3.2854 16 12 0.02134
Residuals 12

The p-value is sufficiently small to suggest that there are indeed significant differences
among the group means. On the other hand, the evidence for such differences is not that
exciting, and certainly not strong enough to inspire confidence in the perfect classification
by authors obtained with lda() .

In order to guage the extent to which our results might generalize, we carry out a
leave-one-out cross-validation. We run 15 different discriminant analyses, each of which
is trained on 14 texts and is used to predict the author of the remaining held out text.
The proportion of correct attributions will give us improved insight into how well the
model would perform when confronted with new texts by one of these three authors. Al-
though lda() has an option for carrying out leave-one-out cross-validation (CV=TRUE),
we cannot use this option here because the orthogonalization of our input (resulting
in spanish.x ) takes the data from all authors and all texts into account. We there-
fore implement cross-validation ourselves, and begin with making sure that the texts in
spanish.t and spanishMeta are in sync. We then set the number of PCs to be consid-
ered to 8 and define a vector with 15 empty strings to store the predicted authors.

> spanish.t = spanish.t[order(rownames(spanish.t)), ]
> n = 8
> predictedClasses = rep("", 15)

Next, we loop over the 15 texts. In each pass through the loop, we create a training data
set and a vector with the corresponding information on the author by omitting the i-th
text. Following orthogonalization, we make sure that the texts remain in sync with the
vector of authors, and then apply lda() . Finally, we obtain the predicted authors for the
full data set on the basis of the model for the training data, but select only the i-th element
and store it in the i-th cell of predictedClasses .

> for (i in 1:15) {
+ training = spanish.t[-i,]
+ trainingAuthor = spanishMeta[-i,]$Author
+ training.pca = prcomp(training, center=T, scale=T)
+ training.x = data.frame(training.pca$x)
+ training.x = training.x[order(rownames(training.x)), ]
+ training.pca.lda = lda(training[ , 1:n], trainingAuthor )
+ predictedClasses[i] =
+ as.character(predict(training.pca.lda, spanish.t[ , 1 :n])$class[i])
+ }
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Finally, we compare the observed and predicted authors.

> data.frame(obs = as.character(spanishMeta$Author),
+ pred = predictedClasses)

obs pred
1 C V
2 C C
3 C C
4 C C
5 C V
6 M M
7 M M
8 M M
9 M M
10 M V
11 V M
12 V V
13 V V
14 V M
15 V M

The number of correct attributions is

> sum(predictedClasses==as.character(spanishMeta$Aut hor))
[1] 9

which reaches significance according to a binomial test: The likelihood of observing 9 or
more successes in 15 trials is 0.03.

> sum(dbinom(9:15, 15, 1/3))
[1] 0.03082792

We conclude that there is significant authorial structure, albeit not as crisp and clear as
Figure 5.18 suggested at first. We may therefore expect our discriminant model to achieve
some success at predicting the authorial hand of unseen texts from one of these three
authors.

5.2.3 Support vector machines

Support vector machines are a relatively recent development in classification, and their
performance is often excellent. A support vector machine for a binary classification prob-
lem tries to find a hyperplane in multidimensional space such that ideally all elements
of a given class are on one side of that hyperplane, and all the other elements are on the
other side. Furthermore, it allocates a margin around that hyperplane, and points that are
exactly the margin distance away from the hyperplane are called its support vectors. In
other words, whereas discriminant analysis tries to separate groups by focusing on the
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group means, support vector machines target the border area where the groups meet, and
seeks to set up a boundary there.

Let’s re-examine the Old French texts studied previously with the help of correspon-
dence analysis. Instead of clustering (unsupervised), we apply classification (supervised)
with the svm() function from the e1071 package.

> library(e1071)

Correspondence analysis revealed a clear difference in the use of tag trigrams across prose
and poetry. We give svm() the reverse task of determining the amount of support that
our a-priori classification into prose versus poetry receives support from the use of tag
trigrams across our texts. The first argument that we supply to svm() is the data frame
with counts, the second argument is the vector specifying the genre for each row in the
data frame.

> genre.svm = svm(oldFrench, oldFrenchMeta$Genre)

Typing the object name to the prompt results in a brief summary of the parameters used
for the classification (many possibilities are offered, we have simply used the defaults),
and the number of support vectors.

> genre.svm
Call:
svm.default(x = oldfrench, y = oldFrenchMeta$Genre, cross = 10)

Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1
gamma: 0.02857143

Number of Support Vectors: 158

There is no straightforward way to visualize the classification. Some intuitions about the
support vectors can be gleaned by means of multidimensional scaling, with special plot
symbols for the observations that are chosen as support vectors, in Figure 5.19 the plus
symbol. Note that the plus symbols are especially dense in the border area between the
two (color-coded) genres.

> plot(cmdscale(dist(oldFrench)),
+ col = c("blue", "red")[as.integer(oldFrenchMeta$Genre )],
+ pch = c("o", "+")[1:nrow(oldFrenchMeta) %in% genre.svm$ index + 1])

The second and third lines of this plot command illustrate a feature of subscripting that
has not yet been explained, namely, that a vector can be subscripted for more elements as
it is long, as long as these elements refer to legitimate indices in the vector.

> c("blue", "red")[c(1, 2, 1, 2, 2, 1)]
[1] "blue" "red" "blue" "red" "red" "blue"
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Figure 5.19: Multidimensional scaling for registers in Old French on the basis of tag tri-
gram frequencies, with support vectors highlighted by the plus symbol. Black points
represent poetry, grey points represent prose.

In the second line of the plot command, as.integer(oldFrenchMeta$Genre) is a
vector with ones and twos, corresponding to the levels poetry and prose . This vector
is mapped onto a vector with blue representing poetry and red representing prose .
The same mechanism is at work for the third line. The vector between the square brackets
is dissected as follows. The index extracted from the model object

> genre.svm$index
[1] 2 3 6 13 14 15 16 17

refers to the row numbers in oldFrench of the support vectors. The vector

1:nrow(oldFrenchMeta)
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is the vector of all row numbers. The %in% operator checks for set membership. The
result is a vector that is TRUEfor the support vectors and FALSEfor all other rows. When
1 is added to this vector, TRUEfirst converts to 1 and FALSE to zero, so the result is a
vector with ones and twos, which are in turn mapped onto the o and + symbols.

A comparison of the predicted classes with the actual classes shows that only a single
text is misclassified.

> xtabs( ˜ oldFrenchMeta$Genre + predict(genre.svm))
predict(genre.svm)

oldFrenchMeta$Genre poetry prose
poetry 198 0
prose 1 143

However, the model might be overfitting the data, so we carry out 10-fold cross-validation
by running svm() with the option cross (by default 0) set to 10.

> genre.svm = svm(oldFrench, oldFrenchMeta$Genre, cross = 10)

The summary now specifies the average accuracy as well as the accuracy in each separate
cross-validation run.

> summary(genre.svm)
10-fold cross-validation on training data:

Total Accuracy: 96.78363
Single Accuracies:

97.05882 97.05882 97.05882 94.11765 97.14286 97.05882
97.05882 97.05882 100 94.28571

An average success rate of 0.97 (so roughly 8 misclassifications) shows that genre is in-
deed very well-predictable from the author’s syntactic habits.

Classification by Region , by contrast, poses a more serious challenge.

> region.svm = svm(oldFrench, oldFrenchMeta$Region, cros s = 10)
> xtab = xtabs(˜oldFrenchMeta$Region + predict(region.sv m))
> xtab

predict(region.svm)
oldFrenchMeta$Region R1 R2 R3

R1 86 32 1
R2 1 152 0
R3 6 18 46

To calculate the sum of the correct classifications, we extract the diagonal elements

> diag(xtab)
R1 R2 R3
86 152 46

take their sum and divide by the total number of observations.
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> sum(diag(xtab))/sum(xtab)
[1] 0.8304094

Unfortunately, this success rate is severely inflated due to overfitting, as shown by 10-fold
cross-validation.

> summary(region.svm)
10-fold cross-validation on training data:
Total Accuracy: 61.9883
Single Accuracies:

64.70588 67.64706 67.64706 50 57.14286 64.70588
44.11765 70.58824 73.52941 60

However, a success rate of 62% still compares favorably with a baseline classifier that
would always assign the majority class, R2.

> max(xtabs( ˜ oldFrenchMeta$Region))/nrow(oldFrench)
[1] 0.4473684

This success rate differs significantly from the cross-validated success rate. To see this, we
bring together the number of successes and failures for both classifiers into a contingency
table,

> cbind(c(153, 342-153), c(212, 342-212))
[,1] [,2]

[1,] 153 212
[2,] 189 130

and apply a chi-squared test:

> chisq.test(cbind(c(153, 342-153), c(212, 342-212)))

Pearson’s Chi-squared test with Yates’ continuity correct ion

data: cbind(c(153, 342 - 153), c(212, 342 - 212))
X-squared = 19.7619, df = 1, p-value = 8.771e-06

An alternative test that produces the same low p-value is the proportions test.

> prop.test(c(153, 212), c(342, 342))
...
data: c(153, 212) out of rep(342, 2)
X-squared = 19.7619, df = 1, p-value = 8.771e-06
alternative hypothesis: two.sided
95 percent confidence interval:
-0.2490838 -0.0959454
sample estimates:

prop 1 prop 2
0.4473684 0.6198830
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In summary, support vector machines are excellent classifiers and probably one’s best
choice if the goal is to achieve optimal classification performance for an application. Their
disadvantage is that they are difficult to interpret and provide little insight into what
factors drive the classification.

5.3 Exercises

1. Burrows [1992], in a study using principal components analysis of English authorial
hands, observed that one of his principal components represented time. Burrows’
study was based on a careful selection of texts from the same register (novels writ-
ten in the first person singular). Explore whether time is a latent variable for pro-
ductivity for the subset of literary texts (labeled with L in the column Registers ,
using the year of birth as specified in the last column of the data frame (Birth ).
Run a principal components analysis using the correlation matrix. Make sure to ex-
clude the last three columns from the data frame before running prcomp . Then use
pairscor.fnc() (available if you have attached the languageR package), that,
like pairs() , creates a scatterplot matrix. Unlike pairs() , it lists correlations in
the lower triangle of the matrix. Use the output of pairscor.fnc() to determine
whether there is a principal component that represents time. Finally use a biplot
to investigate which affixes were used most productively by the early authors and
which by the late authors.

2. Consider the lexical measures for English monosyllabic monomorphemic words in
the data set lexicalMeasures . Calculate the correlation matrix (exclude the first
column, which lists the words) using the Spearman correlation. Square the cor-
relation matrix, and use multidimensional scaling to study whether the measures
CelS, NsyC, NsyS, Vf, Dent, Ient, NVratio and Fdif form a cluster.

3. Ernestus and Baayen [2003] studied whether it is predictable whether a stem-final
obstruent in Dutch alternates with respect to its voice specification. The data set
finalDevoicing is a data frame with 1697 monomorphemic Dutch words, to-
gether with the properties of their onsets, vowels, codas, etc. The dependent vari-
able is Voice , which specifies whether the final obstruent is voiced instead of voice-
less when it is syllable-initial (as, for instance, in the plural of muis: mui-zen (’mice’).
Use a classification tree to trace the probabilistic grammar underlying voice alter-
nation in Dutch. Calculate the classification accuracy, and compare it with a base-
line model that allways selects voiceless . Details on the factors and their levels
are available in the description of the data set — type ?finalDevoicing to the R
prompt.

4. The data set spanishFunctionWords provides the relative frequencies of the
most common function words in the Spanish texts studied above using the frequen-
cies of tag trigrams. Analyze this data set with linear discriminant analysis with
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cross-validation. As in the analysis of tag trigrams, first orthogonalize the data with
principal components analysis. Which measure is a better predictor for authorship
attribution: tag trigram frequency or function word frequency?

5. The data set regularity specifies for 700 Dutch verbs whether or not they are
regular or irregular, along with numeric predictors such as frequency and family
size, and a categorical predictor, the auxiliary selected by the verb for the past per-
fect. Investigate whether a verb’s regularity is predictable from these variables using
support vector machines. After loading the data, we convert the factor Auxiliary
into a numeric predictor as support vector machines cannot handle factors.

> regularity$AuxNum = as.numeric(regularity$Auxiliary)

Exclude columns 1, 8, 10 (the columns labeling the verbs, their regularity, and the
auxiliary) from the data frame when supplied as first argument to svm() . Use
10-fold cross-validation and formally test whether the cross-validated accuracy is
superior to the baseline model that always selects regularity.
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Chapter 6

Regression modeling

Section 4.3 introduced the basics of linear regression and analysis of covariance. This
chapter begins with a recapitulation of the central concepts and ideas introduced in Chap-
ter 4. It then broadens the horizon on linear regression in several ways. Section 6.2 dis-
cusses multiple linear regression and various analytical strategies for dealing with multi-
ple predictors simultaneously. Section 6.3 introduces the GENERALIZED LINEAR MODEL,
which extends the linear modeling approach to binary dependent variables (successes
versus failures, correct versus incorrect responses, NP or PP realizations of the dative,
etc.) and factors with ordered levels (e.g., low, mid and high education level). (The VAR-
BRUL program used widely in sociolinguistics implements the general linear model for
binary variables.) Finally, section 6.4 outlines a method for dealing with breakpoints, and
section 6.5 discusses the special care required for dealing with word frequency distribu-
tions.

6.1 Introduction

Consider again the ratings data set that we studied in Chapter 4. We are interested in
whether the rated size (averaged over subjects) of the referents of 81 English nouns can be
predicted from the subjective estimates of these words’ familiarity and from the class of
their referents (plant versus animal ). We begin with fitting a model of covariance with
meanFamiliarity as nonlinear numeric predictor and Class as factorial predictor. The
SIMPLE MAIN EFFECTS, i.e., main effects that are not involved in any interactions, are
separated by plus symbols in the formula for lm() .

> ratings.lm = lm(meanSizeRating ˜ meanFamiliarity +
+ I(meanFamiliarityˆ2) + Class, data = ratings)
> summary(ratings.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.09872 0.53870 7.609 5.75e-11
meanFamiliarity -0.38880 0.27983 -1.389 0.1687
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I(meanFamiliarityˆ2) 0.07056 0.03423 2.061 0.0427
Classplant -1.89252 0.08788 -21.536 < 2e-16

This model has four coefficients: a coefficient for the intercept, coefficients for the linear
and quadratic terms of meanFamiliarity , and a coefficient for the contrast between the
levels of the factor Class : The group mean for the subset of plants is −1.89 units lower
than that for the animals, the reference level mapped onto the intercept. Although we
want our model to be as simple as possible, we leave the non-significant coefficient for
the linear effect of meanFamiliarity in the model, for technical reasons, given that the
quadratic term is significant.

The model that we ended up with in Chapter 4 was more complex, in that it contained
an INTERACTION term for Class by meanFamiliarity :

> ratings.lm = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2), data = ratings)
> summary(ratings.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.42894 0.54787 8.084 7.6e-12
meanFamiliarity -0.63131 0.29540 -2.137 0.03580
I(meanFamiliarityˆ2) 0.10971 0.03801 2.886 0.00508
Classplant -1.01248 0.41530 -2.438 0.01711
meanFamiliarity:Classplant -0.21179 0.09779 -2.166 0.03 346

This model has three main effects and one interaction. The interpretation of this main
effect, which is no longer a simple main effect because of the presence of an interaction in
which it is involved, is not as straightforward as in the previous model. In that model,
the effect of Class is very similar to the difference in the group means for animals and
plants. (It is not identical to this difference because meanFamiliarity is also in the
model.) In the new model with the interaction, everything is recalibrated, and the main
effect by itself is no longer very informative. In fact, a main effect need not be significant
as long as it is involved in interactions that are significant, in which case it normally has
to be retained in the model.

Thus far, we have inspected this model with summary() , which tells us whether the
coefficients are significantly different from zero. There is another way to look at these
data, using anova() :

> anova(ratings.lm)
Analysis of Variance Table
Response: meanSizeRating

Df Sum Sq Mean Sq F value Pr(>F)
meanFamiliarity 1 3.599 3.599 30.6945 4.162e-07
Class 1 60.993 60.993 520.2307 < 2.2e-16
I(meanFamiliarityˆ2) 1 0.522 0.522 4.4520 0.03815
meanFamiliarity:Class 1 0.550 0.550 4.6907 0.03346
Residuals 76 8.910 0.117
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This summary tells us, by means of F -tests, whether a predictor contributes significantly
to explaining the variance in the dependent variable. It does so in a sequential way, by
ascertaining whether a predictor further down the list has anything to contribute over
and above the predictors higher up in the list. Hence the output of anova() for a model
fit with lm() is referred to as a SEQUENTIAL ANALYSIS OF VARIANCE TABLE. A sequential
ANOVA table answers different questions than the summary() function. To see why, we
fit a series of separate models, each with one additional predictor.

> ratings.lm1 = lm(meanSizeRating ˜ meanFamiliarity, rati ngs)
> ratings.lm2 = lm(meanSizeRating ˜ meanFamiliarity + Clas s, ratings)
> ratings.lm3 = lm(meanSizeRating ˜ meanFamiliarity + Clas s +
+ I(meanFamiliarityˆ2), ratings)
> ratings.lm4 = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2), ratings)

We compare the first and the second model to test whether Class is predictive given
that meanFamiliarity is in the model. In the same way, we compare the second and
the third model to ascertain whether we need the quadratic term, and the third and the
fourth model to verify that we need the interaction. We carry out all these comparisons
simultaneously with

> anova(ratings.lm1, ratings.lm2, ratings.lm3, ratings. lm4)
Analysis of Variance Table
Model 1: meanSizeRating ˜ meanFamiliarity
Model 2: meanSizeRating ˜ meanFamiliarity + Class
Model 3: meanSizeRating ˜ meanFamiliarity + Class + I(meanF amiliarityˆ2)
Model 4: meanSizeRating ˜ meanFamiliarity * Class + I(meanFamiliarityˆ2)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 79 70.975
2 78 9.982 1 60.993 520.2307 < 2e-16
3 77 9.460 1 0.522 4.4520 0.03815
4 76 8.910 1 0.550 4.6907 0.03346

and obtain the same results as produced with anova(ratings.lm) . Each successive
row in a sequential ANOVA table evaluates whether adding a new predictor is justified
given the other predictors in the preceding rows. By contrast, the summary() function
evaluates whether the coefficients are significantly different from zero in a model contain-
ing all other predictors. This is a different question, that often results in different p-values.

An interaction of Class by the quadratic term for meanFamiliarity turns out not
to be necessary.

> ratings.lm5 = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2) * Class, data = ratings)
> anova(ratings.lm5)
Analysis of Variance Table
Response: meanSizeRating

Df Sum Sq Mean Sq F value Pr(>F)
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meanFamiliarity 1 3.599 3.599 30.7934 4.128e-07
Class 1 60.993 60.993 521.9068 < 2.2e-16
I(meanFamiliarityˆ2) 1 0.522 0.522 4.4663 0.03790
meanFamiliarity:Class 1 0.550 0.550 4.7058 0.03323
Class:I(meanFamiliarityˆ2) 1 0.145 0.145 1.2449 0.26810
Residuals 75 8.765 0.117

With a minimal change in the specification of the model, the replacement of the second
asterisk in the model formula by a colon, we obtain a very different result:

> ratings.lm6 = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2) : Class, data = ratings)

> anova(ratings.lm5)
Analysis of Variance Table
Response: meanSizeRating

Df Sum Sq Mean Sq F value Pr(>F)
meanFamiliarity 1 3.599 3.599 30.7934 4.128e-07
Class 1 60.993 60.993 521.9068 < 2.2e-16
meanFamiliarity:Class 1 0.095 0.095 0.8166 0.36906
Class:I(meanFamiliarityˆ2) 2 1.122 0.561 4.8002 0.01092
Residuals 75 8.765 0.117

It would now seem as if the interaction is significant after all. In order to understand what
is going on, we inspect the table of coefficients.

> summary(ratings.lm6)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.16838 0.59476 7.008 8.95e-10
meanFamiliarity -0.48424 0.32304 -1.499 0.1381
Classplant 1.02187 1.86988 0.546 0.5864
meanFamiliarity:Classplant -1.18747 0.87990 -1.350 0.18 12
Classanimal:I(meanFamiliarityˆ2) 0.09049 0.04168 2.171 0.0331
Classplant:I(meanFamiliarityˆ2) 0.20304 0.09186 2.210 0 .0301

Note that the coefficients for meanFamiliarity , Classplant and their interaction
are no longer significant. This may happen when a complex interaction is added to a
model. The last two lines show that we have two quadratic coefficients, one for the an-
imals (0.09) and one for the plants (0.20). This is what we asked for when we specified
the interaction (I(meanFamiliarity 2̂) : Class ) without including a main effect
for meanFamiliarity . in the formula for ratings.lm6 . The question, however, is
whether we need these two coefficients. At first glance, the two coefficients look fairly
different, but the standard error of the second coefficient is quite large, 0.09. A quick
and dirty estimate of the confidence interval for the second coefficient is 0.20 ± 2 ∗ 0.09,
which includes the value of the first coefficient. Clearly, these two coefficients are not
significantly different. This is why the anova() and summary() functions reported
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a non-significant effect for model ratings.lm5 . What we are asking with the for-
mula of ratings.lm6 is whether the individual coefficients of the quadratic terms of
meanFamiliarity for the plants and the animals are different from zero. This they are.
We are not asking whether we need two different coefficients. This we do not. What this
example shows is that the main effect of a term in the model, here the quadratic term
for meanFamiliarity , should be specified explicitly in the model when the question of
interest is whether an interaction term is justified.

The conventions governing the specification of main effects and interactions in the for-
mula of a model are both straightforward and flexible. It is often convenient not to have to
spell out all interactions for models with many predictors. The following overview shows
how combinations of predictors and their interactions can be specified using parentheses,
the plus and minus symbols, and the ∧ operator. With ∧2, for instance, we denote that all
interactions involving pairwise combinations of the predictors enclosed within parenthe-
ses should be included in the model.

a + b + c
a + b + c + a:b or a * b + c
a + b + c + a:b + a:c + b:c or (a + b + c)ˆ2
a + b + c + a:b + a:c + b:c + a:b:c or (a + b + c)ˆ3
a + b + c + a:b + a:c or (a + b + c)ˆ2 - b:c

Thus, the formula for ratings.lm5 , for instance, can be simplified to

meanSizeRating ˜ (meanFamiliarity + I(meanFamiliarityˆ2 )) * Class

6.2 Ordinary least squares regression

This section introduces the Design package for multiple regression. This package is de-
scribed in detail by its author in Harrell [2001], a highly recommended monograph on
regression and modeling strategies. In what follows, we work through an example that
illustrates the full range of complexities that one may encounter in multiple regression
using the data on 2284 monomorphemic and monosyllabic English nouns and verbs that
we already encountered in the preceding chapters. A detailed analysis of a subset of these
data can be found in Baayen et al. [2006]. Short descriptions of each of the predictors are
available in the on-line documentation (help(english) ). We begin with considering
whether a word’s reaction time in visual lexical decision can be predicted from its fre-
quency of use in written English and from its length in letters. We have data for 2197
words, divided over two word categories, nouns and verbs:

> xtabs(˜english$WordCategory)
english$WordCategory

N V
2904 1664

The reaction times (RTlexdec ) are log-transformed averages calculated for two subject
groups differentiated by age:
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> xtabs(˜english$AgeSubject)
english$AgeSubject

old young
2284 2284

The structure of this data set is made more clear by crosstabulation.

> xtabs(˜english$AgeSubject + english$WordCategory)
english$WordCategory

english$AgeSubject N V
old 1452 832
young 1452 832

Each word occurs on two lines in the data frame, once for the young subject group and
once for the old subject group. We begin with visual inspection of our variables using the
pairs plot shown in Figure 6.1.

> pairs(english[,c("RTlexdec", "WrittenFrequency", "Le ngthInLetters")],
+ pch = ".")

A negative correlation is visible for frequency and reaction time, which seems to be non-
linear. There also appear to be two parallel bands of points. These are due, as will become
apparent below, to the slower responses of the older subjects. Finally, we note that there
is not much to be seen for length in letters, an integer-valued variable with a highly re-
stricted range of values.

When working with data using the Design package (which is loaded automatically
by languageR ), it is recommended to first make an object that summarizes the distribu-
tion of your data with the datadist() function. Such a summary includes, for instance,
the ranges of the predictors, which in turn guide the plot methods of Design objects.

> english.dd = datadist(english)

It often happens that we have more than one data distribution object in the current work-
space, so we need to tell the functions of the Design package which of these objects it
should use. This is accomplished with the options() function, which sets a variable
with the name datadist to point to the appropriate data distribution object.

> options(datadist = "english.dd")

In what follows, we switch from lm() to ols() as our tool for regression modeling. The
name of this function is an acronym for ORDINARY LEAST SQUARES, the method by means
of which the coefficients of the linear model are estimated and that is used by both lm()
and ols() . This estimation method seeks to minimize the squared vertical distances of
data points to the regression line, hence the terminology of ’least squares’. We use ols()
in the same way as lm() :

> english.ols = ols(RTlexdec˜WrittenFrequency+LengthIn Letters, english)
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Figure 6.1: Pairs plot for written frequency, length in letters, and reaction time in visual
lexical decision, for English nouns and verbs. For each word, an average reaction time is
plotted for two groups of subjects, differentiated by age.
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A summary of the model is obtained simply by typing the name of the model object to
the prompt:

> english.ols
Linear Regression Model
ols(formula = RTlexdec ˜ WrittenFrequency + LengthInLette rs, english)

n Model L.R. d.f. R2 Sigma
4568 959.7 2 0.1895 0.1413

Residuals:
Min 1Q Median 3Q Max

-0.455240 -0.115826 -0.001086 0.103922 0.562429

Coefficients:
Value Std. Error t Pr(>|t|)

Intercept 6.71845 0.012728 527.832 0.0000
WrittenFrequency -0.03689 0.001137 -32.456 0.0000
LengthInLetters 0.00389 0.002489 1.563 0.1182

Residual standard error: 0.1413 on 4565 degrees of freedom
Adjusted R-Squared: 0.1891

The summary begins with describing english.ols as a linear regression model object,
and specifies the function call with which it was obtained. It then lists the number of ob-
servations (4568), followed by the likelihood ratio statistic (L.R. ), a measure of goodness
of fit. Together with its associated degrees of freedom (2), this statistic can be used to test
whether the model as a whole is explanatory as follows:

> 1 - pchisq(959.7, 2)
[1] 0

The extremely small p-value is reassuring.
The proportion of the variance explained by the model, R2, is 0.1895, and the standard

deviation of the RESIDUAL STANDARD ERROR (Sigma ) is estimated at 0.14. To under-
stand these measures, it is helpful to make a table listing the observed (log) RTs, the EX-
PECTED or FITTED values of these RTs predicted by the model, and the difference between
the observed and expected values, the RESIDUALS. We use the functions fitted() and
resid() and bring the result together in a data frame.

> x = data.frame(obs = english$RTlexdec,
+ exp = fitted(english.ols), resid = resid(english.ols))
> x[1:5,]

obs exp resid
1 6.543754 6.585794 -0.04203996
2 6.397596 6.571078 -0.17348145
3 6.304942 6.501774 -0.19683156

188



D
R

A
FT

4 6.424221 6.548908 -0.12468768
5 6.450597 6.553591 -0.10299411

The values of R2 and Sigma are now straightforward to calculate:

> cor(x$obs, x$exp)ˆ2
[1] 0.1894976 # R-squared
> sd(x$resid)
[1] 0.1412707 # Sigma

R2 tells us how tight the fit is between what we observe and what we predict. Sigma ,
on the other hand, summarizes the variability in the residuals. The better the model, the
smaller Sigma will be.

The summary proceeds with a description of the distribution of the residuals. The
mathematics underlying ordinary least squares regression depends on the assumption
that the residuals are normally distributed. The summary therefore lists the quartiles,

> quantile(x$resid)
0% 25% 50% 75% 100%

-0.455239802 -0.115826341 -0.001086030 0.103922388 0.56 2429031

which suggest a reasonably symmetrical distribution. We can also inspect the normality
of the residuals by means of density and quantile-quantile plots.

> par(mfrow = c(1, 2))
> plot(density(x$resid), main = "")
> qqnorm(x$resid, pch = ".", main = "")
> qqline(x$resid)
> par(mfrow = c(1, 1))

Figure 6.2 shows that there is something wrong with the residuals. Both panels suggest
departure from normality. The density plot, furthermore, indicates that we are missing
an important predictor, and that we have here two normal distributions with different
means, instead of a single normal distribution.

Next in the summary is the table of coefficients. WrittenFrequency is a significant
predictor, LengthInLetters apparently not. The summary concludes with listing the
residual standard error, so Sigma again, and its associated degrees of freedom, 4565.
This number is equal to the total number of observations, 4568, minus the number of
coefficients in the model, 3. The last line of the summary mentions the adjusted R2, a
conservative version of R2 optimized for comparing different models with respect to the
amount of variance that they explain.

The density in Figure 6.2 suggests we have failed to bring an important predictor into
the model. This predictor turns out to be the age group (young versus old) of the subjects
in the experiment. We therefore include AgeSubject as a predictor, and rerun ols() :

> english.olsA = ols(RTlexdec ˜ WrittenFrequency + AgeSubj ect +
+ LengthInLetters, data = english)
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Figure 6.2: Estimated density (left) and quantile-quantile plot (right) for the residuals of
english.ols .

> english.olsA
Linear Regression Model
ols(formula = RTlexdec ˜ WrittenFrequency + AgeSubject +

LengthInLetters, data = english)

n Model L.R. d.f. R2 Sigma
4568 5331 3 0.6887 0.08758

Residuals:
Min 1Q Median 3Q Max

-0.34438 -0.06041 -0.00695 0.05241 0.45157

Coefficients:
Value Std. Error t Pr(>|t|)

Intercept 6.82931 0.0079946 854.245 0.00000
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WrittenFrequency -0.03689 0.0007045 -52.366 0.00000
AgeSubject=young -0.22172 0.0025915 -85.556 0.00000
LengthInLetters 0.00389 0.0015428 2.521 0.01173

Residual standard error: 0.08758 on 4564 degrees of freedom
Adjusted R-Squared: 0.6885

Note, first of all, that R2 is very much higher, and that Sigma is substantially reduced.
We now have a much better model. With the most important source of variation under
control, LengthInLetters emerges as significant as well.

Thus far, we have assumed that our predictors are linear. Given the curvature visible
in Figure 6.1, we need to address the possibility that this convenient assumption is too
simplistic.

6.2.1 Nonlinearities

We have already studied a regression model with a nonlinear relation between the pre-
dictor and the dependent variable. We could add a quadratic term to the model, using
lm() ,

> english.lm = lm(RTlexdec ˜ WrittenFrequency + I(WrittenF requencyˆ2) +
+ AgeSubject + LengthInLetters, data = english)
> summary(english.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.9181819 0.0100832 686.112 < 2e-16
WrittenFrequency -0.0773456 0.0029733 -26.013 < 2e-16
I(WrittenFrequencyˆ2) 0.0038209 0.0002732 13.987 < 2e-16
AgeSubjectyoung -0.2217215 0.0025380 -87.362 < 2e-16
LengthInLetters 0.0050257 0.0015131 3.321 0.000903

and it is clear from the summary that the quadratic term for WrittenFrequency is jus-
tified. The technical term for this way of handling nonlinearities as that we made use of a
QUADRATIC POLYNOMIAL.

It is not possible (nor necessary, as we shall see) to add a quadratic term in the same
way to the model formula when using ols() . This is because ols() tries to look up the
quadratic term in the data distribution object that we constructed for our data frame. As
there is no separate quadratic term available in our data frame, ols() reports an error
and quits. Fortunately, ols() provides alternative ways of modeling nonlinearities that
are in fact simpler to specify in the model formula. In order to include a quadratic term for
WrittenFrequency , we use the function pol() , an abbreviation for POLYNOMIAL. It
takes two arguments, the name of the predictor, and a number specifying the complexity
of the polynomial function. A 2 specifies a linear and a quadratic component, a 3 defines
the combination of a linear, a quadratic, and a cubic component, etc. Here, we opt for
minimal nonlinearity with a quadratic fit:
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> english.olsB = ols(RTlexdec ˜ pol(WrittenFrequency, 2) + AgeSubject +
+ LengthInLetters, data = english)
> english.olsB
Coefficients:

Value Std. Error t Pr(>|t|)
Intercept 6.918182 0.0100832 686.112 0.0000000
WrittenFrequency -0.077346 0.0029733 -26.013 0.0000000
WrittenFrequencyˆ2 0.003821 0.0002732 13.987 0.0000000
AgeSubject=young -0.221721 0.0025380 -87.362 0.0000000
LengthInLetters 0.005026 0.0015131 3.321 0.0009026

The estimates of the coefficients are identical to those estimated by lm() , but we did not
have to spell out the quadratic term ourselves.

The use of ols() has some further, more important advantages, however. First, the
anova table lists the overall significance of WrittenFrequency , and separately the sig-
nificance of its nonlinear component(s):

> anova(english.olsB)
Analysis of Variance Response: RTlexdec

Factor d.f. Partial SS MS F P
WrittenFrequency 2 21.3312650 10.665632502 1508.39 <.000 1
Nonlinear 1 1.4462474 1.446247447 204.54 <.0001
AgeSubject 1 54.4400676 54.440067616 7699.22 <.0001
LengthInLetters 1 0.0821155 0.082115506 11.61 7e-04
REGRESSION 4 76.0907743 19.022693573 2690.30 <.0001
ERROR 4461 31.5430668 0.007070851

Unlike when anova() is applied to model objects produced by lm() , the anova()
method for ols objects provides a NON-SEQUENTIAL analysis of variance table. This ta-
ble lists, for each predictor, the F statistics and associated p-values given that all the other
predictors are already in the model.

A second advantage of ols() is that it is straightforward to visualize the effects of the
predictors. For this example, we begin with creating space for three panels with mfrow() ,
and then we apply plot() to the model object. When setting up the plot regions, we also
specify that we need a smaller font size (0.6 of the standard) with the cex parameter, so
that the text accompanying each panel is fully readable.

> par(mfrow = c(2, 2), cex = 0.6)
> plot(english.olsB)
> par(mfrow = c(1, 1), cex = 1.0)

Figure 6.3 shows the PARTIAL EFFECTS of each of the predictors, i.e., the effect of a given
predictor when the other predictors in the model are held constant. The position of each
curve with respect to the vertical axis depends on the actual values for which the other
parameters in the model are held constant. These values are spelled out beneath each
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Figure 6.3: Partial effects of the predictors in the model english.olsB .

panel. For instance, the curve for frequency represents the old subjects, and words with
four letters (the median word length). The line for the effect of length is adjusted so that
it describes the effect for the old subjects and for a written frequency of 4.8 (the median
frequency). The dashed lines show the 95% confidence bands for the regression lines.
Confidence intervals are indicated by hyphens above and below the points representing
factor levels. For AgeSubject , the intervals are so small that the hyphens coincide with
the point symbols.

There are disadvantages to the use of polynomials, however. A quadratic polynomial
presupposes the data follow part of a parabola. For more complex curvature, higher-order
polynomials can be used (i.e., models including additional cubic or higher terms), but
they are costly in the number of parameters they require, they tend to overfit the data, and
a-priori impose a very specific functional form on the curve. A more flexible alternative
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is to use RESTRICTED CUBIC SPLINES. In construction, a spline is a flexible strip of metal
or a piece of rubber that is used for drawing the curved parts of objects. In statistics,
a spline is a function for modeling nonlinear relations. The spline function combines
a series of simpler functions (in fact, cubic polynomials) defined over a corresponding
series of intervals. These simpler functions are constrained to have smooth transitions
where they meet, at the KNOTS of the spline. The number of knots determines the number
of intervals. When you use more intervals, the simpler functions are defined over smaller
intervals, so this allows you to model more subtle nonlinearities. In other words, the
number of knots controls how smooth your curve will be. The minimal number of knots
is 3 (so two intervals), in which case the curve is maximally smooth. As more knots are
added, more wriggly curves can be fitted. Restricted cubic splines are cubic splines that
are adjusted to avoid overfitting for the more extreme values of the predictor. For details,
the reader is referred to Harrell [2001, 16–24] and references cited there.

Let’s consider two models, one with a restricted cubic spline with three knots, and
one with seven knots. In the model formula, we replace pol() by rcs() . The number
of knots is the second parameter for rcs() , the first parameter specifies what predictor a
spline is requested for.

> english.olsC = ols(RTlexdec ˜ rcs(WrittenFrequency, 3) + AgeSubject +
+ LengthInLetters, data = english)
> english.olsC

Value Std. Error t Pr(>|t|)
Intercept 6.903062 0.009248 746.411 0.000000
WrittenFrequency -0.059213 0.001650 -35.882 0.000000
WrittenFrequency’ 0.030576 0.002055 14.881 0.000000
AgeSubject=young -0.221721 0.002531 -87.598 0.000000
LengthInLetters 0.004875 0.001508 3.232 0.001238

The mathematics of restricted cubic splines work out so that the number of parameters
required is one less than the number of knots. This explains why the summary lists two
coefficients for WrittenFrequency . For seven knots, we get six coefficients:

> english.olsD = ols(RTlexdec ˜ rcs(WrittenFrequency,7) + AgeSubject +
+ LengthInLetters, data = english)
> english.olsD

Value Std. Error t Pr(>|t|)
Intercept 6.794645 0.013904 488.697 0.000e+00
WrittenFrequency -0.010971 0.005299 -2.070 3.847e-02
WrittenFrequency’ -0.348645 0.052381 -6.656 3.147e-11
WrittenFrequency’’ 2.101416 0.474765 4.426 9.814e-06
WrittenFrequency’’’ -2.987002 1.081374 -2.762 5.764e-03
WrittenFrequency’’’’ 1.880416 1.121685 1.676 9.372e-02
WrittenFrequency’’’’’ -0.951205 0.649998 -1.463 1.434e- 01
AgeSubject=young -0.221721 0.002497 -88.784 0.000e+00
LengthInLetters 0.005238 0.001491 3.513 4.468e-04
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Note that the last two coefficients for WrittenFrequency have large p-values. This sug-
gests that 5 knots should be sufficient to capture the nonlinearity without undersmooth-
ing or oversmoothing. Figure 6.4 compares the different spline curves with the curve
obtained with a quadratic polynomial. With only three knots (so two intervals), we ba-
sically get two straight lines with a smooth bend, that together are very similar to the
polynomial curve. With six knots, the curve becomes somewhat wriggly in the center,
with several points of inflection. These are removed when the number of intervals is
reduced to four.

Figure 6.4 is built panel by panel. Presuming the plot region is defined properly with
mfrow() , we obtain the upper left panel by setting WrittenFrequency to NA.

> plot(english.olsC, WrittenFrequency=NA, ylim=c(6.5, 7 .0), conf.int=F)

This tells the plot method for ols objects that it should suppress panels for the other pre-
dictors in the model. As we want to avoid cluttering our plot with very similar confidence
intervals, we set conf.int = F . In order to add the polynomial curve to the same plot
we specify add = T .

> plot(english.olsB, WrittenFrequency = NA, add = T,
+ lty = 2, conf.int = F)
> mtext("3 knots, undersmoothing", 3, 1, cex = 0.8)

The other two panels are obtained in a similar way. Note that we force the same interval
on the vertical axis across all panels.

> plot(english.olsD, WrittenFrequency=NA, ylim=c(6.5, 7 .0), conf.int=F)
> plot(english.olsB, WrittenFrequency=NA, add=T, lty=2, conf.int=F)
> mtext("7 knots, oversmoothing", 3, 1, cex = 0.8)
> english.olsE = ols(RTlexdec ˜ rcs(WrittenFrequency,5) + AgeSubject +
+ LengthInLetters, english)
> plot(english.olsE, WrittenFrequency=NA, ylim=c(6.5, 7 .0), conf.int=F)
> plot(english.olsB, WrittenFrequency=NA, add=T, lty=2, conf.int=F)
> mtext("5 knots", 3, 1, cex = 0.8)

It turns out that there is an interaction of WrittenFrequency by age.

> english.olsE = ols(RTlexdec ˜ rcs(WrittenFrequency, 5) + AgeSubject +
+ LengthInLetters + rcs(WrittenFrequency,5) : AgeSubject ,
+ data = english)

The summary shows that there are four coefficients for the interaction of age by frequency,
matching the four coefficients for frequency by itself.

> english.olsE
Coefficients:

Value ...
Intercept 6.856846
WrittenFrequency -0.039530
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Figure 6.4: The partial effect of written frequency using a restricted cubic spline with three
knots (upper left), seven knots (upper right), and five knots (lower left). The dashed line
represents a quadratic polynomial.
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WrittenFrequency’ -0.136373
WrittenFrequency’’ 0.749955
WrittenFrequency’’’ -0.884461
AgeSubject=young -0.275166
LengthInLetters 0.005218
WrittenFrequency * AgeSubject=young 0.017493
WrittenFrequency’ * AgeSubject=young -0.043592
WrittenFrequency’’ * AgeSubject=young 0.010664
WrittenFrequency’’’ * AgeSubject=young 0.171251 ...

Residual standard error: 0.08448 on 4557 degrees of freedom
Adjusted R-Squared: 0.7102

The anova table confirms that all these coefficients are really necessary.

> anova(english.olsE)
Analysis of Variance Response: RTlexdec

Factor df SS MS F P
WrittenFrequency

(Factor+Higher Order Factors) 8 23.5123 2.9390 411.80 <.00 01
All Interactions 4 0.1093 0.0273 3.83 0.0041
Nonlinear
(Factor+Higher Order Factors) 6 2.4804 0.4134 57.92 <.0001

AgeSubject
(Factor+Higher Order Factors) 5 56.2505 11.2501 1576.29 <. 0001
All Interactions 4 0.1093 0.0273 3.83 0.0041

LengthInLetters 1 0.0874 0.0874 12.24 0.0005
WrittenFrequency * AgeSubject

(Factor+Higher Order Factors) 4 0.1093 0.0273 3.83 0.0041
Nonlinear 3 0.1092 0.0364 5.10 0.0016

TOTAL NONLINEAR 6 2.4804 0.4134 57.92 <.0001
TOTAL NONLINEAR + INTERACTION 7 2.4806 0.3544 49.65 <.0001
REGRESSION 10 79.9318 7.9932 1119.95 <.0001
ERROR 4557 32.5237 0.0071

It is worth taking a closer look at this anova table. It first lists the statistics for Written
Frequency as a whole, including its nonlinear terms and its interactions. The column
labeled df lists the number of coefficients in the model for the different predictors and
their interactions. For WrittenFrequency , for instance, we have 8 coefficients, 4 for
the main effect and another 4 for the interaction with AgeSubject . The non-linearity
of WrittenFrequency is accounted for with 6 coefficients (the ones listed with one
or more apostrophes in the summary table for the coefficients and their p-values). For
AgeSubject , we spend 5 parameters: one coefficient for AgeSubject itself, and 4 for
the interaction with WrittenFrequency . The last lines of the summary evaluate the
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combined nonlinearities as well as the nonlinearities and interactions considered jointly,
and conclude with the F -test for the regression model as a whole.

Each coefficient costs us a degree of freedom. In the present model, we have 4557
degrees of freedom left. If we were to add another predictor requiring one coefficient,
the residual degrees of freedom would become 4556. Since p-values for the t and F tests
become smaller for larger degrees of freedom, it becomes more and more difficult to ob-
serve significant effects as we add more parameters to the model. This is exactly what is
needed, as we want our model to be parsimonious and to avoid overfitting the data.

Figure 6.5 shows the partial effects of the predictors in this model. As before, we add
the curve representing WrittenFrequency for the young subjects to the plot for the old
subjects with the option add=T .

> par(mfrow = c(2, 2), cex = 0.7)
> plot(english.olsE, WrittenFrequency = NA, ylim = c(6.2, 7 .0))
> plot(english.olsE, WrittenFrequency = NA, AgeSubject = " young",
+ add = T, col = "darkgrey")
> plot(english.olsE, LengthInLetters = NA, ylim = c(6.2, 7. 0))
> plot(english.olsE, AgeSubject = NA, ylim = c(6.2, 7.0))
> par(mfrow = c(1, 1), cex = 1)

With the same range of values on the vertical axis, the huge differences in the sizes of the
partial effects of frequency, length, and age group become apparent.

You now know how to run a multiple regression with ols() , how to handle poten-
tial nonlinearities, and how to plot the partial effects of the predictors. For the present
data set, the analysis is far from complete, however, as there are many more variables in
the model that we have not yet considered. As many of these additional predictors are
pairwise correlated, we run into the problem of collinearity.

6.2.2 Collinearity

The ideal data set for multiple regression is one in which all the predictors are uncorre-
lated. Severe problems may arise if the predictors enter into strong correlations, a phe-
nomenon known as COLLINEARITY [Belsley et al., 1980]. A metaphor for understanding
the problem posed by collinearity builds on Figure 6.6. The ideal situation is shown to the
left. The variance to be explained is represented by the square. The small circles represent
the part of the variance captured by four predictors. In the situation shown on the left,
each predictor captures its own unique portion of the variance. In this case, the predictors
are said to be ORTHOGONAL, they are uncorrelated. The situation depicted to the right il-
lustrates collinear predictors. There is little variance that is captured by just one predictor.
Instead, almost the same part of the variance is captured by all four predictors. Hence, it
becomes difficult to tease the explanatory values of these predictors apart.

Collinearity is generally assessed by means of the condition number κ. The greater
the collinearity, the closer the matrix of predictors is to becoming SINGULAR. When a
matrix is singular, the problem that arises is similar to attempting to divide a number
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Figure 6.5: The partial effects according to model english.olsE . As the vertical axes
are all on the same scale, the huge differences in the sizes of the effects are clearly visible.
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Figure 6.6: Orthogonal (left) and collinear (right) predictors.

by zero: The operation is not defined. The condition number estimates the extent to
which a matrix is singular, i.e., how close the task of estimating the parameters is to being
unsolvable. R provides a function kappa() for estimating the condition number, but we
calculate κ with collin.fnc() following Belsley et al. [1980]. These authors argue that
not only the predictors, but also the intercept should also be taken into account when
evaluating the condition number. When the condition number is between 0 and 6, there
is no collinearity to speak of. Medium collinearity is indicated by condition numbers
around 15, and condition numbers of 30 or more indicate potentially harmful collinearity.

In order to assess the collinearity of our lexical predictors, we first remove word dupli-
cates from the english data frame by selecting those rows that concern the young age
group. We then apply collin.fnc() to the resulting data matrix of items, restricted
to the columns of the 23 numerical variables in which we are interested (in columns 7
through 29 of our data frame). From the list of objects returned by collin.fnc() we
select the condition number with the $ operator.

> collin.fnc(english[english$AgeSubject == "young",], 7 :29)$cnumber
[1] 132.0727

Note that the second argument to collin.fnc() specifies the columns to be selected
from the data frame specified as its first argument. A condition number as high as 132
indicates that it makes no sense to consider these 23 predictors jointly in a multiple re-
gression model. Too many variables tell the same story. The numerical algorithms used
to estimate the coefficients may even run into problems with machine precision.

As a first step towards addressing this problem, we visualize the correlational struc-
ture of our predictors. In section 5.1.4 we studied this correlational structure with the
help of hierarchical clustering. The Design package provides a convenient function for
visualizing clusters of variables, varclus() , that obviates intermediate steps.

> plot(varclus(as.matrix(english[english$AgeSubject = = "young", 7:29])))

The varclus() function carries out a hierarchical cluster analysis, using the square of
Spearman’s rank correlation as a similarity metric to obtain a more robust insight into the
correlational structure of (possibly nonlinear) predictors. Figure 6.7 shows that there are
several groups of tightly correlated predictors. For instance, the leftmost cluster brings to-
gether six correlated measures for orthographic consistency, which subdivide by whether
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Figure 6.7: Hierarchical clustering of 23 predictors in the english data set, using the
square of Spearman’s rank correlation as similarity measure.

they are based on token counts (the left subcluster with variable names ending in N) or
whether they are based on type counts (the right subcluster with names ending in V ).

There are several strategies that one can pursue to reduce collinearity. The simplest
strategy is to select one variable from each cluster. The problem with this strategy is that
we may be throwing out information that is actually useful. Belsley et al. [1980] give as
example an entrance test gauging skills in mathematics and physics. Normally, grades
for these subjects will be correlated, and one could opt for looking only at the grades for
physics. But some students might like only math, and basing a selection criterion on the
grades for physics would exclude students with excellent grades for math but low grades
for physics. In spite of this consideration, one may have theoretical reasons for selecting
one variable from a cluster. For instance, FamilySize and DerivationalEntropy are
measures that are mathematically related, and that gauge the same phenomenon. As we
are not interested in which of the two is superior in this study, we select one.

In the case of our 10 measures for orthographic consistency, we can do more. We
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can orthogonalize these predictors using principal components analysis, a technique that
was introduced in Chapter 5. Columns 19 through 28 contain the orthographic consis-
tency measures for our words, and just for these 10 variables by themselves, the condition
number is already quite large:

> collin.fnc(english[english$AgeSubject == "young",], 1 8:27)$cnumber
[1] 49.05881

We reduce these 10 correlated predictors to 4 uncorrelated, orthogonal, predictors as fol-
lows. With prcomp() we create a principal components object. Next, we inspect the
proportions of variance explained by the successive principal components.

> items = english[english$AgeSubject == "young",]
> items.pca = prcomp(items[ , c(18:27)], center = T, scale = T )
> summary(items.pca)
Importance of components:

PC1 PC2 PC3 PC4 PC5 ...
Standard deviation 2.087 1.489 1.379 0.9030 0.5027 ...
Proportion of Variance 0.435 0.222 0.190 0.0815 0.0253 ...
Cumulative Proportion 0.435 0.657 0.847 0.9288 0.9541 ...

The first four PCs each capture more than 5% of the variance, and jointly account for 93%
of the variance,

> sum((items.pca$sdevˆ2/sum(items.pca$sdevˆ2))[1:4])
[1] 0.9288

so they are excellent candidates for replacing the 10 original consistency measures. In-
spection of the rotation matrix allows insight into the relation between the original and
new variables. For instance, sorting the rotation matrix by PC4shows that this component
distinguishes between the token based and type based measures.

> x = as.data.frame(items.pca$rotation[,1:4])
> x[order(x$PC4), ]

PC1 PC2 PC3 PC4
ConfriendsN 0.37204438 -0.28143109 0.07238358 -0.446090 99
ConspelN 0.38823175 -0.22604151 -0.15599471 -0.40374288
ConphonN 0.40717952 0.17060014 0.07058176 -0.35127339
ConfbN 0.24870639 0.52615043 0.06499437 -0.06059884
ConffN 0.10793431 0.05825320 -0.66785576 0.05538818
ConfbV 0.25482902 0.52696962 0.06377711 0.10447280
ConffV 0.09828443 0.03862766 -0.67055578 0.13298443
ConfriendsV 0.33843465 -0.35438183 0.20236240 0.3832677 9
ConphonV 0.38450345 0.22507258 0.13966044 0.38454580
ConspelV 0.36685237 -0.32393895 -0.03194922 0.42952573

The principal components themselves are available in items.pca$x . That there is in-
deed no collinearity among these four principal components can be verified by applica-
tion of collin.fnc() :
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> collin.fnc(items.pca$x, 1:4)$cnumber
[1] 1

Finally, we add these four principal components to our data, first for the young age group,
and then for the old age group. We then combine the two data frames into an expanded
version of the original data frame english with the help of rbind() , which binds vec-
tors or data frames row-wise.

> items$PC1 = items.pca$x[,1]
> items$PC2 = items.pca$x[,2]
> items$PC3 = items.pca$x[,3]
> items$PC4 = items.pca$x[,4]
> items2 = english[english$AgeSubject != "young", ]
> items2$PC1 = items.pca$x[,1]
> items2$PC2 = items.pca$x[,2]
> items2$PC3 = items.pca$x[,3]
> items2$PC4 = items.pca$x[,4]
> english2 = rbind(items, items2)

Sometimes, simpler solutions are possible. For the present data, one question of in-
terest concerned the potential consequences of the frequency of use of a word as a noun
or as a verb (e.g., the work, to work). Including two correlated frequency vectors is not
advisable. As a solution, we include as a predictor the difference of the log frequency of
the noun and that of the verb. (This is mathematically equivalent to considering the log
of the ratio of the unlogged nominal and verbal frequencies.) With this new predictor, we
can investigate whether it matters whether a word is used more often as a noun, or more
often as a verb.

> english2$NVratio =
+ log(english2$NounFrequency+1) - log(english2$VerbFre quency+1)

Similarly, the frequencies of use in written and spoken language can be brought together
in a ratio, WrittenSpokenFrequencyRatio , that is already available in the data frame.
With just three frequency measures, WrittenFrequency , WrittenSpokenFrequency
Ratio , and NVratio , instead of four frequency measures, we reduce the condition num-
ber for the frequency measures from 9.45 to 3.44. In what follows, we restrict ourselves to
the following predictors,

> english3 = english2[,c("RTlexdec", "Word", "AgeSubject ",
+ "WordCategory", "WrittenFrequency",
+ "WrittenSpokenFrequencyRatio", "FamilySize",
+ "InflectionalEntropy", "NumberSimplexSynsets",
+ "NumberComplexSynsets", "LengthInLetters", "MeanBigr amFrequency",
+ "Ncount", "NVratio", "PC1", "PC2", "PC3", "PC4", "Voice" )]

and create the corresponding data distribution object.

> english3.dd = datadist(english3)
> options(datadist = "english3.dd")
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We also include the interaction of WrittenFrequency by AgeSubject observed above
in the new model.

> english3.ols = ols(RTlexdec ˜ Voice + PC1 + PC2 + PC3 + PC4 +
+ LengthInLetters + MeanBigramFrequency + Ncount +
+ rcs(WrittenFrequency, 5) + WrittenSpokenFrequencyRati o +
+ NVratio + WordCategory + AgeSubject +
+ FamilySize + InflectionalEntropy +
+ NumberSimplexSynsets + NumberComplexSynsets +
+ rcs(WrittenFrequency, 5) * AgeSubject, data = english3)

An anova summary shows remarkably few non-significant predictors: the principal com-
ponents PC2–4, Length, neighborhood density, and the number of simplex synsets. A pro-
cedure in the Design package for removing superfluous predictors from the full model
is fastbw() , which implements a fast backwards elimination routine.

> fastbw(english3.ols)

Deleted Chi-Sq df P Residual df P AIC R2
NumberSimplexSynsets 0.00 1 0.9742 0.00 1 0.9742 -2.00 0.73 4
Ncount 0.05 1 0.8192 0.05 2 0.9737 -3.95 0.734
PC3 0.74 1 0.3889 0.80 3 0.8505 -5.20 0.734
PC2 0.90 1 0.3441 1.69 4 0.7924 -6.31 0.734
LengthInLetters 1.15 1 0.2845 2.84 5 0.7252 -7.16 0.734
PC4 1.40 1 0.2364 4.24 6 0.6445 -7.76 0.734
NVratio 4.83 1 0.0279 9.07 7 0.2476 -4.93 0.734
WordCategory 2.01 1 0.1562 11.08 8 0.1971 -4.92 0.733

Approximate Estimates after Deleting Factors

Coef S.E. Wald Z P
Intercept 6.865088 0.0203124 337.97550 0.000e+00
Voice=voiceless -0.009144 0.0025174 -3.63235 2.808e-04
PC1 0.002687 0.0005961 4.50736 6.564e-06
MeanBigramFrequency 0.007509 0.0018326 4.09740 4.178e-0 5
WrittenFrequency -0.041683 0.0047646 -8.74852 0.000e+00
WrittenFrequency’ -0.114355 0.0313057 -3.65285 2.593e-0 4
WrittenFrequency’’ 0.704428 0.1510582 4.66329 3.112e-06
WrittenFrequency’’’ -0.886685 0.1988077 -4.46002 8.195e -06
WrittenSpokenFrequencyRatio 0.009739 0.0011305 8.61432 0.000e+00
AgeSubject=young -0.275166 0.0187071 -14.70915 0.000e+0 0
FamilySize -0.010316 0.0022198 -4.64732 3.363e-06
InflectionalEntropy -0.021827 0.0022098 -9.87731 0.000e +00
NumberComplexSynsets -0.006295 0.0012804 -4.91666 8.803 e-07
Frequency * AgeSubject=young 0.017493 0.0066201 2.64244 8.231e-03
Frequency’ * AgeSubject=young -0.043592 0.0441450 -0.98747 3.234e-01
Frequency’’ * AgeSubject=young 0.010664 0.2133925 0.04998 9.601e-01
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Frequency’’’ * AgeSubject=young 0.171251 0.2807812 0.60991 5.419e-01

Factors in Final Model

[1] Voice PC1 MeanBigramFrequency
[4] WrittenFrequency WrittenSpokenFrequencyRatio AgeSu bject
[7] FamilySize InflectionalEntropy NumberComplexSynset s
[10] WrittenFrequency * AgeSubject

The output of fastbw() has two parts. The first part lists statistics summarizing why
factors are deleted. As can be seen in the two columns of p-values, none of the deleted
variables comes anywhere near explaining a significant part of the variance. Unsurpris-
ingly, all predictors that did not reach significance in the anova table are deleted. In
addition, WordCategory and NVratio , which just reached significance at the 5% level,
are removed as well. The second part of the output of fastbw() lists the estimated coef-
ficients for the remaining predictors, together with their associated statistics.

We should not automatically accept the verdict of fastbw() . First, it is only one of
many available methods for searching for the most parsimonious model. Second, it often
makes sense to remove predictors by hand, guided by one’s theoretical knowledge of the
predictors. In the present example, PC1 remains in the model as the single representa-
tive of 10 control variables for orthographic consistency. We gladly accept the removal
of the other three principal components. LengthInLetters is also deleted. Given the
very small effect size we observed above for this variable, and given that a highly cor-
related control variable for orthographic form, MeanBigramFrequency , remains in the
model, we have no regrets either for word length. With respect to WordCategory and
NVratio , we need to exercise some caution. Not only did these predictors reach signif-
icance at the 5% level, we also have theoretical reasons for predicting that nouns should
have a processing advantage compared to verbs in visual lexical decision. Third, we need
to check at this point is whether there are nonlinearities for other predictors besides writ-
ten frequency. In fact, nonlinearities turn out to be required for for FamilySize and
WrittenSpokenFrequencyRatio , and once these nonlinearities are brought into the
model, WordCategory and NVratio emerge as predictive after all (both p < 0.05).

> english3.olsA = ols(RTlexdec ˜ Voice + PC1 + MeanBigramFre quency +
+ rcs(WrittenFrequency, 5) + rcs(WrittenSpokenFrequency Ratio, 3) +
+ NVratio + WordCategory + AgeSubject + rcs(FamilySize, 3) +
+ InflectionalEntropy + NumberComplexSynsets +
+ rcs(WrittenFrequency, 5):AgeSubject, data=english3, x =T, y=T)

We summarize this model by means of Figure 6.8, removing confidence bands (which are
extremely narrow) and the subtitles specifying how the partial effects are adjusted for the
other predictors in the model (as this is a very long list with so many predictors).

> par(mfrow = c(4, 3), mar = c(4, 4, 1, 1), oma = rep(1, 4))
> plot(english3.olsA, adj.subtitle=F, ylim=c(6.4, 6.9), conf.int=F)
> par(mfrow = c(1, 1))
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Figure 6.8: Partial effects of the predictors according to model english3.olsA .
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6.2.3 Model criticism

Before we can accept the model we have now arrived at, we need ascertain whether this
model provides a satisfactory fit to the data. There are a number of things to be checked.
First of all, we check whether the residuals properly follow a normal distribution. The
estimated probability density in the upper left of Figure 6.9 has a right tail that is some-
what thicker and longer than expected for a normal distribution. This asymmetry is also
reflected in the quantile-quantile plot in the upper right. This shows that the model is
stressed when it tries to fit the longest response latencies.

> english3$rstand = as.vector(scale(resid(english3.ols A)))
> plot(density(english3$rstand), main=" ")
> qqnorm(english3$rstand, cex = 0.5, main = " ")
> qqline(english3$rstand)

The lower left panel plots standardized residuals against the fitted values. There is a
small increase in the residuals for larger fitted values, suggesting HETEROSKEDASTICITY,
but the number of potentially offending data points is small and the offending points are
outside the range of −2.5 to 2.5 and hence probably OUTLIERS.

> plot(english3$rstand ˜ fitted(english3.olsA), pch="." )
> abline(h = c(-2.5, 2.5))

There are many diagnostics for identifying outliers. One such diagnostic calculates,
for each data point, a scaled difference between the fitted value given the full data set
and the fitted value when that data point is not included when building the model. The
resulting numbers are known as DFFITS (differences in the fits). If the two values are very
different, a data point has atypical LEVERAGE, and may have undue influence on the val-
ues of the model’s coefficients. The lower right panel of Figure 6.9 plots the absolute
values of the DFFITS for each successive data point in english3 , where we use the func-
tion abs() to obtain absolute values.

> dffits = abs(resid(english3.olsA, "dffits"))
> plot(dffits, type="h")

Observations for which the absolute DFFITS stand out from the others are suspect as ex-
erting undue leverage. A metaphor may help explain this. Consider a flock of sheep,
moving north, and one sheep moving west. One would like to say that the sheep are
actually moving north, but the one exceptional sheep may causes the model to report the
sheep are moving to the northwest. To obtain a good estimate of the direction in which
the flock is moving, we need to identify atypical individuals, and check whether they are
distorting the general pattern.

The DFFITS provide a global measure for detecting leverage. There are also measures
for detecting leverage with respect to specific predictors. The function dfbetas() (dif-
ferences with respect to the betas, i.e., the values of the coefficients) gives the change in
the estimated coefficients if an observation is excluded, relative to its standard error. For
a linear model obtained with ols() , the function which.influence() returns a list
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Figure 6.9: Model criticism for english3.olsA : a density plot of the standardized resid-
uals (upper left), the corresponding quantile-quantile plot (upper right), standardized
residuals by predicted reaction time (lower left), and dffits (lower right).

with, for each predictor, the row numbers of high-leverage observations in the data frame
english3 that we used to obtain the model english3.olsA . A data point is marked
as influential when the absolute relative change exceeds 0.2 (the default cutoff).

> w = which.influence(english3.olsA)
> w
$Intercept
[1] 2844 3714 3815

$PC1
[1] 4365

$WrittenFrequency
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[1] 2419 2458 2844 2883 3628 3714 3815 3850 4381

$WrittenSpokenFrequencyRatio
[1] 1036 2400 2612 3320 3328 4148 4365

$AgeSubject
[1] 385 2097 2419 2458 2844 3628 3714 3815 3850 4381

$"WrittenFrequency * AgeSubject"
[1] 385 2419 2458 2844 3628 3714 3815 3850 4381

It can be useful to inspect the individual data points that are a potential source of trouble.
We do so with a FOR LOOP over the elements of the list returned by which.influence ,
after isolating the names of the elements in a separate vector. Within the loop, we use
cat() , which echoes its arguments to the console, to report on the subsets of outliers.

> nam = names(w)
> for (i in 1:length(nam)) {
+ cat("Influential observations for effect of", nam[i], "\ n")
+ print(english3[w[[i]], 1:3])
+ }

Note that w[[i]] is a vector of row numbers, the row numbers of a subset of outliers in
english3 . For each of the selected rows, we print the first three columns to the console.

Influential observations for effect of Intercept
RTlexdec Word AgeSubject

2012 6.578709 skit old
2882 6.722401 slat old
3815 6.648596 wilt old
Influential observations for effect of PC1

RTlexdec Word AgeSubject
4365 7.006052 piss old
Influential observations for effect of WrittenFrequency

RTlexdec Word AgeSubject
1587 7.097689 nonce old
1626 6.549551 champ old
2012 6.578709 skit old
2051 6.631857 cox old
2796 6.751335 mitt old
2882 6.722401 slat old
3815 6.648596 wilt old
3850 6.549551 champ old
4381 6.606934 broil old
Influential observations for effect of WrittenSpokenFreq uencyRatio

RTlexdec Word AgeSubject
1036 6.571149 mum young
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1568 6.956155 boon old
1780 7.078021 gel old
2488 6.760079 mum old
2496 6.867641 god old
4148 7.086813 dun old
4365 7.006052 piss old
Influential observations for effect of AgeSubject

RTlexdec Word AgeSubject
385 6.253194 jape young
3549 6.369661 broil young
1587 7.097689 nonce old
1626 6.549551 champ old
2012 6.578709 skit old
2796 6.751335 mitt old
2882 6.722401 slat old
3815 6.648596 wilt old
3850 6.549551 champ old
4381 6.606934 broil old
Influential observations for effect of WrittenFrequency * AgeSubject

RTlexdec Word AgeSubject
385 6.253194 jape young
1587 7.097689 nonce old
1626 6.549551 champ old
2012 6.578709 skit old
2796 6.751335 mitt old
2882 6.722401 slat old
3815 6.648596 wilt old
3850 6.549551 champ old
4381 6.606934 broil old

Many of the words identified as outliers are unknown words or words that are relatively
uncommon, or uncommon in written form (e.g., mum). It is not at all surprising that
these words elicited atypical reaction times. Their removal will allow us obtain improved
insight into the processing complexity of more normal words. We therefore create a vector
with the row numbers of the offending data points.

> outliers=as.numeric(rownames(english3[abs(english3 $rstand) > 2.5,]))
> dfBetas=as.numeric(unique(unlist(as.vector(w))))
> outliers2=unique(c(dfBetas, outliers))

The resulting vector of unique rownames accounts for less than 2% of the data points.

> length(outliers2)/nrow(english3)
[1] 0.01904553

We use negative subscripting to take the outliers out of the data, create an updated data
distribution object,
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> english4 = english3[-outliers2, ]
> english4.dd = datadist(english4)
> options(datadist = "english4.dd")

and refit the model.

> english4.ols = ols(RTlexdec ˜ Voice + PC1 + MeanBigramFreq uency +
+ rcs(WrittenFrequency, 5) + rcs(WrittenSpokenFrequency Ratio, 3) +
+ NVratio + WordCategory + AgeSubject + rcs(FamilySize, 3) +
+ rcs(WrittenFrequency, 5):AgeSubject + InflectionalEnt ropy +
+ NumberComplexSynsets, data = english4, x = T, y = T)

The specification of x = T, y = T instructs ols() to create a model object that stores
detailed information about the input (such as the internal coding for restricted cubic
splines) and the output. This is essential for later plotting and model validation.

> anova(english4.ols)
Analysis of Variance Response: RTlexdec

Factor d.f. Part SS MS F P
Voice 1 0.0629 0.0629 10.50 0.0012
PC1 1 0.1355 0.1355 22.63 <.0001
MeanBigramFrequency 1 0.1247 0.1247 20.82 <.0001
WrittenFrequency
(Factor+Higher Order Factors) 8 8.7284 1.0910 182.09 <.000 1

All Interactions 4 0.1464 0.0366 6.11 0.0001
Nonlinear
(Factor+Higher Order Factors) 6 1.5158 0.2526 42.16 <.0001

WrittenSpokenFrequencyRatio 2 0.5377 0.2688 44.88 <.0001
Nonlinear 1 0.0269 0.0269 4.50 0.0340

NVratio 1 0.0446 0.0446 7.46 0.0063
WordCategory 1 0.0427 0.0427 7.14 0.0076
AgeSubject
(Factor+Higher Order Factors) 5 54.9897 10.9979 1835.51 <. 0001

All Interactions 4 0.1464 0.0366 6.11 0.0001
FamilySize 2 0.4368 0.2184 36.46 <.0001

Nonlinear 1 0.3250 0.3250 54.25 <.0001
InflectionalEntropy 1 0.2668 0.2668 44.53 <.0001
NumberComplexSynsets 1 0.1354 0.1354 22.60 <.0001
WrittenFrequency * AgeSubject
(Factor+Higher Order Factors) 4 0.1464 0.0366 6.11 0.0001

Nonlinear 3 0.1461 0.0487 8.13 <.0001
Nonlinear Interaction :

f(A,B) vs. AB 3 0.1461 0.0487 8.13 <.0001
TOTAL NONLINEAR 8 2.6352 0.3294 54.98 <.0001
TOTAL NONLINEAR + INTERACTION 9 2.6356 0.2928 48.87 <.0001
REGRESSION 20 81.1652 4.0582 677.31 <.0001
ERROR 4460 26.7232 0.0059
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Compared to english3.olsA , most predictors have become more significant. In addi-
tion, the proportion of variance explained increased as well, as witnessed by the change
in the adjusted R2 from 0.736 to 0.751 (the adjusted R2 is provided by the summary, not
shown here, obtained when you type the name of the model object to the prompt). In
short, we have identified those datapoints for which we do not have a good theory, and
we have developed a model with improved goodness of fit for the remaining data points.

6.2.4 Validation

We are still not there. We need to ascertain to what extent we have been overfitting the
model to this specific set of data points. To do so, we make use of the BOOTSTRAP. The
bootstrap proceeds as follows. From our data set with 4492 words, we randomly draw
4492 observations WITH REPLACEMENT. This is called a bootstrap sample. For our data
set, something like 2820 of the original observations will be present in such a bootstrap
sample, many of which will be represented more than once, compare:

> length(unique(sample(1:4492, replace=T)))
[1] 2838
> length(unique(sample(1:4492, replace=T)))
[1] 2820
> length(unique(sample(1:4492, replace=T)))
[1] 2824

(The total number of data points in each bootstrap sample is always 4492.) We now fit our
model to the data in the sample, and use this model to predict the reaction times for the
original full data set, which contains many data points on which the bootstrap model has
not been trained. Next, we compare the resulting goodness of fit of the bootstrap model
with the goodness of fit of the original model, in our case, english4.ols . Averaged
over a large number of bootstrap samples, these comparisons reveal to what extent the
original model overfits the data. To see how this works, we make use of the validate()
function in the Design package. It takes as arguments the model that is to be validated,
and the number of bootstrap runs, as specified by the argument B. In the following ex-
ample, we also specify that fast backwards elimination of superfluous predictors should
be allowed, both for the input model and for the bootstrap models. (For validate() to
work, the model object should have been created with the options x = T and y = T , as
in the function call to ols() above that created english4.ols . These are instructions
to store more information about the model in the model object.)

> validate(english4.ols, bw = T, B = 200)
Backwards Step-down - Original Model
No Factors Deleted
Frequencies of Numbers of Factors Retained

9 10 11 12
3 16 28 153

index.orig training test optimism
R-square 0.748543387 0.74942258 0.747215839 2.206745e-0 3
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MSE 0.006095415 0.00609558 0.006127595 -3.201435e-05
Intercept 0.000000000 0.00000000 0.015134152 -1.513415e -02
Slope 1.000000000 1.00000000 0.997676416 2.323584e-03

index.corrected n
R-square 0.746336642 200
MSE 0.006127429 200
Intercept 0.015134152 200
Slope 0.997676416 200

For the present model, no predictors are removed by the backwards step-down algorithm
for the input model. The summary then specifies the numbers of predictors retained by
the step-down algorithm across 200 bootstrap runs. All twelve predictors are retained for
153 runs, one predictor is removed for 28 runs, two predictors for 16 runs, and 3 for nine
runs. (When you rerun this validation, the numbers will change slightly.) The final part
of the summary compares goodness of fit statistics for the input model with the average
of the corresponding statistics for the models fit to the bootstrap samples. The first row
lists the R2, the second the MEAN SQUARED ERROR, the mean of the squared residuals.

> sum(resid(english4.ols)ˆ2)/length(resid(english4.o ls))
[1] 0.006095415

The third and fourth line list the intercept and slope of the regression line obtained when
the observed reaction times are regressed against the fitted values:

> coef(lm(english4$RTlexdec˜fitted(english4.ols)))
(Intercept) fitted(english4.ols)

3.998611e-15 1.000000e-00

Slope and intercept are by necessity 0 and 1 for the original data. However, when we
regress the observed reaction times in the full data set against the fitted values obtained
in a simulation run, the slope may be less than one, in which case the intercept will shift
away from zero to compensate. Therefore, these bootstrap slopes and intercepts may also
shed light on the degree of overfitting.

The next column in the output of validate() reports the average of these four statis-
tics for the 200 models fit to the bootstrap samples. The third column lists these statistics
when the bootstrap models are used to predict the reaction times in the full data set.
Prediction for the test set is less accurate than for the training set: The R2 decreases by
0.748543387 − 0.746336642 = 0.002206745, and the mean squared error increases from
0.006095415 to 0.006127429 by −3.2014e − 05. These (in this example minute) differences
between the training and the test statistics are listed in the column labeled OPTIMISM.
Comparing training and test statistics, we find that we are too optimistic about the R2,
our undue optimism is 0.003. Similarly, the mean squared error is somewhat larger that
we thought, here we were too optimistic as well. Similarly, intercept and slope move away
from 0 and 1. The last column in the summary corrects the original estimates in the first
column for optimism. Thus, the corrected value for R2 is 0.748543387− 2.206745e − 03 =
0.7463366. For the present data, the bootstrap corrections are minimal, which allows us
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to conclude that we are not overfitting the data. Likewise, there are relatively few boot-
strap runs in which the fast backwards elimination routine decides that predictors can be
dispensed with. The tiny amound of overfitting in the present example does not come
as a surprise in the light of the large number of data points compared to the number of
coefficients in the model. As a rule of thumb, there should be at least 15 times more obser-
vations than coefficients (for more precise estimates depending on the kind of regression
analysis used, see Harrell 2001:61). For small data sets and large numbers of predictors, it
is not unusual to find that the amount of variance explained is halved or even decimated
when adjusted for optimism.

6.3 Generalized linear models

GENERALIZED LINEAR MODELS are an important extension to ordinary least squares re-
gression models. Parameter estimation, however, is not based on minimizing the sum of
squared errors. Instead, parameters are chosen such that, given the data and our choice
of model, they make the model’s predicted values most similar to the observed values.
This general technique is known as MAXIMUM LIKELIHOOD ESTIMATION. Maximum like-
lihood estimation for generalized linear models makes use of iterative fitting techniques.

6.3.1 Logistic Regression

Thus far, we have been concerned with observations involving measurements. In many
experiments, however, outcomes are not real numbers, but take one of two possible val-
ues: head or tail, success or failure, correct versus incorrect, regular or irregular, direct
object construction versus prepositional object construction, etc. For data sets with such
BINARY dependent variables, we would like to be able to estimate the probability of given
outcome (e.g., head, or success, or regular, or direct object construction) given the predic-
tors. This is accomplished with logistic regression, a technique that is widely used in
sociolinguistics where it is known as VARBRUL analysis.

To see how logistic regression works, we return to the visual lexical decision data
(english ), but now consider the accuracy of the responses. In lexical decision, subjects
have to decide whether the letter string presented on the screen is a word. If they press
the NO button when a real word is presented, this is counted as an error. Is the probability
of an error determined by the same predictors that we observed to be significant for the
reaction times? The column CorrectLexdec lists for each word the number of subjects,
out of a total of 30, that provided the correct (yes) response. Let’s look at the counts of
correct responses for the first ten words in the data frame:

> nCorrect = english2$CorrectLexdec[1:10]
> nCorrect
[1] 27 30 30 30 26 28 30 28 25 29

At first, you might think that it would be useful to transform these counts into proportions
(or percentages, when multiplied by 100),
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> proportions = nCorrect/30
> proportions
[1] 0.9000000 1.0000000 1.0000000 1.0000000 0.8666667
[5] 0.9333333 1.0000000 0.9333333 0.8333333 0.9666667

and to use these proportions as the dependent variable in a standard linear regression
model. There are several considerations that argue against this approach. First, propor-
tions are bounded between 0 and 1, but lm() and ols() don’t know about this and
might come up with predicted proportions greater than one or smaller than zero. Second,
proportions have the property that the variance increases with the mean. But lm() (and
ols() ) presuppose that the variance is constant and does not vary with the values of any
of the predictors. Third, proportions don’t provide information about how many obser-
vations went into the calculation of the proportion. In a lexical decision experiment, for
instance, observations are sometimes lost due to failure of the button box. Suppose that
only four responses are available, two correct and two errors, and compare this with the
case that 30 responses are available, 15 correct and 15 incorrect. With 30 responses, we can
be more confident that the probability of an error is 0.5 than for just four responses. What
needs to be done is to weight the proportions for the number of contributing observations.

The solution is to model the probabilities indirectly through a LINK FUNCTION. For
binary data, this link function is the LOGIT transformation of the probability. For the
above proportions, we obtain the corresponding logits (log odds ratios) as follows:

> logits = log(nCorrect/(30 - nCorrect))
> logits
[1] 2.197225 Inf Inf Inf 1.871802
[6] 2.639057 Inf 2.639057 1.609438 3.367296

Note that there are four cases where the logit is infinite. This happens when there are
no errors, in which case we are dividing 30 by 0, to which R responds with the error
code Inf . Fortunately, the R functions for logistic modeling have principled methods for
backing away from zero, so we will not calculate logits ourselves. Instead, we will leave
these calculations to the proper functions, glm() and, in the Design package, lrm() .
The choice between these functions depends on the form of your data frame. When there
is a single elementary observation in a row of the data frame, with a column specifying
the value of the binary predictor, we use lrm() . If our data is in a format in which the
numbers of successes and failures are listed for each line in the data frame, we use glm() .
We begin with an example requiring glm() , an acronym for Generalized Linear Model.

As always, glm() requires us to specify the model that we want to fit to the data by
means of a formula. The dependent variable requires special care: glm() needs to know
both the number of successes and the number of failures. This information is supplied
in the form of a two-column matrix, which we create with the cbind() (column bind)
function as follows:

> cbind(english$CorrectLexdec, 30 - english$CorrectLexd ec)
[,1] [,2]
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[1,] 27 3
[2,] 30 0
[3,] 30 0
[4,] 30 0
[5,] 26 4
[6,] 28 2
...

We specify the same model for the error data as for the decision latencies, using english2
(which includes PC1–PC4as predictors) as input data frame.

> english2.glm =
+ glm(cbind(english2$CorrectLexdec, 30 - english2$Corre ctLexdec) ˜
+ Voice + PC1 + MeanBigramFrequency + LengthInLetters + Ncou nt +
+ WordCategory + NVratio + poly(WrittenFrequency, 2) +
+ poly(WrittenSpokenFrequencyRatio, 2) + poly(FamilySiz e, 2) +
+ InflectionalEntropy + NumberComplexSynsets + AgeSubjec t, english2,
+ family = "binomial")

The last line of this command is new: family = "binomial" . It tells glm() to expect
two-column input, to use the logit link function, and to assume that the variance increases
with the mean according to the binomial distribution.

> summary(english2.glm)
Deviance Residuals:

Min 1Q Median 3Q Max
-8.5238 -0.6256 0.4419 1.3549 6.5136

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.282741 0.144491 15.798 < 2e-16
Voicevoiceless 0.010561 0.019964 0.529 0.597
PC1 -0.020694 0.004857 -4.261 2.03e-05
MeanBigramFrequency -0.131139 0.023195 -5.654 1.57e-08
LengthInLetters 0.269007 0.023088 11.651 < 2e-16
Ncount 0.002157 0.002694 0.800 0.423
WordCategoryV 0.138718 0.031253 4.439 9.06e-06
NVratio 0.021836 0.005156 4.235 2.28e-05
poly(WrittenFrequency, 2)1 40.896851 1.099373 37.200 < 2e -16
poly(WrittenFrequency, 2)2 -14.810919 0.757810 -19.544 < 2e-16
poly(WrSpFrequencyRatio, 2)1 -10.882376 0.717038 -15.17 7 < 2e-16
poly(WrSpFrequencyRatio, 2)2 0.181922 0.549843 0.331 0.7 41
poly(FamilySize, 2)1 6.962633 1.060134 6.568 5.11e-11
poly(FamilySize, 2)2 -10.258182 0.703623 -14.579 < 2e-16
InflectionalEntropy 0.361696 0.023581 15.338 < 2e-16
NumberComplexSynsets 0.120928 0.011454 10.558 < 2e-16
AgeSubjectyoung -0.873541 0.020179 -43.290 < 2e-16
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 24432 on 4567 degrees of freedom
Residual deviance: 12730 on 4551 degrees of freedom
AIC: 21886

Number of Fisher Scoring iterations: 5

After repeating the call to glm() (not shown), the summary provides a brief overview by
means of quartiles of the distribution of the deviance residuals , the differences between
the observed and expected values. These deviances are comparable to the residuals of
an ordinary least squares regression. However, the deviance residuals are expressed in
logits, and unlike the residuals of lm() or ols() , they need not follow a normal distri-
bution.

The next part of the summary lists the estimates of the coefficients. These coefficients
also pertain to the logits. The coefficient for AgeSubject , for instance, which expresses
the contrast between the old subjects (the reference level mapped onto the intercept) and
the young subjects is negative. Negative coefficients indicate that the probability of a
correct response (the first column of the two-column matrix for the dependent variable)
goes down. A positive coefficient indicates that the probability increases. What we see
here, then, is that the older subjects were more accurate responders. This ties in nicely
with the observation that they were also slower responders.

Each estimated coefficient is accompanied by its estimated standard error, a Z-score,
and the associated p-value. The p-value for the Noun-to-Verb frequency ratio, for instance,
can be calculated simply with

> 2 * (1 - pnorm(4.235))
[1] 2.285517e-05

The next line in the summary mentions that the dispersion parameter for the binomial
family is taken to be 1. This note is to remind us that the variance of a binomial random
variable depends entirely on the mean, and that the model assumed that this property
characterizes our data. The next two lines in the summary provide the information nec-
essary to check whether this assumption is met.

The null deviance is the deviance that you get with a model with only an intercept.
In the present example, this is a model that thinks that the probability of an error is the
same for all words. By itself, the null deviance is uninteresting. It is useful, though,
for ascertaining whether the predictors in the full model jointly earn their keep. The
difference between the null deviance and the residual deviance approximately follows a
chi-squared distribution with as degrees of freedom the difference between the degrees
of freedom of the two deviances:

> 1 - pchisq(24432 - 12730, 4567 - 4551)
[1] 0
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The very small p-value shows that we have a model with explanatory value. The reason
that glm() does not list this p-value is that the approximation to the chi-square distribu-
tion is valid only for large expected counts. So be warned: These p-values may provide a
rough indication only.

The residual deviance is used to examine whether the assumption of non-constant,
binomial variance, holds. We again use a test based on the chi-square approximation,
that again is approximate only (perhaps even useless, according to Harrell 2001:231):

> 1 - pchisq(12730, 4551)
[1] 0

The very small p-value indicates that the assumption of binomial variance is probably not
met. The variance is much larger than expected — if it had been in accordance with our
modeling assumption, the residual deviance should be approximately the same as the
number of degrees of freedom. Here it is more than four times too large. This is called
OVERDISPERSION. Overdispersion indicates a lack of goodness of fit. We may be missing
crucial predictors, or we may have missed nonlinearities in the predictors.

The final line of the summary mentions the number of scoring iterations, 5 in the
present example. The algorithm for estimating the coefficients of a general linear model
is iterative. It starts with an initial guess at the coefficients, and refines this guess in
subsequent iterations until the guesses become sufficiently stable.

Recall that there is a second function summarizing the model, anova() . For lm()
and glm() it has two functions. Its first function is to allow us to carry out a sequential
analysis in which terms are added successively to the model. In the summary table shown
above, we see that Voice is not predictive. But the analysis of deviance table produced
by the anova() function seems to provide a different verdict:

> anova(english2.glm, test = "Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 4567 24432.1
Voice 1 52.6 4566 24379.5 4.010e-13
PC1 1 169.2 4565 24210.3 1.123e-38
MeanBigramFrequency 1 109.4 4564 24100.9 1.317e-25
LengthInLetters 1 11.7 4563 24089.2 6.370e-04
Ncount 1 27.0 4562 24062.2 2.003e-07
...

This is because Voice is explanatory only when there are no other predictors in the
model. If we enter Voice and Ncount last to the model formula, then the results are
in harmony with the table of coefficients:
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> english2.glm =
+ glm(cbind(english2$CorrectLexdec, 30 - english2$Corre ctLexdec) ˜
+ MeanBigramFrequency + LengthInLetters + WordCategory + N Vratio +
+ poly(WrittenFrequency, 2) + WrittenSpokenFrequencyRat io +
+ poly(FamilySize, 2) + InflectionalEntropy + NumberCompl exSynsets +
+ AgeSubject + PC1 + Voice + Ncount, data=english2, family=" binomial")
> anova(english2.glm, test = "Chisq")
...
Voice 1 0.3 4553 12730.9 0.6
Ncount 1 0.6 4552 12730.2 0.4

The second function of anova() is to allow us to evaluate the overall significance of
factors. When a factor has only two levels, the test for the (single) coefficient based on
its Z-score is very similar to the test in the anova() function when the relevant factor is
entered last into the model equation. But when a factor has more than two levels, the table
of coefficients lists a t-value or a Z-score for each coefficient. In order to assess whether
the factor as a whole is explanatory, the anova() table is essential.

You may have noted that we called the anova() function with an argument that we
did not need before, test = "Chisq" . This is because there are two kinds of tests that
one can run for a logistic model, a test that makes use of the chi-square distribution, and a
test that makes use of the F -distribution. The latter test is more conservative, but is some-
times recommended [see, e.g., Crawley, 2002] when there is evidence for overdispersion.
The most recent implementation of the anova() function , however, adds a warning that
the F -test is inappropriate for binomial models.)

Let’s look at the predictions of the model by plotting the predicted counts against the
observed counts. The left panel of Figure 6.10 shows that the model far too optimistic
about the probability of a correct response, especially for words for which many incorrect
responses were recorded. Our model is clearly unsatisfactory, even though it supports
the relevance of most of our predictors. What is needed is model criticism.

First, however, we consider how to obtain the left panel of Figure 6.10. We extract
the predicted probabilities of a correct response with predict() , which we instruct to
produce probabilities rather than logits by means of the option type = "response" .
In order to proceed from probabilities (proportions) to counts, we multiply by the total
number of subjects (30):

> english2$predictCorrect = predict(english2.glm, type = "response") * 30

The plot is now straightforward:

> plot(english2$CorrectLexdec, english2$predictCorrec t, cex = 0.5)
> abline(0,1)

Let’s now remove observations from the data set for which the standardized residual
falls outside the interval (−5, 5), in the hope that this will reduce overdispersion.

> english2A = english2[abs(rstandard(english2.glm)) < 5, ]
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Figure 6.10: Predicted and observed counts of correct responses for the visual lexical de-
cision data in english2 (left panel). This model seriously overestimates the number of
correct responses for words were many mistakes are observed. The right panel shows the
improvement obtained after removal of data points with extreme residuals.

It is easy to see that this amounts to removing slightly more than 1% of the data points.

> (nrow(english2) - nrow(english2A)) / nrow(english2)
[1] 0.01357268

We now refit our model,

> english2A.glm =
+ glm(cbind(english2A$CorrectLexdec, 30 - english2A$Cor rectLexdec) ˜
+ MeanBigramFrequency + LengthInLetters + WordCategory + N Vratio +
+ poly(WrittenFrequency, 2) + WrittenSpokenFrequencyRat io +
+ poly(FamilySize, 2) + InflectionalEntropy + NumberCompl exSynsets +
+ AgeSubject + Voice + PC1 + Ncount, english2A, family = "bino mial")

and inspect the table of coefficients.

> summary(english2A.glm)
Deviance Residuals:

Min 1Q Median 3Q Max
-5.3952 -0.6600 0.3552 1.2885 4.7383
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.905725 0.151493 19.181 < 2e-16
MeanBigramFrequency -0.195028 0.024326 -8.017 1.08e-15
LengthInLetters 0.303197 0.024159 12.550 < 2e-16
WordCategoryV 0.123030 0.032056 3.838 0.000124
NVratio 0.023568 0.005226 4.510 6.48e-06
poly(WrittenFrequency, 2)1 40.133735 1.092606 36.732 < 2e -16
poly(WrittenFrequency, 2)2 -17.077597 0.753239 -22.672 < 2e-16
WrSpFrequencyRatio -0.153989 0.009509 -16.194 < 2e-16
poly(FamilySize, 2)1 5.327479 1.082136 4.923 8.52e-07
poly(FamilySize, 2)2 -8.887187 0.715517 -12.421 < 2e-16
InflectionalEntropy 0.334942 0.024447 13.701 < 2e-16
NumberComplexSynsets 0.107175 0.011763 9.111 < 2e-16
AgeSubjectyoung -0.882157 0.020997 -42.013 < 2e-16
Voicevoiceless 0.060491 0.020699 2.922 0.003473
PC1 -0.020570 0.005076 -4.052 5.07e-05
Ncount -0.001153 0.002792 -0.413 0.679692

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 20894 on 4505 degrees of freedom
Residual deviance: 10334 on 4490 degrees of freedom

Voice now emerges as significant. This illustrates the importance of model criticism:
The distorting presence of just a few atypical outliers may obscure effects that character-
ize the majority of the data points. Also note that the residual deviance is substantially
reduced, from 12730 to 10334, but with 4490 degrees of freedom, we still have overdis-
persion. This leads to the conclusion that there may be important predictors for subjects’
accuracy scores that we have failed to take into account. As can be seen in the right panel
of Figure 6.10, the removal of a few atypical outliers has led to a visible improvement in
the fit.

> plot(english2A$CorrectLexdec,
+ predict(english2A.glm, type = "response") * 30, cex = 0.5)
> abline(0,1)

This completes this example of a logistic regression for a data set in which the suc-
cesses and failures are available in tabular format. The next example illustrates the lrm()
function from the Design package for logistic regression modeling of data in LONG FOR-
MAT, i.e., data in which each row of the data frame specifies a single outcome, either a suc-
cess or a failure. We consider a data set reported by Tabak et al. [2005] that specifies, for
700 Dutch verbs that belong to the Germanic stratum of the Dutch vocabulary, whether
that verb is regular or irregular, together with a series of other predictors, such as the
auxiliary selected by the verb in the present and past perfect, its frequency, and its mor-
phological family size. Further information is available through help(regularity) .
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We begin with creating a data distribution object, and specify that this is the current data
distribution object with options() .

> regularity.dd = datadist(regularity)
> options(datadist = "regularity.dd")
> xtabs( ˜ regularity$Regularity)

regularity$Regularity
irregular regular

159 541

Fitting a logistic regression model with lrm() is straightforward.

> regularity.lrm = lrm(Regularity ˜ WrittenFrequency+rcs (FamilySize,3)+
+ NcountStem + InflectionalEntropy + Auxiliary + Valency + N Vratio +
+ WrittenSpokenRatio, data = regularity, x = T, y = T)

The anova() function applied to an lrm object does not produce a sequential analysis
of deviance table, but a table listing the partial effects of the predictors, which, in the
present example, are all significant. Significance is evaluated by means of the chi-square
test statistic.

> anova(regularity.lrm)
Wald Statistics Response: Regularity

Factor Chi-Square d.f. P
WrittenFrequency 8.76 1 0.0031
FamilySize 15.92 2 0.0003

Nonlinear 11.72 1 0.0006
NcountStem 14.21 1 0.0002
InflectionalEntropy 9.73 1 0.0018
Auxiliary 16.12 2 0.0003
Valency 10.29 1 0.0013
NVratio 7.79 1 0.0053
WrittenSpokenRatio 4.61 1 0.0318
TOTAL 126.86 10 <.0001

A table with the coefficients of the model and further summary statistics is obtained by
typing the name of the fitted model to the prompt.

> regularity.lrm
Logistic Regression Model

lrm(formula = Regularity ˜ WrittenFrequency + rcs(FamilyS ize, 3) +
NcountStem + InflectionalEntropy + Auxiliary + Valency +
NVratio + WrittenSpokenRatio, data = regularity, x = T, y = T)

Frequencies of Responses
irregular regular
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159 541

Obs Max Deriv Model L.R. d.f. P C
700 1e-05 215.62 10 0 0.843

Dxy Gamma Tau-a R2 Brier
0.687 0.688 0.241 0.403 0.121

Coef S.E. Wald Z P
Intercept 4.4559 0.97885 4.55 0.0000
WrittenFrequency -0.2749 0.09290 -2.96 0.0031
FamilySize -1.2608 0.31684 -3.98 0.0001
FamilySize’ 1.1752 0.34333 3.42 0.0006
NcountStem 0.0730 0.01937 3.77 0.0002
InflectionalEntropy 0.9999 0.32049 3.12 0.0018
Auxiliary=zijn -1.9484 0.57629 -3.38 0.0007
Auxiliary=zijnheb -0.6974 0.28433 -2.45 0.0142
Valency -0.1448 0.04514 -3.21 0.0013
NVratio 0.1323 0.04739 2.79 0.0053
WrittenSpokenRatio -0.2146 0.09993 -2.15 0.0318

The summary first lists how the model object was created, as well as the frequencies of
the two levels of our dependent variable: 159 irregulars, and 541 regulars. The regulars
(listed last) are interpreted as successes, and the irregulars as failures. The next section
of the summary lists a series of statistics that assess the goodness of fit. It starts off with
the number of observations, 700. The most important statistics are Model L.R. , C, Dxy
and R2. Model L.R. stands for model likelihood chi-square, the difference between the
Null Deviance and the Residual Deviance that we encountered above with glm() . In the
summary, it is followed by its associated degrees of freedom and p-value. The very small
p-value indicates that jointly the predictors are explanatory.

The remaining statistics address the predictive ability of the model. Recall that for
normal regression models, the R2 measure provides insight into how accurate the pre-
dictions of the model are. The problem with dichotomous response variables such as
Regularity is that the model produces estimates of the probability that a verb is regular,
whereas our observations simply state whether a verb is regular or irregular. We could
dichotomize our probabilities by mapping probabilities greater than 0.5 onto success and
probabilities less than 0.5 onto failure, but this implies a substantial loss of information.
(Consider the consequences for a data set in which success probabilities all range between
0 and 0.4.) Fortunately, lrm() provides a series of measures that deal with this problem
in a more principled way.

The measure named C is an index of concordance between the predicted probability
and the observed response. C is obtained by inspecting all pairs of verbs with both a
regular and an irregular verb for which the regular verb does indeed have the higher
expected probability of being regular. When C takes the value 0.5, the predictions are
random, when it is 1, prediction is perfect. A value above 0.8 indicates that the model may
have some real predictive capacity. Since Cis listed with the value 0.843, our confidence in
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the model is strengthened. A related measure is Somers’ Dxy, a rank correlation between
predicted probabilities and observed responses. This measure, 0.687 for our data, which
can be obtained from C (0.843) as follows,

> 2 * (0.843 - 0.5)
[1] 0.686

ranges between 0 (randomness) and 1 (perfect prediction). Finally, the R2 mentioned in
the table is a generalized index that is calculated from log-likelihood ratio statistics, and
also provides some indication of the predictive strength of the model.

Bootstrap validation provides further evidence that we have a reasonable model.

> validate(regularity.lrm, bw = T, B = 200)
Backwards Step-down - Original Model
No Factors Deleted
Factors in Final Model

[1] WrittenFrequency FamilySize NcountStem
[4] InflectionalEntropy Auxiliary Valency
[7] NVratio WrittenSpokenRatio
Iteration:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
...
Frequencies of Numbers of Factors Retained

4 5 6 7 8
1 11 24 46 118

index.orig training test optimism index.corrected
Dxy 0.6869 0.7026 0.6713 0.0313 0.6556
R2 0.4032 0.4216 0.3839 0.0377 0.3655
Intercept 0.0000 0.0000 0.0758 -0.0758 0.0758
Slope 1.0000 1.0000 0.9128 0.0872 0.9128
Emax 0.0000 0.0000 0.0336 0.0336 0.0336
D 0.3066 0.3234 0.2896 0.0339 0.2727
U -0.0029 -0.0029 0.0019 -0.0047 -0.0019
Q 0.3095 0.3263 0.2877 0.0386 0.2709
B 0.1210 0.1175 0.1243 -0.0068 0.1278

The fast backwards elimination algorithm reports that all predictors are retained. During
the bootstrap runs, it does eliminate predictors, most likely those with weak p-values
in the summary() and anova() tables. Except for 12 out of 200 bootstrap validaition
runs, at most two predictors are deleted. The optimism with respect to Dxy, and R2

N

is somewhat larger than in the previous example of bootstrap validation. The changes
in slope and intercept are also more substantial. In all, there is evidence that we are
somewhat overfitting the data.

Overfitting is an adverse effect of fitting a model to the data. In the process of select-
ing coefficients that approximate the data to the best of our abilities, it is unavoidable that

224



D
R

A
FT

noise is also fitted. Data points with extreme values due to noise are taken just as seri-
ously as normal data points. Across experiments, it is unlikely that the extreme values
will be replicated. As a consequence, coefficients in the fitted model run the risk of hav-
ing values that are also too extreme: In replication studies, the values of these coefficients
will generally be somewhat closer to zero. This phenomenon is known as SHRINKAGE.
For models fit by means of maximum likelihood estimation, the Design package offers
a tool, pentrace() that helps us find estimates of the coefficients that anticipate this
shrinkage. Because the coefficients in a penalized model have been shrunk towards zero,
their values are less vulnerable to overfitting and more accurate for prediction for un-
seen data. The pentrace() function makes use of a technique known as PENALIZED

MAXIMUM LIKELIHOOD ESTIMATION,. This technique introduces a penalty factor into the
estimation process that discourages large values for the coefficients. We do not know be-
forehand what the best penalty is, so a series of penalty values has to be considered. For
each penalty, a model is fitted to the data. The penalized model with the best fit is then
selected.

Applied to the current data, pentrace() expects as first argument the fitted model,
and as second argument the penalties that should be considered. Its output informs us
about what the best penalty is.

> pentrace(regularity.lrm, seq(0, 0.8, by = 0.05))
Best penalty:
penalty df

0.6 9.656274
simple df aic bic aic.c

1 0.00 10.000000 195.6179 150.1071 195.2986
2 0.05 9.967678 195.6792 150.3155 195.3619
3 0.10 9.936161 195.7327 150.5124 195.4173
4 0.15 9.905399 195.7789 150.6986 195.4654
5 0.20 9.875348 195.8184 150.8749 195.5067
6 0.25 9.845965 195.8519 151.0421 195.5419
7 0.30 9.817215 195.8796 151.2007 195.5714
8 0.35 9.789063 195.9021 151.3513 195.5957
9 0.40 9.761478 195.9198 151.4945 195.6150
10 0.45 9.734432 195.9330 151.6308 195.6298
11 0.50 9.707899 195.9420 151.7606 195.6404
12 0.55 9.681853 195.9472 151.8843 195.6471
13 0.60 9.656274 195.9487 152.0023 195.6502
14 0.65 9.631140 195.9470 152.1149 195.6499
15 0.70 9.606432 195.9421 152.2225 195.6465
16 0.75 9.582133 195.9343 152.3253 195.6402
17 0.80 9.558225 195.9239 152.4236 195.6311

The best penalty is 0.60, for which we have the largest values of aic (the Akaike Informa-
tion Criterion) and aic.c (a corrected version of aic ). Larger values of these measures
imply improved goodness of fit.
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Now that we know the optimal value for the penalty, we take our original unpenalized
model and update it with this penalty to obtain the corresponding penalized model.

> regularity.lrm.pen = update(regularity.lrm, penalty = 0 .6)
> regularity.lrm.pen
Frequencies of Responses
irregular regular

159 541
Penalty factors:

simple nonlinear interaction nonlinear.interaction
0.6 0.6 0.6 0.6

Final penalty on -2 log L: 3.24

Obs Max Deriv Model L.R. d.f. P C
700 1e-06 215.26 9.66 0 0.843
Dxy Gamma Tau-a R2 Brier

0.686 0.688 0.241 0.397 0.121

Coef S.E. Wald Z P Penalty Scale
Intercept 4.18590 0.93607 4.47 0.0000 0.0000
WrittenFrequency -0.27410 0.09125 -3.00 0.0027 1.5030
FamilySize -1.10885 0.28526 -3.89 0.0001 0.9161
FamilySize’ 1.01248 0.31279 3.24 0.0012 0.7468
NcountStem 0.07153 0.01911 3.74 0.0002 5.0767
InflectionalEntropy 0.96949 0.31762 3.05 0.0023 0.3114
Auxiliary=zijn -1.74304 0.53771 -3.24 0.0012 0.6325
Auxiliary=zijnheb -0.70646 0.27883 -2.53 0.0113 0.6325
Valency -0.14079 0.04429 -3.18 0.0015 2.7047
NVratio 0.12880 0.04660 2.76 0.0057 2.6535
WrittenSpokenRatio -0.21421 0.09850 -2.17 0.0297 1.1694

The summary has a structure that is very similar to that of the unpenalized model. It
adds the information that (in this example) the same penalty was applied to all types of
terms in the model. (This is the default, other options are available. For instance, only
nonlinear terms and interactions can be penalized. Consult the documentation for lrm()
for further details.)

To see what penalization has accomplished, we arrange the coefficients of the two
models side by side, and also list the difference between the two.

> cbind(coef(regularity.lrm), coef(regularity.lrm.pen ),
+ abs(coef(regularity.lrm) - coef(regularity.lrm.pen)) )

[,1] [,2] [,3]
Intercept 4.45591812 4.18590117 0.2700169476
WrittenFrequency -0.27489322 -0.27410296 0.0007902561
FamilySize -1.26081754 -1.10884722 0.1519703217
FamilySize’ 1.17521466 1.01248128 0.1627333834
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NcountStem 0.07300013 0.07153112 0.0014690074
InflectionalEntropy 0.99994212 0.96948811 0.0304540066
Auxiliary=zijn -1.94843887 -1.74304390 0.2053949677
Auxiliary=zijnheb -0.69740672 -0.70645984 0.0090531198
Valency -0.14480320 -0.14078808 0.0040151257
NVratio 0.13228590 0.12880451 0.0034813886
WrittenSpokenRatio -0.21457506 -0.21421097 0.000364093 2

Note that with the exception of Auxiliary=zijnheb all coefficients are SHRUNK to-
wards zero. The largest adjustments are those for Family Size and for Auxiliary=zijn .
For the latter predictor, this does not come as a surprise, as there are only a few verbs in
the data set that select zijn:

> table(regularity$Auxiliary)

hebben zijn zijnheb
577 20 103

It is precisely the magnitude of the contrast coefficient for zijn that is reduced substan-
tially. Here, our data are most sparse, and hence we should be restrained most for predic-
tion.

Let’s finally inspect the partial effects of the model by plotting all effects with the same
range on the vertical axis.

> par(mfrow = c(3, 3))
> plot(regularity.lrm.pen, fun = plogis, ylab = "Pr(regula r)",
+ adj.subtitle = F, ylim = c(0, 1))
> par(mfrow = c(1, 1))

Figure 6.11 shows that the probability of a verb being regular decreases with increasing
frequency, as expected. But it is clear that in addition to frequency, there are many other
predictors that have similar effect sizes, such as inflectional entropy, valency (a variable
that is strongly correlated with number of meanings), and the noun-to-verb frequency ra-
tio. Tabak et al. [2005], Baayen and Moscoso del Prado Martı́n [2005] discuss these results
in the context of the hypothesis that irregular verbs live in denser semantic similarity
neighborhoods than do regular verbs.

6.3.2 Ordinal logistic regression

Logistic regression is appropriate for dichotomous response variables. ORDINAL REGRES-
SION is appropriate for dependent variables that are factors with ordered levels. For a fac-
tor such as gender in German, the factor levels ’masculine’, ’feminine’ and ’neuter’ are not
intrinsically ordered. In contrast, vowel length in Estonian has the ordered levels ’short’,
’long’ and ’extra long’. Regression models for such ORDERED FACTORS are available. The
technique that we introduce here, ORDINAL LOGISTIC REGRESSION, is a generalization of
the logistic regression technique.
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Figure 6.11: Partial effects of the predictors for the log odds ratio of a Dutch simplex verb
from the native (Germanic) stratum being regular.
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As an example, we consider the data set studied by Tabak et al. [2005]. The model
predicting regularity for Dutch verbs developed in the preceding section showed that the
likelihood of regularity decreased with increasing valency. An increase in valency (here,
the number of different subcategorization frames in which a verb can be used) is closely
related to an increase in the verb’s number of meanings.

Irregular verbs are generally described as the older verbs of the language. Hence, it
could be that they have more meanings and a greater valency because they have had a
longer period of time in which they could spawn new meanings and uses. Irregular verbs
also tend to be more frequent than irregular verbs, and it reasonable to assume that this
high frequency protects irregular verbs through time against regularization.

In order to test these lines of reasoning, we need some measure of the age of a verb.
A rough indication of this age is the kind of cognates a Dutch verb has in other Indo-
European languages. On the basis of an etymological dictionary, Tabak et al. [2005]
established whether a verb appears only in Dutch, in Dutch and German, in Dutch,
German and other West-Germanic languages, in any Germanic language, or in Indo-
European. This classification according to etymological age is available in the column
labeled EtymAge in the data set etymology .

> colnames(etymology)
[1] "Verb" "WrittenFrequency" "NcountStem"
[4] "MeanBigramFrequency" "InflectionalEntropy" "Auxil iary"
[7] "Regularity" "LengthInLetters" "Denominative"

[10] "FamilySize" "EtymAge" "Valency"
[13] "NVratio" "WrittenSpokenRatio"

When a data frame is read into R, the levels of any factor are assumed to be unordered
by default. In order to make EtymAge into an ORDERED FACTOR with the levels in the
appropriate order, we use the function ordered() :

> etymology$EtymAge = ordered(etymology$EtymAge, levels = c("Dutch",
+ "DutchGerman", "WestGermanic", "Germanic", "IndoEurop ean"))

When we inspect the factor,

> etymology$EtymAge
...
[276] WestGermanic Germanic IndoEuropean Germanic German ic
[281] Germanic WestGermanic Germanic Germanic DutchGerma n
Levels: Dutch < DutchGerman < WestGermanic < Germanic < Indo European

we see that the ordering relation between its levels is now made explicit. We leave it as an
exercise to the reader to verify that etymological age is a predictor for whether a verb is
regular or irregular over and above the predictors studied in the preceding section. Here,
we study whether etymological age itself can be predicted from frequency, regularity,
family size, etc. We create a data distribution object, set the appropriate variable to point
to this object,
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> etymology.dd = datadist(etymology)
> options(datadist = "etymology.dd")

and fit a logistic regression model to the data with lrm() .

> etymology.lrm = lrm(EtymAge ˜ WrittenFrequency + NcountS tem +
+ MeanBigramFrequency + InflectionalEntropy + Auxiliary +
+ Regularity + LengthInLetters + Denominative + FamilySize + Valency +
+ NVratio + WrittenSpokenRatio, data = etymology, x = T, y = T)
> anova(etymology.lrm)
Wald Statistics Response: EtymAge

Factor Chi-Square d.f. P
WrittenFrequency 0.45 1 0.5038
NcountStem 3.89 1 0.0487
MeanBigramFrequency 1.89 1 0.1687
InflectionalEntropy 0.94 1 0.3313
Auxiliary 0.38 2 0.8281
Regularity 14.86 1 0.0001
LengthInLetters 0.30 1 0.5827
Denominative 8.84 1 0.0029
FamilySize 0.42 1 0.5191
Valency 0.26 1 0.6080
NVratio 0.07 1 0.7894
WrittenSpokenRatio 0.18 1 0.6674
TOTAL 35.83 13 0.0006

The anova table suggests three significant predictors, Regularity , as expected, the
neighborhood density of the stem (NcountStem ), and whether the verb is denominative
(Denominative ). We simplify the model, and inspect the summary.

> etymology.lrmA = lrm(EtymAge ˜ NcountStem + Regularity + D enominative,
+ data = etymology, x = T, y = T)
> etymology.lrmA
Frequencies of Responses
Dutch DutchGerman WestGermanic Germanic IndoEuropean

8 28 43 173 33

Obs Max Deriv Model L.R. d.f. P C
285 2e-08 30.92 3 0 0.661

Dxy Gamma Tau-a R2 Brier
0.322 0.329 0.189 0.114 0.026

Coef S.E. Wald Z P
y>=DutchGerman 4.96248 0.59257 8.37 0.0000
y>=WestGermanic 3.30193 0.50042 6.60 0.0000
y>=Germanic 2.26171 0.47939 4.72 0.0000
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y>=IndoEuropean -0.99827 0.45704 -2.18 0.0289
NcountStem 0.07038 0.02014 3.49 0.0005
Regularity=regular -1.03409 0.25123 -4.12 0.0000
Denominative=N -1.48182 0.43657 -3.39 0.0007

The summary lists the frequencies with which the different levels of our ordered factor for
etymological age are attested, followed by the usual measures for gauging the predictivity
of the model. The values of C, Dxy, and R2

N are all low, so we have to be careful when
drawing conclusions.

The first four lines of the table of coefficients are new, and specific to ordinal logistic
regression. These four lines represent four intercepts. The first intercept is for a normal
binary logistic model that contrasts data points with Dutch as etymological age with all
other data points, for which the etymological age (represented by y in the summary) is
greater or equal than DutchGerman . For this standard binary model, the probability
of greater age increases with neighborhood density, it is smaller for regular verbs, and
also smaller for denominative verbs. The second intercept represents a second binary
split, now between Dutch and DutchGerman on the one hand, and WestGermanic ,
Germanic and IndoEuropean on the other. Again, the coefficients for the three predic-
tors show how the probability of having a greater etymological age has to be adjusted
for neighborhood density, regularity, and whether the verb is denominative. The remain-
ing two intercepts work in the same way, each shift the criterion for ’young’ versus ’old’
further towards the greatest age level.

There are two things to note here. First, the four intercepts are steadily decreas-
ing. This simply reflects the distribution of successes (old etymological age) and fail-
ures (young etymological age) as we shift our cutoff point for old versus young further
towards IndoEuropean . To see this, we first count the data points classified as ’old’
versus ’young’.

> tab = xtabs(˜etymology$EtymAge)
> tab
etymology$EtymAge
Dutch DutchGerman WestGermanic Germanic IndoEuropean

8 28 43 173 33
> sum(tab)
[1] 285

For the cutoff point between Dutch and DutchGerman , we have 285 − 8 = 277 old
observations (successes) and 8 young observations (failures), and hence a log odds ratio
of 3.54. The following code loops through the different cutoff points and lists the counts
of old and young observations, and the corresponding log odds ratio.

> for (i in 0:3) {
+ cat(sum(tab[(2 + i) : 5]), sum(tab[1 : (1 + i)]),
+ log(sum(tab[(2 + i) : 5]) / sum(tab[1 : (i + 1)])), "\n")
+ }
277 8 3.544576
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249 36 1.933934
206 79 0.9584283
33 252 -2.032922

We see the same downwards progression in the logits as in the table of intercepts. The
numbers are not the same, as our logits do not take into account any of the other predic-
tors in the model. In other words, the progression of intercepts is by itself not of interest,
just as the intercept in least squares regression or standard logistic regression is generally
not of interest by itself.

The second thing to note is that lrm() assumes that the effects of our predictors,
NcountStem , Regularity and Denominative , are the same, irrespective of the cutoff
point for etymological age. In other words, these predictors are taken to have the same
proportional effect across all levels of our ordered factor. Hence, this kind of model is
referred to as a PROPORTIONAL ODDS MODEL. The assumption of proportionality should
be checked. One way of doing so is to plot, for each cutoff point, the mean of the par-
tial binary residuals together with their 95% confidence intervals. If the proportionality
assumption holds, these means should be close to zero. As can be seen in the first three
panels of Figure 6.12, the proportionality assumption is not violated for our data. The
means are very close to zero in all cases. The last panel takes a closer look at our continu-
ous predictor, NcountStem . For each successive factor level, two points are plotted. The
circles connected by the solid line show the means as actually observed, the dashed line
shows what these means should be if the proportionality assumption would be satisfied
perfectly. There is a slight discrepancy for the first level, Dutch , for which we also have
the lowest number of observations. But since the two lines are otherwise quite similar,
we conclude that a proportional odds model is justified. The diagnostic plots shown in
Figure 6.12 were produced with two functions from the Design package, resid() and
plot.xmean.ordinaly . as follows.

> par(mfrow = c(2, 2))
> resid(etymology.lrmA, ’score.binary’, pl = T)
> plot.xmean.ordinaly(EtymAge ˜ NcountStem, data = etymol ogy)
> par(mfrow = c(1, 1))

Boostrap validation calls attention to changes in slope and intercept,

> validate(etymology.lrmA, bw=T, B=200)
1 2 3
2 7 191

index.orig training test optimism index.corrected
Dxy 0.3222059 0.3314785 0.31487666 0.01660182 0.30560403
R2 0.1138586 0.1227111 0.10597692 0.01673422 0.09712436
Intercept 0.0000000 0.0000000 0.04821578 -0.04821578 0.0 4821578
Slope 1.0000000 1.0000000 0.95519326 0.04480674 0.955193 26
Emax 0.0000000 0.0000000 0.01871305 0.01871305 0.0187130 5
D 0.1049774 0.1147009 0.09714786 0.01755301 0.08742437

but the optimism is fairly small, and a pentrace recommends a penalty of zero,
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Figure 6.12: Diagnostics for the proportionality assumption for the ordinal logististic
regression model for etymological age. The lower right panel compares observed (ob-
served) and expected (given proportionality, dashed) mean neighborhood density for
each level of etymological age, the remaining panels plot for each predictor the distri-
bution of residuals for each cutoff point.
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> pentrace(etym.lrmA, seq(0, 0.8, by=0.05))
Best penalty:
penalty df

0 3

so we accept etymology.lrmA as our final model, and plot the partial effects (Fig-
ure 6.13).

> plot(etymology.lrmA, fun = plogis, ylim = c(0.8, 1))

We conclude that the neighborhood density of the stem is a predictor for the age of a verb.
Words with a higher neighborhood density are phonologically more regular, and easier
to articulate. Apparently, phonological regularity and ease of articulation contribute to
a verb’s continued existence through time, in addition to morphological regularity. It is
remarkable that frequency is not predictive at all.

6.4 Regression with breakpoints

Thus far, all examples of nonlinear relations involved smooth, continuous functions that
we modeled with polynomials or with splines. However, one may also encounter situ-
ations in which there is a discontinuity in an otherwise linear relation. An example is a
study of the frequency with which years were referenced in the Frankfurter Allgemeine
Zeitung [Pollman and Baayen, 2001]. The relevant data are available as the data set faz .

> head(faz, 3)
Year Frequency

1 1993 12068
2 1992 6338
3 1991 3791
> tail(faz, 3)

Year Frequency
798 1196 0
799 1195 1
800 1194 2

For each year in the time period 1993 – 1194, faz lists the frequency of that year as ref-
erenced in this newspaper in 1994. Most of the year references in the issues of 1994 were
to the previous year, 1993, followed by 1992, then by 1991, etc. We add a column to faz
specifying the distance from 1994,

> faz$Distance = 1:nrow(faz)

and plot log frequency of use as a function of log distance from 1994, as shown in the
upper left panel of Figure 6.14.

> plot(log(faz$Distance), log(faz$Frequency + 1),
+ xlab = "log Distance", ylab = "log Frequency")
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Figure 6.13: Partial effects of the predictors for the probability of the etymological age of
Dutch verbs.
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What is of interest in this plot is that there seems to be a linear relation up till approxi-
mately a log distance of four. Around the location of the vertical solid line, the slope of
the regression line changes fairly abruptly. This suggests that the collective conscious-
ness of events in the past is substantially reduced for events occurring more than a life-
time (some 60 years) ago. The dashed vertical line marks 1945, the end of the second
world war. Therefore, an alternative explanation of the observed change is that the sec-
ond world war is the dividing line between recent and more distant history. In order to
evaluate these hypotheses, we need to establish whether there is indeed a sudden change
— a significant change in the slope — and if so, where this discontinuity is located.

0 1 2 3 4 5 6

0
2

4
6

8

log Distance

lo
g 

F
re

qu
en

cy

−4 −2 0 1 2

0
2

4
6

8

log Shifted Distance

lo
g 

F
re

qu
en

cy

0 1 2 3 4 5 6

26
0

28
0

30
0

breakpoint

de
vi

an
ce

0 1 2 3 4 5 6

0
2

4
6

8

log Distance

lo
g 

F
re

qu
en

cy

Figure 6.14: Breakpoint analysis of the frequency of use of references to years in the Frank-
furter Allgemeine Zeitung in 1994 as a function of the distance of the year name from 1994.
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The simplest regression model for this data that takes the discontinuity into account
is one with a single linear regression line that changes slope at a so-called BREAKPOINT.
Let’s assume that the breakpoint is at distance 59. For convenience, we log frequency and
distance,

> faz$LogFrequency = log(faz$Frequency + 1)
> faz$LogDistance = log(faz$Distance)
> breakpoint = log(59)

and then shift all the datapoints leftwards along the horizontal axis, so that the breakpoint
coincides with the vertical axis. This is shown in the upper right panel of Figure 6.14.

> faz$ShiftedLogDistance = faz$LogDistance - breakpoint
> plot(faz$ShiftedLogDistance, faz$LogFrequency,
+ xlab = "log Shifted Distance", ylab = "log Frequency")

We can now fit two regression models to the data, one for the data points to the left of the
vertical axis, and one for the data points to its right. As can be seen in the upper right
panel of Figure 6.14, the two lines cross the vertical axis at nearly the same place.

> faz.left = lm(LogFrequency ˜ ShiftedLogDistance,
+ data = faz[faz$ShiftedLogDistance <= 0,])
> faz.right = lm(LogFrequency ˜ ShiftedLogDistance,
+ data = faz[faz$ShiftedLogDistance >= 0,])
> abline(faz.left, lty = 1)
> abline(faz.right, lty = 2)

What we need to do is to integrate these two models into a single regression model. We
do this by introducing an INDICATOR VARIABLE that specifies whether the shifted log
distance is greater than zero,

> faz$PastBreakPoint = as.factor(faz$ShiftedLogDistanc e > 0)

and by constructing a model in which the only term in the formula is the interaction of
ShiftedLogDistance with this indicator variable PastBreakPoint :

> faz.both = lm(LogFrequency ˜ ShiftedLogDistance : PastBr eakPoint,
+ data=faz)

Normally, one would not include an interaction without including the main effects, but
in this special case we do not want these main effects to be present. To see why, consider
the table of coefficients in the summary:

> summary(faz.both)
...

Residuals:
Min 1Q Median 3Q Max

-1.76242 -0.31593 -0.02271 0.34838 1.87073
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.52596 0.05434 101.70 <2e-16
ShiftedLogDist:PastBreakPointFALSE -0.84124 0.06460 -1 3.02 <2e-16
ShiftedLogDist:PastBreakPointTRUE -1.88383 0.02872 -65 .60 <2e-16

Residual standard error: 0.5705 on 797 degrees of freedom
Multiple R-Squared: 0.8898, Adjusted R-squared: 0.8895
F-statistic: 3218 on 2 and 797 DF, p-value: < 2.2e-16

We have three coefficients, one for the intercept, one for the slope when we are to the
left of the breakpoint, and one for when we are to the right of the breakpoint. Since the
intercept represents the frequency when the shifted distance is zero, we have succeeded
in building a model that combines the first half of the solid line in the upper right panel
with the second half of the dashed line. An anova test comparing this model with a
model with just a simple regression line shows that the extra parameter for modeling the
breakpoint is justified.

> anova(faz.both, lm(LogFrequency ˜ ShiftedLogDistance, data = faz))
Analysis of Variance Table

Model 1: LogFrequency ˜ ShiftedLogDistance:PastBreakPoi nt
Model 2: LogFrequency ˜ ShiftedLogDistance

Res.Df RSS Df Sum of Sq F Pr(>F)
1 797 259.430
2 798 312.945 -1 -53.515 164.41 < 2.2e-16

Up till now, we have worked with one sensible breakpoint, but we still need to ascer-
tain what the most likely breakpoint is. To do so, we fit a series of models, one for each
possible breakpoint. For each model, we calculate the deviance, the sum of the squared
differences between the observed and the fitted values:

> sum((fitted(faz.both) - faz$LogFrequency)ˆ2)
[1] 259.4298
> deviance(faz.both)
[1] 259.4298

The following lines of code implement this idea. We begin with creating a vector in which
we store the deviances for the models. We then loop over all sensible breakpoints, and
carry out the same sequence of steps as above.

> deviances = rep(0, nrow(faz)-1)
> for (pos in 1 : (nrow(faz)-1)) {
+ breakpoint = log(pos)
+ faz$ShiftedLogDistance = faz$LogDistance - breakpoint
+ faz$PastBreakPoint = as.factor(faz$ShiftedLogDistanc e > 0)
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+ faz.both = lm(LogFrequency ˜ ShiftedLogDistance:PastBr eakPoint,
+ data = faz)
+ deviances[pos] = deviance(faz.both)
+ }

We select the breakpoint for which the deviance is smallest,

> best = which(deviances == min(deviances))
> best
[1] 58
> breakpoint = log(best)

and refit the model one last time for this breakpoint.

> faz$ShiftedLogDistance = faz$LogDistance - breakpoint
> faz$PastBreakPoint = as.factor(faz$ShiftedLogDistanc e > 0)
> faz.both = lm(LogFrequency ˜ ShiftedLogDistance:PastBr eakPoint,
+ data = faz)

We now add the lower panels to Figure 6.14.

> plot(log(1:length(deviances)), deviances, type = "l",
+ xlab = "breakpoint", ylab = "deviance")
> plot(faz$LogDistance, faz$LogFrequency,
+ xlab = "log Distance", ylab = "log Frequency", col = "darkgr ey")
> lines(faz$LogDistance, fitted(faz.both))

Note that the final plot has the unshifted distances on the horizontal axis, and the fitted
values (obtained for the shifted values) on the vertical axis. (A moment’s thought should
reveal why this is legitimate.) The breakpoint is at distance 58 from 1994, in 1936, so this
suggests that the change in historical consciousness is located well before the beginning
of the second world war.

A second example illustrating the use of indicator variables addresses changes in the
frequency with which constructions with periphrastic do were used in English from the
end of the fourteenth to the end of the sixteenth century. Ellegård [1953] studied the use of
periphrastic do in 107 texts. Counts of periphrastic do for four sentence types are available
as the data set periphrasticDo .

> head(periphrasticDo)
begin end type do other

1 1390 1425 affdecl 17 49583
2 1425 1475 affdecl 121 45379
3 1475 1500 affdecl 1059 58541
4 1500 1525 affdecl 396 28204
5 1525 1535 affdecl 494 18306
6 1535 1550 affdecl 1564 17636
> table(periphrasticDo$type)
affdecl affquest negdecl negquest

11 11 11 11
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The columns begin and end list the beginning and end of the period for which Elle-
gard counted the occurrences of do and other constructions for affirmative declarative
sentences (affdecl ), affirmative questions (affquest ), negative declarative sentences
(negdecl ) and negative questions (negquest ). Figure 6.15 shows, for each sentence
type, the observed proportion of sentences with periphrastic do for the midpoints of each
time period. Except for affirmative declarative sentences, the use of periphrastic do in-
creased over the years.

1400 1500 1600 1700

0.
0

0.
4

0.
8

year

pr
op

or
tio

n

affdecl

1400 1500 1600 1700

0.
0

0.
4

0.
8

year

pr
op

or
tio

n

affquest

1400 1500 1600 1700

0.
0

0.
4

0.
8

year

pr
op

or
tio

n

negdecl

1400 1500 1600 1700

0.
0

0.
4

0.
8

year

pr
op

or
tio

n

negquest

Figure 6.15: The relative frequency of periphrastic do in four sentence types across three
ages. Circles represent observed relative frequencies, dashed and solid lines a regression
model without and with an indicator variable adjusting for the fifteenth century.

The curve for affirmative questions has been analyzed with a logistic regression model
by [Kroch, 1989], see Vulanović and Baayen [2006] for further references to studies that
propose models for subsets of the sentence types. The question considered by the latter
study is whether a single model can be fitted to the data of all four sentence types. After
all, each sentence type shows a pattern of linguistic change, including the affirmative
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declarative sentences, for which the change did not carry through.
Since we are dealing with binary data (counts of sentences with and without pe-

riphrastic do) in tabular format, we use glm() and allow points of inflection into the
curves by using both quadratic and cubic polynomial terms, which we allow to interact
with sentence type.

> periphrasticDo$year = periphrasticDo$begin +
+ (periphrasticDo$end-periphrasticDo$begin)/2 # midpoi nts
> periphrasticDo.glm = glm(cbind(do, other) ˜
+ (year + I(yearˆ2) + I(yearˆ3)) * type,
+ data = periphrasticDo, family = "binomial")
> summary(periphrasticDo.glm)
Deviance Residuals:

Min 1Q Median 3Q Max
-18.4741 -1.7182 -0.1357 1.7668 14.8644

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.901e+02 2.163e+02 -2.266 0.0235
year 6.024e-01 4.167e-01 1.445 0.1483
I(yearˆ2) -1.759e-04 2.675e-04 -0.658 0.5107
I(yearˆ3) -6.345e-09 5.720e-08 -0.111 0.9117
typeaffquest -6.073e+02 9.088e+02 -0.668 0.5040
typenegdecl -4.009e+03 7.325e+02 -5.473 4.42e-08
typenegquest -8.083e+02 1.229e+03 -0.658 0.5106
year:typeaffquest 1.328e+00 1.726e+00 0.769 0.4418
year:typenegdecl 7.816e+00 1.392e+00 5.613 1.99e-08
year:typenegquest 1.790e+00 2.365e+00 0.757 0.4492
I(yearˆ2):typeaffquest -9.591e-04 1.092e-03 -0.878 0.38 00
I(yearˆ2):typenegdecl -5.078e-03 8.816e-04 -5.760 8.43e -09
I(yearˆ2):typenegquest -1.299e-03 1.517e-03 -0.856 0.39 18
I(yearˆ3):typeaffquest 2.298e-07 2.303e-07 0.998 0.3183
I(yearˆ3):typenegdecl 1.100e-06 1.860e-07 5.915 3.32e-0 9
I(yearˆ3):typenegquest 3.111e-07 3.241e-07 0.960 0.3370

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 20431.1 on 43 degrees of freedom
Residual deviance: 1236.0 on 28 degrees of freedom
AIC: 1504.6

Since the residual deviance is much larger than the corresponding degrees of freedom, we
have overdispersion, so we use the F -test to evaluate the significance of the interactions,
following Crawley [2002].

> anova(periphrasticDo.glm, test = "F")
Analysis of Deviance Table
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Model: binomial, link: logit
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 43 20431.1
year 1 6302.2 42 14128.9 6302.225 < 2.2e-16
I(yearˆ2) 1 4085.6 41 10043.3 4085.613 < 2.2e-16
I(yearˆ3) 1 31.3 40 10012.0 31.321 2.187e-08
type 3 7810.5 37 2201.4 2603.510 < 2.2e-16
year:type 3 750.9 34 1450.5 250.296 < 2.2e-16
I(yearˆ2):type 3 173.3 31 1277.2 57.767 < 2.2e-16
I(yearˆ3):type 3 41.3 28 1236.0 13.754 5.752e-09

The dotted lines in Figure 6.15 show that this model captures the main trends for all
sentence types, but the fit is rather poor for especially the negative questions. In order to
improve the fit, we note that there is very little development during the fifteenth century.
We therefore create an indicator variable that is zero for the first three time periods, and
one for the remaining periods.

> periphrasticDo$Indicator = rep(c(rep(0, 3), rep(1, 8)), 4)
> periphrasticDo.glmA = glm(cbind(do, other) ˜
+ (year + I(yearˆ2) + I(yearˆ3)) * type +
+ Indicator * type + Indicator * year,
+ data = periphrasticDo, family = "binomial")

The anova summary shows that the indicator variable is significant,

> anova(periphrasticDo.glmA, test = "F")
Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 43 20431.1
year 1 6302.2 42 14128.9 6302.225 < 2.2e-16
I(yearˆ2) 1 4085.6 41 10043.3 4085.613 < 2.2e-16
I(yearˆ3) 1 31.3 40 10012.0 31.321 2.187e-08
type 3 7810.5 37 2201.4 2603.510 < 2.2e-16
Indicator 1 174.7 36 2026.8 174.663 < 2.2e-16
year:type 3 717.0 33 1309.8 238.990 < 2.2e-16
I(yearˆ2):type 3 199.9 30 1109.9 66.636 < 2.2e-16
I(yearˆ3):type 3 46.1 27 1063.8 15.359 5.459e-10
type:Indicator 3 48.2 24 1015.6 16.081 1.891e-10
year:Indicator 1 485.8 23 529.8 485.820 < 2.2e-16

so it does indeed make sense to allow coefficients to change when going from the fifteenth
century to the next two centuries. The solid lines in Figure 6.15 show that the new model
is superior to the old model for all sentence types, with the exception of the affirmative
declaratives, for which there is no improvement that is visible to the eye.

Compared to previous models proposed in the literature, the present model has the
advantage of fitting all sentence types simultaneously. This brings out a similarity be-
tween the two types of declarative clauses. For both, an initial increase is followed by
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a decrease that perseveres in the case of affirmative sentences, but that is followed by a
slight increase in the case of negative declaratives. For further discussion of the mathe-
matics of the functional considerations motivating these patterns of language change, see
Vulanović and Baayen [2006].

At this point, you might be asking yourself whether we are overfitting the data, with
21 coefficients for 4 sentence types with 11 time points each. The rule of thumb given by
Harrell (2001:61) is that for logistic models, the number of coefficients should be smaller
than the total number of observations with the minority outcome, divided by 20. For the
present data,

> min(apply(periphrasticDo[, c("do", "other")], 2, sum))
[1] 9483

the 9483 observations for the less frequent outcome (do) is much larger than the number
of parameters (21) multiplied by 20, so we are doing fine.

Figure 6.15 was made by looping over the level of sentence type in order to create the
successive panels.

> periphrasticDo$predict = predict(periphrasticDo.glm, type="response")
> periphrasticDo$predictA=predict(periphrasticDo.glm A, type="response")
> par(mfrow=c(2, 2))
> for (i in 1:nlevels(periphrasticDo$type)) {
+ subset = periphrasticDo[periphrasticDo$type ==
+ levels(periphrasticDo$type)[i], ]
+ plot(subset$year,
+ subset$do/(subset$do + subset$other),
+ type = "p", ylab = "proportion", xlab = "year",
+ ylim = c(0, 1), xlim = c(1400, 1700))
+ mtext(levels(periphrasticDo$type)[i], line = 2)
+ lines(subset$ar, subset$predict, lty = 3)
+ lines(subset$ar, subset$predictA, lty = 1)
+ }

6.5 Models for lexical richness

The frequencies of linguistic units such as words, word bigrams and trigrams, sylla-
bles, constructions, etc. pose a special challenge for statistical analysis. This section il-
lustrates this challenge by means of an investigation of lexical richness in Alice’s Adven-
tures in Wonderland. The data set alice is based on a version obtained from the project
Gutenberg (http://www.gutenberg.org/wiki/Main Page) from which header and
trailer were removed. The resulting text was loaded into R with scan("alice.txt",
what="character") and converted to lower case with tolower() . This ensures that
variants such as Went and went are considered as tokens of the same word type. To
clarify the distinction between TYPES and TOKENS, consider the first sentence of Alice’s
Adventures in Wonderland.
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Alice was beginning to get very tired of sitting by her sister on the bank and of having
nothing to do.

There are 21 words in this sentence, of which two are used twice. We will refer to the
number of unique words as the number of types, and to the number of words regardless
of their identity as the number of tokens.

The question that we consider here is how to characterize the vocabulary richness
of Alice’s Adventures in Wonderland. Intuitively, vocabulary richness (or lexical richness)
should be quantifiable in terms of the number of different word types. However, the
number of different word types depends on the number of tokens.

If we read through a text or corpus, and at regular intervals keep note of how many
different types we have encountered, we find that, unsurprisingly, the number of types
increases, first rapidly, and then more and more slowly. This phenomenon is illustrated
in the upper left panel of Figure 6.16. For 40 equally spaced measurement points in ’token
time’, the corresponding count of different is types is graphed. I refer to this curve as the
GROWTH CURVE OF THE VOCABULARY. The panel to its right shows the rate at which the
vocabulary is increasing, quickly at first, more and more slowly as we proceed through
the text. The VOCABULARY GROWTH RATE is estimated by the ratio of the number of
HAPAX LEGOMENA (types with a frequency of 1) to the number of tokens sampled. The
growth rate is a probability, the probability that, after having read N tokens, the next
token sampled represents an unseen type, a word type that did not occur among the
preceding N tokens [Good, 1953, Baayen, 2001].

The problem that arises is that, although we could select the total number of types
counted for the full text as a measure of lexical richness, this measure would not lend
itself well for comparison with longer or with shorter texts. Therefore, considerable effort
has been invested in developing measures of lexical richness that would supposedly be
independent of the number of tokens sampled. The remaining six panels of Figure 6.16
illustrate that these measures have not been particularly successful. The third panel on
the upper row shows the worst measure of all, the type-token ratio, obtained by dividing
the number of types by the number of tokens. It is highly correlated (r = 0.99) with the
growth rate of the vocabulary shown in the panel to its left. The panel in the upper right
explores the idea that word frequencies might follow a lognormal distribution.. If so, the
mean log frequency might be expected to remain roughly constant and in fact to narrow
down to its true value as the sample size increases. We return to this issue below, here we
note that there is no sign that the curve is anywhere near reaching a stable value. The bot-
tom panels illustrate the systematic variability in four more complex measures that have
been put forward in the literature. None of these putative constants is a true constant.
The only measure of these last four that is, at least under the simplifying assumption that
words are used randomly and independently, truly constant is Yule’s K, but due to the
non-random way in which Lewis Carroll used the words in Alice’s Adventures in Wonder-
land, even K fails to be constant.

Before considering the implications of this conclusion, we first introduce the function
that was used to obtain Figure 6.16, growth.fnc() . We instruct it to calculate lexical
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measures at 40 intervals with 648 tokens in each interval.

> alice[1:4]
[1] "alice’s" "adventures" "in" "wonderland"
> alice.growth = growth.fnc(text = alice, size = 648, nchunk s = 40)

The output of growth.fnc() is a growth object, and its contents can be inspected with
head() or tail() .

> head(alice.growth, 3)
Chunk Tokens Types HapaxLegomena DisLegomena TrisLegomen a

1 1 646 269 175 38 20
2 2 1292 440 264 74 26
3 3 1938 578 337 94 42

Yule Zipf TypeTokenRatio Herdan Guiraud
1 109.36556 -0.6607349 0.4164087 0.7392036 41.57137
2 103.78227 -0.7533172 0.3405573 0.7300149 61.41866
3 99.61543 -0.7628707 0.2982456 0.7186964 76.35996

Sichel Lognormal
1 0.1412639 0.4508406
2 0.1681818 0.5339446
3 0.1626298 0.5794592

The first three columns list the indices of the chunks, the corresponding (cumulative)
number of tokens and the counts of different types in the text up to and including the
current chunk. The next three columns list the numbers of HAPAX, DIS, AND TRIS LEGOM-
ENA, the words that are counted exactly once, exactly twice, or exactly three times at a
given text size. The remaining columns list various measures of lexical richness: Yule’s K
[Yule, 1944], the Zipf slope [Zipf, 1935], the type-token ratio, Herdan’s C [Herdan, 1960],
Guiraud’s R [Guiraud, 1954], Sichel’s S [Sichel, 1986], and the mean of log frequencyCar-
roll [1967]. Once a growth object has been created, Figure 6.16 is obtained straightfor-
wardly by applying the standard plot() function to the growth object.

> plot(alice.growth)

Let’s return to the issue of the variability of the lexical constants. This variability
would not be much of a problem if a constant’s range of variability within a given text
would be very small compared to its range of variability across texts. Unfortunately, this
is not the case, as shown by Tweedie and Baayen [1998] and Hoover [2003]. The within-
text variability can be of the same order of magnitude as the between-text variability.

There are two approaches to overcome this problem. A practical solution is to compare
the vocabulary size (number of types) across texts for the same text sizes. For larger
texts, a random sample of the same size as the smallest text in the comparison set has
to be selected. The concomitant data loss (all the other words in the larger text that are
discarded) is taken for granted. The function compare.richness.fnc() carries out
such comparisons. By way of example, we split the text of Alice’s Adventures in Wonderland
into unequal parts.
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Figure 6.16: The vocabulary growth curve and selected measures of lexical richness, all of
which depend on the text size.

> aiw1 = alice[1:17000]
> aiw2 = alice[17001:25942]

If we straightforwardly compare these texts by examining the number of types, we find
that there is a highly significant difference in vocabulary richness.

> compare.richness.fnc(aiw1, aiw2)
comparison of lexical richness for aiw1 and aiw2
with approximations of variances based on the LNRE models
gigp (X2 = 19.43) and gigp (X2 = 18.96)

Tokens Types HapaxLegomena GrowthRate
aiw1 17000 2110 1002 0.05894
aiw2 8942 1442 712 0.07962

two-tailed tests:
Z p

Vocabulary Size 18.5709 0
Vocabulary Growth Rate -6.7915 0
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In order to evaluate differences in the observed numbers of types, the variances of these
type counts have to be estimated. compare.richness.fnc() does this by fitting word
frequency models (see below) to each text, and selecting for each text the model with
the best goodness of fit. (Models with a better goodness of fit have a lower chi-squared
value). Given the estimates of the required variances, Z scores are obtained that evaluate
the difference between the number of types in the first and the second text. Because aiw1
has more tokens than aiw2 , this difference is positive. Hence the Z score is also positive.
Its very large value, 18.57, is associated with a very small p-value, effectively zero.

When we reduce the size of the larger text to that of the smaller one, the differences in
lexical richness are no longer significant, as expected.

> aiw1a = aiw1[1:length(aiw2)]
> compare.richness.fnc(aiw1a, aiw2)
comparison of lexical richness for aiw1a and aiw2
with approximations of variances based on the LNRE models
gigp (X2 = 17.2) and gigp (X2 = 18.96)

Tokens Types HapaxLegomena GrowthRate
aiw1a 8942 1437 701 0.07839
aiw2 8942 1442 712 0.07962

two-tailed tests:
Z p

Vocabulary Size -0.1529 0.8784
Vocabulary Growth Rate -0.3379 0.7355

Note that compare.richness.fnc() compares texts not only with respect to their vo-
cabulary sizes, but also with respect to their growth rates. A test of growth rates is carried
out because two texts may have made use of the same number of types, but may never-
theless differ substantially with respect to the rate at which unseen types are expected to
appear.

The other approach to the problem of lexical richness is to develop better statistical
models. The challenge that this poses is best approached by first considering in some
more detail the problems with the models proposed by Herdan [1960] and Zipf [1935].
In fact, there are two kinds of problems. The first is illustrated in Figure 6.17. The upper
panel plots log types against log tokens. The double log transformation changes a curve
into what looks like a straight line. Herdan proposed that the slope of this line is a text
characteristic that is invariant with respect to text length. This slope is known as Herdan’s
C and was plotted in the lower left panel of Figure 6.16 for a range of text sizes. A plot of
the residuals, shown in the upper right panel of Figure 6.17, shows that the residuals are
far from random. Instead, they point to the presence of some curvature that the straight
line fails to capture. In other words, the regression model proposed by Herdan is too
simple. This is the first problem. The second problem is that when we estimate the slope
of the regression line at 40 equally spaced intervals for varying text sizes, the estimated
slope changes systematically. This is clearly visible in the lower left panel of Figure 6.16.
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Figure 6.17: Herdan’s law (upper left) and Zipf’s law (lower left) and the corresponding
residuals (right panels) for Alice’s Adventures in Wonderland.

Zipf’s law is beset by exactly the same problems. The lower left panel of Figure 6.17
plots log frequency against log rank. The overall pattern is that of a straight line, as
shown by the ordinary least squares regression line shown in grey. The slope of this line,
the Zipf slope, is supposed to be a textual characteristic independently of the sample
size. But the residuals (see the lower right panel of Figure 6.17) again point to systematic
problems with the goodness of fit. And the lower right panel of Figure 6.16 shows that the
slope of this regression line also changes systematically as we vary the size of the text, a
phenomenon first noted by Orlov [1983]. We could try to fit more complicated regression
models to the data using quadratic terms or cubic splines. Unfortunately, although this
might help to obtain a better fit for a fixed text size, it would leave the second problem
unsolved. Any non-trivial change in the text size leads to a non-trivial change in the
values of the regression coefficients. Before explaining why these changes occur, we pause
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to discuss the code for Figure 6.17.
The object alice.growth is a growth object. Internal to that object is a data frame,

which we extract as follows:

> alice.g = alice.growth@data$data
> head(alice.g, 3)

Chunk Tokens Types HapaxLegomena DisLegomena TrisLegomen a Yule
1 1 646 269 175 38 20 109.36556
2 2 1292 440 264 74 26 103.78227
3 3 1938 578 337 94 42 99.61543

Zipf TypeTokenRatio Herdan Guiraud Sichel Lognormal
1 -0.6607349 0.4164087 0.7392036 41.57137 0.1412639 0.450 8406
2 -0.7533172 0.3405573 0.7300149 61.41866 0.1681818 0.533 9446
3 -0.7628707 0.2982456 0.7186964 76.35996 0.1626298 0.579 4592

The upper left panel of Figure 6.17 is obtained by regressing log Types on log Tokens,

> plot(log(alice.g$Tokens), log(alice.g$Types))
> alice.g.lm = lm(log(alice.g$Types)˜log(alice.g$Token s))
> abline(alice.g.lm, col="darkgrey")

The summary of the model

> summary(alice.g.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.810291 0.041288 43.84 <2e-16
log(alice.g$Tokens) 0.599329 0.004454 134.55 <2e-16

Residual standard error: 0.0243 on 38 degrees of freedom
Multiple R-Squared: 0.9979, Adjusted R-squared: 0.9979
F-statistic: 1.81e+04 on 1 and 38 DF, p-value: < 2.2e-16

shows we have been extremely succesful with an R-squared of 0.998. But the residual plot
shows the model is nevertheless inadequate.

> plot(log(alice.g$Tokens), resid(alice.g.lm))
> abline(h=0)

The lower left panel of Figure 6.17 is obtained with zipf.fnc() . Its output is a data
frame with the word frequencies, the frequencies of these frequencies, and the associated
ranks.

> z = zipf.fnc(alice, plot = T)
> head(z, n = 3)

frequency freqOfFreq rank
114 1593 1 1
113 836 1 2
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112 710 1 3
> tail(z, n = 3)

frequency freqOfFreq rank
3 3 228 1052
2 2 394 1446
1 1 1188 2634

When plot is set to true, it shows the RANK-FREQUENCY STEP FUNCTION in the graph-
ics window, as illustrated in the lower left panel of Figure 6.17. The code it executes is
simply

> plot(log(z$rank), log(z$frequency), type = "S")

The step function (obtained with type = "S" ) highlights that, especially for the lowest
frequencies, large numbers of words share exactly the same frequency but have different
(arbitrary) ranks. We fit a linear model predicting frequency from the highest rank with
that frequency, and add the regression line.

> z.lm = lm(log(z$frequency) ˜ log(z$rank))
> abline(z.lm, col = "darkgrey")

Finally, we add the plot with the residuals at each rank.

> plot(log(z$rank), resid(z.lm))
> abline(h=0)

So why is it that the slopes of the regression models proposed by Herdan and Zipf
change systematically as the text size is increased? A greater text size implies a greater
sample size, and under normal circumstances, a greater sample size would lead one to
expect not only more precise estimates but also more stable estimates. Consider, for in-
stance, what happens if we regress reaction time on frequency for increasing samples of
words from the data set of English monomorphemic and monosyllabic words in the data
set english . We simplify by restricting ourselves to the data pertaining to the young age
group, and by ignoring all other predictors in the model.

> young = english[english$AgeSubject == "young",]
> young = young[sample(1:nrow(young)), ]

The last line randomly reorders the rows in the data frame. We next define a vector with
sample sizes,

> samplesizes = seq(57, 2284, by = 57)

and create vectors for storing the coefficients, their standard errors, and the lower bound
of the 95% confidence interval.

> coefs = rep(0, 40)
> stderr = rep(0, 40)
> lower = rep(0, 40)
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We loop over the sample sizes, select the relevant subset of the data, fit the model, and
extract the statistics of interest.

> for (i in 1:length(samplesizes)) {
+ young.s = young[1:samplesizes[i], ]
+ young.s.lm = lm(RTlexdec ˜ WrittenFrequency, data = young .s)
+ coefs[i] = coef(young.s.lm)[2]
+ stderr[i] = summary(young.s.lm)$coef[2, 2]
+ lower[i] = qt(0.025, young.s.lm$df.residual) * stderr[i]
+ }

Finally, we plot the coefficients as a function of sample size, and add the 95% confidence
intervals.

> plot(samplesizes, coefs, ylim = c(-0.028, -0.044), type = "l",
+ xlab = "sample size", ylab = "coefficient for frequency")
> points(samplesizes, coefs)
> lines(samplesizes, coefs - lower, col = "darkgrey")
> lines(samplesizes, coefs + lower, col = "darkgrey")

What we see is that after some initial fluctuations the estimates of the coefficient become
stable, and that the confidence interval becomes narrower as the sample size is increased.
This is the normal pattern: We expect that as the sample size grows larger, the difference
between the sample mean and the population mean will approach zero. (This is known
as the LAW OF LARGE NUMBERS.) However, this pattern is unlike anything that we see for
our lexical measures.

The reason that our lexical measures misbehave is that word frequency distributions,
and even more so the distributions of bigrams and trigrams, are characterized by large
numbers of very-low probability elements. Such distributions are referred to as LNRE dis-
tributions, where the acronym LNRE stands for Large Number of Rare Events [Chitashvili
and Khmaladze, 1989, Baayen, 2001]. Many of the rare events in the population do not oc-
cur in a given sample, even when that sample is large. The joint probability of the unseen
words is usually so substantial that the relative frequencies in the sample become inaccu-
rate estimates of the real probabilities. Since the relative frequencies in the sample sum up
to 1, they leave no space for probabilities of the unseen types in the population. Hence,
the sample relative frequencies have to be adjusted so that they become slightly smaller,
in order to free probability space for the unseen types.[Good, 1953, Gale and Sampson,
1995, Baayen, 2001]. An estimate for the joint probability of the unseen types is the growth
rate of the vocabulary. For Alice’s Adventures in Wonderland, this probability equals 0.05.
In other words, the likelihood of observing a new word at the end of the text is 1 out of
20. It is not surprising, therefore, that lexical measures have to be updated continuously
as the text sample is increased.

The package zipfR , developed by Evert and Baroni [2006], provides tools for fitting
the two most important and useful LNRE models, the Generalized Inverse Gauss-Poisson
model of Sichel [1986], and the finite Zipf-Mandelbrot model of Evert [2004]. An object
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Figure 6.18: Estimated coefficient for written frequency for English lexical decision times
for increasing sample size, with 95% confidence interval.

type that is fundamental to the zipfR package is the FREQUENCY SPECTRUM. A fre-
quency spectrum is a table with frequencies of frequencies. When working with raw text
we can make a frequency spectrum within R. (This, however, is feasible only with texts or
small corpora with less than a million words.) By way of illustration, we return to Alice’s
Adventures in Wonderland, and apply table() twice:

> alice.table = table(table(alice))
> head(alice.table)

1 2 3 4 5 6
1188 394 228 150 101 53
> tail(alice.table)
522 532 620 710 836 1593

1 1 1 1 1 1

There are 1188 hapax legomena, 394 dis legomena, 228 tris legomena, and steadily de-
creasing counts of words with higher frequencies. At the tail of the frequency spectrum
we see that the highest frequency, 1593, is realized by only a single word. To see which
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words have the highest frequencies, we apply table() to the text, but now only once.
After sorting, we see that the highest frequency is realized by the definite article.

> tail(sort(table(alice)))
alice

it she a to and the
522 532 620 710 836 1593

In order to convert alice.table into a spectrum object, we apply spc() . Its first ar-
gument, m, should specify the word frequencies, its second argument, Vm, should specify
the frequencies of these word frequencies.

> alice.spc = spc(m = as.numeric(names(alice.table)),
+ Vm = as.numeric(alice.table))
> alice.spc

m Vm
1 1 1188
2 2 394
3 3 228
4 4 150
5 5 101
6 6 53
7 7 59
8 8 53
9 9 29
10 10 37
...

N V
25942 2634

Spectrum objects have a summary method, which lists the first ten elements of the spec-
trum, together with the number of tokens N and the number of types V in the text. A
spectrum behaves like a data frame, so we can verify that the counts of types and tokens
are correct with

> sum(alice.spc$Vm) # types
[1] 2634
> sum(alice.spc$m * alice.spc$Vm) # tokens
[1] 25942

For large texts and corpora, frequency spectra should be created by independent software.
For a corpus of Dutch newspapers of some 80 million words (part of the Twente Nieuws
Corpus), a frequency spectrum is available as the data set twente . We convert this data
frame into a zipfR spectrum object with spc() .

> twente.spc = spc(m=twente$m, Vm = twente$Vm)
> N(twente.spc) # ask for number of tokens
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[1] 78934379
> V(twente.spc) # ask for number of types
[1] 912289

Note that a frequency spectrum provides a very concise summary of a frequency dis-
tribution. We have nearly a million different words (defined as sequences of characters
separated by spaces), but twente.spc has a mere 4639 rows.

We return to Alice’s Adventures in Wonderland and fit an LNRE model to this text with
lnre() . This function takes two arguments, the type of model, and a frequency spec-
trum. We first choose as a model the Generalized Inverse Gauss-Poisson model, gigp .

> alice.lnre.gigp = lnre("gigp", alice.spc)

A summary of the model is obtained by typing the name of the model object to the
prompt.

> alice.lnre.gigp
Generalized Inverse Gauss-Poisson (GIGP) LNRE model.
Parameters:
Shape: gamma = -0.7097631
Lower decay: B = 0.02788357
Upper decay: C = 0.03338946
[ Zipf size: Z = 29.94957 ]
Population size: S = 6021.789
Sampling method: Poisson, with exact calculations.

Parameters estimated from sample of size N = 25942:
V V1 V2 V3 V4 V5

Observed: 2634.00 1188.00 394.00 228.00 150.00 101.00 ...
Expected: 2622.03 1169.79 455.43 228.43 137.02 91.98 ...

Goodness-of-fit (multivariate chi-squared test):
X2 df p

73.55878 13 1.764392e-10

The summary first lists the model and its parameters. It then mentions the population
size S, an estimate of the number of types in the population sampled by the text. Because
LNRE models take the probability mass of unseen word types into account, they are able
to provide estimates of the number of unseen types. By combining the count of observed
types with the estimated count of unseen types, an estimate of the population number of
types is obtained. For the present example, this estimate concerns the number of words
Lewis Carroll might have found appropriate to use when writing stories about Alice.

Of course, the accuracy of this estimate depends on how well the model fits the data.
Skipping a technical comment about the sampling method, we therefore inspect the final
part of the summary, which provides information about the goodness of fit. It first lists
the observed and expected counts for the total vocabulary as well as for the numbers of
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types with frequencies 1 through 5. A visual comparison of the first 15 observed and
expected spectrum elements, shown in the upper left panel of Figure 6.19, is obtained
with the help of the lnre.spc() function, which takes as argument an LNRE model and
the sample size (in tokens) for which a spectrum is required, here 25942, the number of
tokens in Alice’s Adventures in Wonderland.

> plot(alice.spc, lnre.spc(alice.lnre.fzm, 25942))

Note that the observed number of dis legomena is somewhat smaller than the expected
number of dis legomena. This lack of goodness of fit is also highlighted by a special
version of the chi-squared test, listed at the end of the summary. For a good fit, the X2

value should be low, and the corresponding p-value large and preferably well above 0.05.
In the present example, the model is clearly unsatisfactory. It should be kept in mind
that the statistical theory underlying these LNRE models proceeds on the assumption that
words are used at random and independently of each other in text. This is obviously a
simplification and may underlie the present lack of goodness of fit.

A more succesful fit is obtained for the spectrum of the Dutch newspaper corpus with
the finite Zipf-Mandelbrot model.

> twente.lnre.fzm = lnre("fzm", twente.spc)
> twente.lnre.fzm
finite Zipf-Mandelbrot LNRE model.
Parameters:
Shape: alpha = 0.5446703
Lower cutoff: A = 3.942826e-11
Upper cutoff: B = 0.0005977105
[ Normalization: C = 13.37577 ]
Population size: S = 11402151
Sampling method: Poisson, with exact calculations.

Parameters estimated from sample of size N = 78934379:
V V1 V2 V3 V4 V5

Observed: 912289 478416.0 119055.0 56944.00 35373.00 2433 0.0 ...
Expected: 912289 478358.3 118540.7 57515.25 35304.73 2439 7.9 ...

Goodness-of-fit (multivariate chi-squared test):
X2 df p

17.05788 13 0.1966717

The excellent fit is also apparent from the plot of the observed and expected spectrum
shown in the upper right panel of Figure 6.19.

> plot(twente.spc, lnre.spc(twente.lnre.fzm, N(twente. spc)))

Note that the function N() extracts the number of tokens from the spectrum object to
which it is applied. Also note that the expected number of string types in the population
is an order of magnitude larger than the observed number of types. This is probably due

255 D
R

A
FT

 

m

V
m

E
[V

m
]

0
20

0
40

0
60

0
80

0
10

00
12

00

Frequency Spectrum: Alice in Wonderland  

m

V
m

E
[V

m
]

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

Frequency Spectrum: Twente News Corpus

0 10000 30000 50000

0
50

0
10

00
20

00
30

00

 

NV
(N

)
E

[V
(N

)]
V

1(
N

)
E

[V
1(

N
)]

V
2(

N
)

E
[V

2(
N

)]
V

3(
N

)
E

[V
3(

N
)] Vocabulary Growth: Alice in Wonderland

0.0e+00 5.0e+07 1.0e+08 1.5e+08

0
20

00
00

60
00

00
10

00
00

0

 

N

E
[V

(N
)]

E
[V

1(
N

)]
E

[V
2(

N
)]

E
[V

3(
N

)]

Vocabulary Growth: Twente News Corpus

Figure 6.19: Observed (black) and expected (white) frequency spectrum for Alice’s Adven-
tures in Wonderland and the Twente News Corpus (upper panels) and the corresponding
vocabulary growth curves (lower panels). For the growth curves, black lines represent in-
terpolation, grey lines extrapolation to twice the observed sample size, and dashed lines
the observed growth curves (only available for Alice’s Adventures in Wonderland).
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to the productivity of typos, morphology, brand names, and names for people and places,
both nationally and internationally.

Once an LNRE model has been fit to a frequency spectrum, the model can be used
to obtained expected values for the vocabulary size and the spectrum elements both at
smaller sample sizes (interpolation) and at larger sample sizes (extrapolation). The lower
panels of Figure 6.19 illustrate these possibilities for Alice’s Adventures in Wonderland (left)
and the Twente News Corpus (right). The black lines represent interpolated values, the
red lines extrapolated values.

The lower left panel was obtained with the following lines of code. First, the extrapo-
lated curves were determined with the help of lnre.vgc() , which takes as arguments a
fitted model, a sequence of sample sizes, and the number of required spectrum elements.

> alice.ext.gigp = lnre.vgc(alice.lnre.gigp,
+ seq(N(alice.lnre.gigp), N(alice.lnre.gigp) * 2, length = 20), m.max = 3)

The interpolated curves are obtained similarly:

> alice.int.gigp = lnre.vgc(alice.lnre.gigp,
+ seq(0, N(alice.lnre.gigp), length=20), m.max=3)

In order to plot the observed growth curves, we use growth2vgc.fnc() to convert a
growth object into a vgc object (vocabulary growth object) as required for the zipfR
functions.

> alice.vgc = growth2vgc.fnc(alice.growth)

The plot itself is straightforward.

> plot(alice.int.gigp,alice.ext.gigp,alice.vgc,add.m = 1:3,main = " ")
> mtext("Vocabulary Growth: Alice in Wonderland", cex = 0.8 , side = 3,
+ line=2)

In the case of Alice’s Adventures in Wonderland we are dealing with continuous text rather
than with a compilation of text fragments, so here we can compare the actual observed
growth curves (dashed lines) with the expected interpolated growth curves. Note that the
interpolated values for the vocabulary size and the hapax legomena tend to be slightly
too high. This overestimation bias is probably due to discourse structure. In cohesive
discourse, topical words tend to be used intensively. As a consequence, new types are
sampled at a slower rate than one would expect if words were used randomly and in-
dependently of each other (see Baayen 2001, chapter 5). Another consequence of this
overestimation bias for interpolation is an underestimation bias for extrapolation. Hence,
the number of types estimated for the population, S, the asymptote that the vocabulary
growth curve approaches when the sample size becomes infinitely large, probably is a
lower bound.

For corpora consisting of collections of randomly sampled short text fragments, this
overestimation bias tends to be attenuated. In this case, the interpolated vocabulary and
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spectrum can be viewed as the counts one would obtain on average when randomly per-
muting the texts in the corpus. (For the problems that may arise due to sampling asym-
metries when dealing with diachronic corpora, see, e.g., Lüdeling and Evert [2005].)

In summary, comparing texts with respect to their lexical richness is a tricky business.
Standard linear modeling of the growth curve of the vocabulary may at first sight provide
excellent fits, but due to the LNRE property of many linguistic frequency distributions,
these fits are misleading. LNRE models provide a principled solution, that, however, will
remain approximate for many actual data sets. As mentioned above, a practical solution
is to compare texts for a fixed text size, or to plot interpolated growth curves for different
texts side by side (see, e.g., the tutorial referenced in the documentation of the zipfR
package).

6.6 General considerations

There are two very different ways in which statistical models are used. Ideally, a model
is used to test a pre-specified hypothesis, or a set of hypotheses. One fits a model to
the data, removes overly influential outliers, uses bootstrap validation and if required
shrinks the estimated coefficients. Only after this process is completed, one inspects the
anova and summary tables, to see whether the p-values and the direction of the effects are
as predicted by one’s hypotheses. The p-values in the summary tables are correct under
these circumstances, and only under these circumstances.

In practise, this ideal procedure is hardly ever realistic, for a variety of reasons. First,
it is often the case that our initial hypotheses are very underspecified. Under these cir-
cumstances, we engage in statistical modeling in order to explore the potential relevance
of predictors, to learn about their functional form, and more in general to come to a bet-
ter understanding of the structure of our data. In this exploratory process, we screen
predictors for significant p-values, remove variables accordingly, and gradually develop
a model that we feel is both parsimonious and adequate. The p-values of such a final
model are still informative, but far from exact. According to some, they are even to-
tally worthless and completely uninterpretable. This highlights the crucial importance of
model validation, for instance by means of the bootstrap, as this will inform us about the
extent to which we might be overfitting the data. It is equally crucial to replicate one’s
experiment with new materials. The same factors should be predictive, the magnitudes
of the coefficients should be similar, and one would hope to find that the model for the
original experiment provides reasonable predictions for the new data.

What you should avoid at all times is what statisticians refer to as cherry-picking.
You should not tweak the data by removing data points so that a non-significant effect
becomes significant. It is not bad to remove data points, but one should have reasons for
removing them that are completely independent of whether as a result predictors will be
significant. Overly influential outliers have to be removed, and any other data points that
are suspect. For instance, in experiments using lexical decision, response latencies less
than 200 milliseconds are probably artefactual, simply because the time for reading the
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stimulus combined with the time required for planning and carrying out the movements
involved in pushing the response button already require at least 200 milliseconds.

Similarly, one should not hunt around for a method that will make an effect signif-
icant. It is true that there are often several different methods available for modeling a
given data set. And yes, there is no single best model. However, when different model-
ing techniques have been considered, and when each technique is appropriate, then the
combined evidence should be taken into account. A predictor that happens to be signifi-
cant in only one analysis but not in the others should not be reported as significant.

The examples in this chapter illustrate the steps in data analysis: the construction of
an initial model, the exploration of nonlinear relations, model criticism, and validation.
All these steps are important, and crucial for understanding your data. As you build up
experience with regression modeling, you will find that notably model criticism almost
always allows theoretically well-supported predictors to emerge more strongly.

A final methodological issue that should be mentioned is the unfortunate practice
in psycholinguistics of dichotomizing continuous variables. For instance, Baayen et al.
[1997] studied frequency effects in visual word recognition by contrasting high-frequency
words with low-frequency words. The two sets of words were matched in the mean for
a number of other lexical variables. However, this dichotomization of frequency reduces
an information-rich continuous variable into an information-poor two-level factor. If fre-
quency were a treatment that we could administer to words, like raising the temperature
or the humidity in an agricultural experiment, then it would make sense to maximize
one’s chances of finding an effect by contrasting observations subjected to a fixed very
low level of the treatment with observations subjected to a fixed very high level of the
treatment. Unfortunately, frequency is a property of our experimental units, it cannot be
administered independently, and it is correlated with many other lexical variables. Due to
this correlational structure, dichotomization of linguistic variables almost always leads to
factor levels with overlapping or nearly overlapping distributions of the original variable
— it is nearly impossible to build contrasts for extreme values on one linguistic variable
while matching for a host of other correlated linguistic variables. As a consequence, the
enhanced statistical power obtained by comparing two very different treatment levels is
not available. In these circumstances, dichotomization comes with a severe loss of sta-
tistical power, precise information is lost and nonlinearities become impossible to detect.
Furthermore, samples obtained through dichotomization tend to be small and to get ever
smaller the more variables are being matched for. Such samples are also non-random in
the extreme, and hence do not allow proper statistical inference. To make matters even
worse, dichotomization may also have various other adverse side effects, including spu-
rious significance [see, e.g., Cohen, 1983, Maxwell and Delaney, 1993, MacCallum et al.,
2002]. Avoid it. Use regression.
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6.7 Exercises

1. Analyse the effect of PC1on the naming latencies in the english2 data set that we
created in section 6.2.2. Attach the Design package, make a data distribution object,
and set the datadist variable to point to this object with the options() function.
First fit a model with AgeSubject and WrittenFrequency , and PC1 as predic-
tors. Use a restricted cubic spline with three knots for WrittenFrequency , and
include an interaction of WrittenFrequency by AgeSubject . Is the linear effect
of PC1 significant? Now allow the effect of PC1 to be nonlinear with a restricted
cubic spline with three knots. Plot the partial effect of PC1 in this new model, and
explain the difference with respect to the first model.

2. Exercise 5.3 addressed the prediction of the underlying voice specification of the
stem-final obstruent in Dutch verbs with the help of a classification tree. Ernestus
and Baayen [2003] compared several statistical models for the finalDevoicing
data set, including a logistic regression model. Load the data, and use the lrm()
function from the Design package to model the dependent variable Voice as a
function of the other variables in the data frame. Use fastbw() to remove irrele-
vant predictors from the model.

3. Check that the danger of overfitting has been reduced for the penalized model
dutch.lrm.pen by means of bootstrap validation.

4. We fit a logistic regression model to the data set etymology with as dependent
variable the Regularity of the verb, and the ordered factor EtymAge (etymologi-
cal age) as etymological age as main predictor of interest.

> etymology$EtymAge = ordered(etymology$EtymAge, levels =c("Dutch",
+ "DutchGerman", "WestGermanic", "Germanic", "IndoEurop ean"))
> library(Design)
> etym.dd = datadist(etym)
> options(datadist=’etym.dd’)
> etymology.lrm = lrm(Regularity ˜ rcs(WrittenFrequency, 3) +
+ rcs(FamilySize,3) + NcountStem + InflectionalEntropy +
+ Auxiliary + Valency + NVratio + WrittenSpokenRatio + EtymA ge,
+ data=etymology, x=T, y=T)
Warning message: Variable EtymAge is an ordered factor.
You should set
options(contrasts=c("contr.treatment","contr.treatm ent"))
or Design will not work properly. in: Design(eval(m, sys.pa rent()))

The warning message tells us that the defaults for the dummy coding of factors have
to be reset. We do as instructed.

> options(contrasts = c("contr.treatment", "contr.treat ment"))
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Rerun the model, inspect the result by means of an ANOVA table, and validate it.
You will observe considerable overfitting, so use the pentrace() function to find
an optimal penalty for shrinking the coefficients. Make a plot of the partial effects
of the predictors in the penalized model.

5. Consider again the breakpoint analysis of the frequencies of references to years in
the Frankfurter Allgemeine Zeitung (faz ). Explain why the model

> faz.bothA = lm(LogFrequency ˜ ShiftedLogDistance +
+ ShiftedLogDistance : PastBreakPoint, data = faz)

is a correct alternative formulation of the model presented in the main text, and also
explain why the model

> faz.bothA = lm(LogFrequency ˜ ShiftedLogDistance * PastBreakPoint,
+ data = faz)

is incorrect for our purposes.

6. Compare the lexical richness of Lewis Carroll’s Alice’s adventures in Wonderland with
that of Lewis Carroll’s Through the looking-glass, available as the data set through ,
using compare.richness.fnc() for equal text sizes, i.e., for the number of to-
kens in the smallest of the two texts. Use the same method to compare Alice’s adven-
tures in Wonderland with Baum’s The wonderful wizard of Oz (oz ) and with Melville’s
Moby Dick (moby).

7. Plag et al. [1999] studied morphological productivity for selected affixes in the British
National Corpus (BNC). The BNC consists of three subcorpora: written English,
spontaneous conversations (the demographic subcorpus), and spoken English in
more formal settings (the context-governed subcorpus). Frequency spectra for the
English suffix -ness calculated for these subcorpora are available as the data sets
nessw , nessdemog and nesscg . Convert them into scp objects with spc() . Then
fit the finite Zipf-Mandelbrot LNRE model to each of the spectra. Inspect the good-
ness of fit, and refit with the Generalized Inverse Gauss-Poisson model where nec-
essary. Plot the growth curve of the vocabulary at 40 equally spaced intervals in the
range from zero to the size of the sample of written words with -ness. Comment on
the relation between the shape of the growth curves and the estimated numbers of
types in the population. Finally, calculate the growth rates of the vocabulary both
at the sample size of the largest subcorpus, and for that of the smallest subcorpus.
Use the function Vm() from the zipfR package, which takes as first argument a
frequency spectrum and as second argument the spectrum element (1 for the hapax
legomena).
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8. Tyler et al. [2005] combined fMRI and priming data in a study addressing the extent
to which phonological and semantic processes recruit the same brain areas. Fig-
ure 6.20, reconstructed from the graphics coordinates of their Figure 2b, summarizes
the main structure of one of their subanalyses. The authors argue that the priming
scores (horizontal axis) for the semantic condition are significantly correlated with
the intensity of the most significant voxel (vertical axis), which is located in an area
of the brain typically associated with semantic processing. They also argue that
there is no such correlation for the morphological condition. Figure 6.20 is based on
the data set imaging . Carry out an analysis of covariance with FilteredSignal
as dependent variable in the model, and test whether there is a significant interac-
tion of BehavioralScore by Condition . Then apply model criticism, and use
this to evaluate the conclusions reached by Tyler and colleagues.
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Figure 6.20: Signal intensity in fMRI at the peak voxel in the left medial fusiform gyrus
and priming scores for semantically related (card/paper) and morphologically related (be-
gin/began) conditions. Each data point represents a brain-damaged patient. After Tyler
et al. [2005].
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Chapter 7

Mixed Models

Consider a study addressing the consequences of adding white noise to the comprehen-
sion of words presented auditorily over headphones to a group of subjects, using audi-
tory lexical decision latencies as a measure of speed of lexical access. In such a study, the
presence or absence of white noise would be the treatment factor, with two levels (noise
versus no noise). In addition, we would need identifiers for the individual words (items),
and identifiers for the individual participants (or subjects) in the experiment. The item
and subject factors, however, differ from the treatment factor in that we would normally
only regard the treatment factor as REPEATABLE.

A factor is repeatable, if the set of possible levels for that factor is fixed, and if, more-
over, each of these levels can be repeated. In our example, the treatment factor is re-
peatable, because we can take any new acoustic signal and either add or not add a fixed
amount of white noise. We would not normally regard the identifiers of items or subjects
as repeatable. Items and subjects are sampled randomly from populations of words and
participants, and replicating the experiment would involve selecting other words and
other participants. For these new units, we would need new identifiers. In other words,
we would be introducing new levels of these subject and item factors in the experiment
that had not been seen previously.

To see the far-reaching consequences of this, imagine that we have eight subjects and
eight items, and that we create two factors, each with eight levels, using contrast coding.
One of the subjects and one of the items will be mapped onto the intercept, the other
subjects and items will receive coefficients specifying how they differ from the intercept.
How useful is this model for predicting response latencies for new subjects and items? A
moment’s thought will reveal that it is completely useless. New subjects and new items
have new identifiers that do not match the identifiers that were used in building the con-
trasts and the model using these contrasts. We can still assign new data points to the
levels of the treatment factor, noise versus no noise, because these levels are repeatable.
But subjects and items are not repeatable, hence we cannot use our model to make pre-
dictions for new subjects and new items. In short, the model does not generalize to the
populations of subjects and items. It is tailored to the specific subjects and items in the
experiment only.
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The statistical literature therefore makes a crucial distinction between factors with
repeatable levels, for which we use FIXED-EFFECT terms, and factors with levels ran-
domly sampled from a much larger population, for which we use RANDOM-EFFECT terms.
MIXED-EFFECT MODELS, or more simply, MIXED MODELS, are models which incorporate
both fixed and random effects.

While fixed effects factors are modeled by means of contrasts, random effects are mod-
eled as random variables with a mean of zero and unknown variance. For instance, the
participants in a reaction time experiment will differ with respect to how quickly they re-
spond. Some tend to be slow, others tend to be fast. Across the population of participants,
the average adjustment required to account for differences in speed will be zero. The ad-
justments required for individual subjects will in general not be zero, instead, they will
vary around zero with some unknown standard deviation. In mixed models, the stan-
dard deviations associated with random effects are parameters that are estimated, just as
the coefficients for the fixed effects are parameters that are estimated.

7.1 Modeling data with fixed and random effects

The package for building mixed effect models is named LME4. This package automati-
cally loads two other libraries, lattice and Matrix . The key function in this package is
lmer() . Bates [2005] provides a brief introduction with examples of its use, and Faraway
[2006] provides more extensive examples for a variety of experimental designs. The lme4
package is still under development. Results with newer versions may differ slightly from
the examples in this chapter, which are based on lme4 version 0.9975-7 running under R
version 2.4.0.

We illustrate how to use the lmer() function by returning to the lexdec data set
that we already considered in Chapter 1. Recall that this data set provides visual lexical
decision latencies elicited from 21 subjects for a set of 79 words: 44 nouns for animals,
and 35 nouns for plants (fruits and vegetables). An experimental design in which we
have multiple subjects responding to multiple items is referred to as a repeated measures
design. For each word (item), we have 21 repeated measures (one measure from each
subject). At the same time, we have 79 repeated measures for each subject (one for each
item). Subject and item are random-effect factors, fixed effect factors that are of interest
include whether the subject was a native speaker of English, whether the word referred
to an animal or a plant, as well as lexical covariates such as frequency and length.

The reaction times in lexdec are already logarithmically transformed. Nevertheless,
it makes sense to inspect the distribution of the reaction times before beginning with fit-
ting a model to the data. We do so with quantile-quantile plots for each subject separately,
using the qqmath() function from the lattice package. Similar plots should be made
for the items.

> qqmath(˜RT|Subject, data = lexdec)

The result is shown in Figure 7.1. For data sets with more subjects than can be plotted on
a single page, we use the layout parameter. Its first argument specifies the number of
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Figure 7.1: Quantile-quantile plots for the log-transformed reaction times in visual lexical
decision grouped by subject.

columns, the second argument the number of rows, and the third argument the number
of pages. To inspect the graphs page by page, we instruct R to ask us to hit the <return>
key to see the next plot, at the same time saving the old prompting value. We then run the
plot function itself, and finally reset the prompting option to its old value once we have
paged through the lattice graphs.

> old.prompt = grid::grid.prompt(TRUE)
> qqmath(˜RT|Word, data = lexdec, layout = c(5,5,4))
> grid::grid.prompt(old.prompt)

As can be seen in Figure 7.1, subjects such as C and W1have reaction times that follow a
normal distribution, whereas subjects such as S and M2have thick right tails. We also see
that there are subjects such as R1 or M1with clear outliers, but also subjects such as C or
Z with no outliers at all.

The question that arises at this point is whether to clean the data before fitting the
model. In answer to this question, we note first of all that datapoints that are suspect for
experimental reasons should be removed. For instance, reaction times of less than 200
milliseconds in visual lexical decision are probably erroneous button presses, as visual
uptake and response execution normally require 200 milliseconds if not more. Similarly,
very long reaction times and error responses can be removed from the data set. It is
less straightforward what to do with outlier responses. In the present data set, many
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individual outliers will be removed by setting a threshold at log RT = 7, which amounts
to roughly 1100 milliseconds. The reader may verify with

> qqmath(˜RT|Subject, data = lexdec[lexdec$RT<7,])

that all potentially troublesome outliers (0.025% of the data) have been eliminated. Since
these outliers might obscure the initial model fitting stages, I tend to take them out, espe-
cially as they almost always will be eliminated anyway at the stage of model criticism.

> lexdec2 = lexdec[lexdec$RT < 7, ]
> nrow(lexdec) - nrow(lexdec2)
[1] 45
> (nrow(lexdec) - nrow(lexdec2)) / nrow(lexdec)
[1] 0.02471368
> lexdec3 = lexdec2[lexdec2$Correct == "correct", ]

Alternatively, individual outliers can be identified for each subject and item separately
in the quantile-quantile plots and then removed manually from the data frame (which
would then need to be sorted first by subject (or item), and then by RT). A procedure
that is certain to lead to unnecessary data loss is to blindly remove data points with ex-
treme values (more than two or three standard deviations away from an item’s or sub-
ject’s group mean) a priori, as subjects and items with perfectly regular distributions will
undergo completely unnecessary data trimming.

We begin our analysis with examining a control variable for possible longitudinal ef-
fects of familiarization or fatigue during the experiment, using the position (or rank) of a
trial in the experimental list.

> xylowess.fnc(RT ˜ Trial | Subject, data = lexdec3, ylab = "l og RT")

Figure 7.2 shows a clear effect of familiarization for, for instance, subject T2, and a clear
effect of fatigue for subject D. Is there a main effect of Trial ? Let’s fit a mixed-effects
model with Trial as covariate and Subject and Word as random effects as a first step
towards answering this question.

> lexdec3.lmer = lmer(RT ˜ Trial + (1|Subject) + (1|Word), le xdec3)

The lmer() function call has the familiar components of a formula followed by the data
frame to be used. The first part of the formula is also familiar: Reaction times are mod-
eled as depending on Trial . The remainder of the formula specifies the random-effect
terms for Subject and Word. The vertical line separates the grouping factor (to its right)
from the fixed effect terms for which random effects have to be included. In the present
example, there is only a 1, which represents the intercept. Recall that in linear models the
intercept provides a kind of baseline mean. Changing from one factor level to another,
or changing the value of a covariate, provides fine-tuning with respect to this baseline.
Lowering the intercept for a subject implies that all reaction times for that subject become
somewhat shorter. This is what we want to do for a subject who happens to be a quick
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Figure 7.2: RT as a function of trial for the subjects in a visual lexical decision experiment.

responder. For slower subjects, we may need to increase the intercept, so that all their re-
sponses become longer. The random-effect term (1|Subject) specifies that the model
will make such by-subject adjustments for the average speed by means of small changes
to the intercept. Similarly, some words may be more difficult than other words, and elicit
longer response latencies. Just as for the subjects, we may have to adjust the intercept for
the individual words by means of a random-effect term (1|Word) . Importantly, such by-
subject or by-word adjustments are not parameters (coefficients) of the model. Only two
parameters are involved, one parameter specifying the variance of the random variable
for the subjects, and one parameter for the variance of the random variable for the words.
Given these two parameters, the individual by-word and by-subject adjustments simply
follow.

To make this more concrete, consider the summary of the model that we just obtained
by typing the name of the model object to the prompt:

> lexdec3.lmer
Linear mixed-effects model fit by REML
Formula: RT ˜ Trial + (1 | Subject) + (1 | Word)

Data: lexdec3
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AIC BIC logLik MLdeviance REMLdeviance
-1243 -1222 625.7 -1274 -1251

Random effects:
Groups Name Variance Std.Dev.
Word (Intercept) 0.0046579 0.068249
Subject (Intercept) 0.0186282 0.136485
Residual 0.0225642 0.150214

number of obs: 1557, groups: Word, 79; Subject, 21

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.394e+00 3.217e-02 198.74
Trial -1.835e-04 8.194e-05 -2.24

Correlation of Fixed Effects:
(Intr)

Trial -0.268

The summary begins with telling you what kind of object you are looking at: a linear
mixed effect model fit by a technique called RELATIVIZED MAXIMUM LIKELIHOOD, also
known as RESTRICTED or RESIDUAL maximum likelihood. The next line reminds you of
how the object was created. After a list of summary statistics that describe the quality of
the fit of the model to the data, we come to the more interesting sections of the summary: a
table with the random effects in the model, followed by a table with the fixed effects. The
summary concludes with a table listing the correlations of the fixed effects. The numbers
listed here can be used to construct confidence elipses for pairs of fixed-effects parameters,
and should not be confused with the normal correlations obtained by applying cor() to
pairs of predictor vectors in the input data. For models with many predictors this table
may become very large. Since constructing confidence ellipses is beyond the scope of this
book, we will often suppress this table in our output as follows:

> print(lexdec3.lmer, corr=FALSE)

First consider the table with random effects. It provides information on three random
effects, listed under the heading Groups : Word, Subject , and Residual . Residual
stands for the residual error, the unexplained variance. This is a random variable with
mean zero and unknown variance, and is therefore a random effect just as the random ef-
fects of Subject and Word. The next column shows that the random effects of Subject
and Word are defined with respect to the intercept, in accordance with the specifications
(1|Subject) and (1|Word) . The third and fourth columns shows the estimated vari-
ances and the corresponding standard deviations for these random effects. The means of
these three random variables are not listed, as they are always zero.

The summary of the random effects lists the parameters for the random effects: the
three variances, or, equivalently, the three corresponding standard deviations (their square
roots). The actual adjustments for specific subjects and specific words to the intercept can
be extracted from the model with the ranef() function, an abbreviation for RANdom
EFfects. The adjustments for words are
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> ranef(lexdec3.lmer)$Word
(Intercept)

almond 0.0076094201
ant -0.0409265042
apple -0.1040504847
apricot -0.0086191706
asparagus 0.1002836459
avocado 0.0218818091
...

and their variance is similar in magnitude to the variance listed for Word in the summary
table, 0.0046579.

> var(ranef(lexdec3.lmer)$Word)
(Intercept)

(Intercept) 0.003732362

It should be kept in mind that the variance in the summary is a parameter of the model,
and that the BEST LINEAR UNBIASED PREDICTORS (or BLUPs in short) for the by-word
adjustments produced by ranef() are derived given this parameter. Hence the sample
variance of the BLUPs is not identical to the estimate in the summary table. The BLUPs for
the intercept are often referred to as RANDOM INTERCEPTS. In the present example, we
have both by-subject random intercepts and by-word random intercepts.

The part of the summary dealing with the fixed effects is already familiar from the
summaries for objects created by the lm() and ols() functions for models with fixed
effects only. The table lists the coefficients of the fixed effects, in this case the coefficient
for the intercept and for the slope of Trial , and their associated standard errors and
t-values. The slope of Trial is small in part because Trial ranges from 23 to 185 and
reaction time is on a log scale.

The fitted values can be extracted from the model object by means of fitted() :

> fitted(lexdec3.lmer)[1:4]
6.272059 6.318508 6.245524 6.254167

Let’s reconstruct how the model arrived at the fitted reaction time of 6.272 for subject A1
to item owl at trial 23 (the first word trial after an initial practise session familiarizing the
participants with the experiment). We begin with the coefficient for the intercept, 6.394,
and adjust this intercept for the specified subject and item, and then add the effect of
Trial :

> 6.394 + ranef(lexdec3.lmer)$Word["owl",] +
+ ranef(lexdec3.lmer)$Subject["A1",] -1.835e-04 * 23
[1] 6.272 # 6.394 - 0.01449 - 0.1031 - 1.8350e-04 * 23

The current version of the lme4 package does not provide p-values for t and F tests.
The reason is that it is at present unclear how to calculate the appropriate degrees of
freedom. An upper bound for the degrees of freedom for the t-tests can be obtained
by taking the number of observations (1557) and subtracting the number of fixed-effect
parameters (2). This allows us to estimate the p-value for Trial as usual:
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> 2 * (1 - pt(abs(-2.24), 1557 - 2))
[1] 0.02523172

As we shall see below, this upper bound works reasonably well for large data sets with
thousands of observations, but it is ANTICONSERVATIVE for small data sets: For small
data sets, the p-values may be too small. Since for large numbers of degrees of freedom
(> 100) the t distribution approximates the normal distribution, a simple way of assessing
significance at the 5% significance level is to check whether the absolute value of the t-
statistic exceeds 2.

An alternative that works very well for both small and large samples is to make use of
Markov chain Monte Carlo (MCMC) sampling. Each MCMC sample contains one number
for each of the parameters in our model. For lexdec3.lmer , we obtain 5 such num-
bers, three variances for the random effects and two coefficients for the fixed effects. With
many such samples, we obtain insight into what is called the POSTERIOR DISTRIBUTIONS

of the parameters. On the basis of these distributions we can estimate p-values and con-
fidence intervals known as HIGHEST POSTERIOR DENSITY (HPD) intervals.. The functions
for Markov chain Monte Carlo sampling are mcmcsamp() and HPDinterval() in the
coda package. The function pvals.fnc() carries out MCMC sampling (with by default
10000 samples) and also reports the p-values based on the t-statistic.

> pvals.fnc(lexdec3.lmer)$fixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 6.3939620 6.3938802 6.3246413 6.45951910 0.0 001 0.0000
Trial -0.0001835 -0.0001845 -0.0003468 -0.00002344 0.022 4 0.0253

In the light of Figure 7.2, it remains somewhat surprising that the effect of Trial does
seem to reach significance, even if only at the 5% level. What we see in Figure 7.2 is
that some subjects show an effect, sometimes in opposite directions, but also that many
subjects have no clear effect at all. In terms of model building, what we would like to do
is to allow the slope of the effect of Trial to vary across subjects. In other words, what
we need here are by-subject RANDOM SLOPES for Trial . We build these into the model
by expanding the expression for the subject random effect structure.

> lexdec3.lmerA = lmer(RT ˜ Trial + (1+Trial|Subject) + (1|W ord),
+ data = lexdec3)
> print(lexdec3.lmerA, corr = FALSE)
Random effects:

Groups Name Variance Std.Dev. Corr
Word (Intercept) 4.7620e-03 0.0690074
Subject (Intercept) 2.9870e-02 0.1728293

Trial 4.4850e-07 0.0006697 -0.658
Residual 2.1600e-02 0.1469704

number of obs: 1557, groups: Word, 79; Subject, 21

Fixed effects:
Estimate Std. Error t value
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(Intercept) 6.3963562 0.0396077 161.49
Trial -0.0002033 0.0001669 -1.22

In this new model, the estimate of Trial is very similar to the previous model, but it
is now no longer significant. In what follows, we leave Trial as a main fixed effect in
the model because we also have random slopes for Trial in the model. (The by-subject
random effect of Trial is the functional equivalent of an interaction of Subject by
Trial in a model treating Subject as a fixed effect.) We compare the predictions of
the new model with the predictions of the simpler model graphically, using a customized
panel function for xyplot() .

> xyplot(RT ˜ Trial | Subject, data = lexdec3,
+ panel = function(x, y, subscripts) {
+ panel.xyplot(x, y) # the scatterplot
+ subject = as.character(lexdec3[subscripts[1], "Subjec t"])
+ coefs = as.numeric(unlist(coef(lexdec3.lmer)$Subject [subject,]))
+ panel.abline(coefs, col = "black", lty = 2) # add first line
+ coefs = as.numeric(unlist(coef(lexdec3.lmerA)$Subjec t[subject,]))
+ panel.abline(coefs, col = "black", lty = 1) # add second lin e
+ })

We first add the datapoints to a given panel with panel.xyplot() . When a panel is pre-
pared for a given subject, the vector subscripts contains the row indices in lexdec3
of this subject’s data points in lexdec3 . This allows us to identify the name of the subject
under consideration by taking the first row in the data frame with data for this subject,
and extracting the value in its Subject column. With the subject name in hand, we
proceed to extract that subject’s coefficients from the two models. Finally, we feed these
coefficients to panel.abline() , which adds lines to panels.

The dashed lines in Figure 7.3 illustrate that the first model assigns the same slope to
each subject, the solid lines show that the second model adjusts the slopes to fit the data
of each individual subject. It is clear that the second model provides an improved fit to
the data. It seems that subjects went through the experiment in somewhat different ways,
with some adapting to the task, and others becoming tired.

Does the experiment also reveal differences between native and non-native speakers
of English? The data frame lexdec3 contains a column labeled NativeLanguage for
this fixed-effect factor, with levels English and Other .

> lexdec3.lmerB = lmer(RT ˜ Trial + NativeLanguage +
+ (1+Trial|Subject) + (1|Word), lexdec3)
> lexdec3.lmerB
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.3348827 0.0435378 145.50
Trial -0.0002026 0.0001669 -1.21
NativeLanguageOther 0.1433655 0.0506176 2.83
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Figure 7.3: Response latency as a function of trial. The black lines represent the slopes
estimated by model lexdec3.lmerA , which allows slopes to vary among subjects. The
grey lines are those obtained with lexdec3.lmer , which assigns the same slope to all
subjects.
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There indeed appears to be support for the possibility that the non-native speakers are the
slower responders. Since native speakers have more experience with their language, the
frequency effect might be stronger for native speakers, leading to greater facilitation. We
test this hypothesis by including Frequency as a predictor, together with an interaction
of NativeLanguage by Frequency .

> lexdec3.lmerC = lmer(RT ˜ Trial + Frequency * NativeLanguage +
+ (1+Trial|Subject) + (1|Word), lexdec3)
> lexdec3.lmerC
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.4797681 0.0512770 126.37
Trial -0.0002036 0.0001658 -1.23
Frequency -0.0305036 0.0058148 -5.25
NativeLanguageOther 0.2353085 0.0584242 4.03
Frequency:NativeLanguageOther -0.0190195 0.0060335 -3. 15

Since the reference level for NativeLanguage is English , we note that nonnative speak-
ers of English had significantly longer response latencies. Furthermore, we find that the
coefficient for the frequency effect for native speakers of English is −0.03, while for non-
native speakers, this coefficient is −0.030 − 0.019 = −0.049. Apparently, the frequency
effect is stronger and more facilitative for non-native speakers, contrary to what we ex-
pected. Why would this be so? Possibly, we are led astray by a confound with word
length — more frequent words tend to be shorter, and non-native readers might find
shorter words easier to read compared to native readers. When we add a Length by
NativeLanguage interaction to the model, inspection of the summary shows that the
Frequency by NativeLanguage interaction is no longer significant, in contrast to the
interaction of NativeLanguage by Length .

> lexdec3.lmerD = lmer(RT ˜ Trial + Length * NativeLanguage +
+ NativeLanguage * Frequency + (1+Trial|Subject) + (1|Word), lexdec3)
> lexdec3.lmerD
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.4548536 0.0637955 101.18
Trial -0.0002128 0.0001677 -1.27
Length 0.0029408 0.0042965 0.68
NativeLanguageOther 0.0973266 0.0706921 1.38
Frequency -0.0286264 0.0062827 -4.56
Length:NativeLanguageOther 0.0154950 0.0045037 3.44
NativeLanguageOther:Frequency -0.0093742 0.0066275 -1. 41

We therefore take the spurious NativeLanguage:Frequency interaction out of the
model. Note that the Length by NativeLanguage interaction makes sense. For na-
tive readers, there is no effect of Length , while non-native readers require more time to
respond to longer words.
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Figure 7.4: Best linear unbiased predictors (BLUPs) for the by-subject random effects for
model lexdec3.lmerD (left panel), and the corresponding by-subject coefficients (right
panel).

Thus far, we have only examined the table of coefficients. Let’s redress our neglect of
the table of random effects.

> lexdec3.lmerD
Random effects:

Groups Name Variance Std.Dev. Corr
Word (Intercept) 2.2525e-03 0.04746081
Subject (Intercept) 2.7148e-02 0.16476753

Trial 4.5673e-07 0.00067582 -0.740
Residual 2.1286e-02 0.14589823

number of obs: 1557, groups: Word, 79; Subject, 21

In addition to the usual standard deviations listed in the fourth column, the final column
of the random effects table lists a correlation. This correlation concerns the by-subject
random intercepts and the by-subject random slopes for Trial . Since we have random
slopes and random intercepts that are paired by subject, it is possible that the vectors of
random slopes and random intercepts are correlated. The way in which we specified the
random effects structure for Subject , (1 + Trial | Subject) , explicitly instructed
lmer() to allow for this possibility by including a special parameter for this correlation
of the BLUPs for the intercept and the BLUPs for Trial . The left panel of Figure 7.4 is a
scatterplot that visualizes this correlation for these BLUPs.

> ranefs = ranef(lexdec3.lmerD)$Subject
> head(ranefs)

(Intercept) Trial
A1 -0.057992023 1.368812e-04
A2 -0.127666091 4.443818e-04
A3 -0.131176609 5.246854e-04
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C -0.004438559 1.274880e-04
D -0.215372691 1.617985e-03
I -0.216234737 3.445517e-05
> plot(ranefs)
> abline(h = 0, col = "grey")
> abline(v = 0, col = "grey")

In this scatterplot, each data point represents a subject. Subjects with a large negative
adjustment for the intercept are fast responders, subjects with a large positive adjustment
are slow responders. Fast responders have positive adjustments for Trial , while slow
responders have negative adjustments for Trial . Since the estimated fixed-effect coeffi-
cient for Trial equals a mere −0.0002, the fastest responders appear to slow down in the
course of the experiment, whereas the slowest responders speed up. This is also visible,
perhaps more clearly so, when we plot the by-subject coefficients, as shown in the right
panel of Figure 7.4. These by-subject coefficients differ for the intercept and for Trial
(where they are adjusted by the BLUPs), and are identical for all other predictors.

> coefs = coef(lexdec3.lmerD)$Subject
> round(head(coefs),4)

(Intercept) Trial Length NativeLanguageOther Frequency
A1 6.3969 -0.0001 0.0029 0.0973 -0.0286
A2 6.3272 0.0002 0.0029 0.0973 -0.0286
A3 6.3237 0.0003 0.0029 0.0973 -0.0286
C 6.4504 -0.0001 0.0029 0.0973 -0.0286
D 6.2395 0.0014 0.0029 0.0973 -0.0286
I 6.2386 -0.0002 0.0029 0.0973 -0.0286

Length:NativeLanguageOther NativeLanguageOther:Frequ ency
A1 0.0155 -0.0094
A2 0.0155 -0.0094
A3 0.0155 -0.0094
C 0.0155 -0.0094
D 0.0155 -0.0094
I 0.0155 -0.0094
> plot(coefs[,1:2])

The right panel of Figure 7.4 shows straightforwardly that subjects with a large intercept
have a large negative coefficient for Trial , while subjects with a small intercept have a
large positive coefficient for Trial .

The total number of parameters in lexdec3.lmerD is 12: We have 7 fixed-effects co-
efficients (including the intercept), and 5 random effects parameters. The question that
arises at this point is whether all these random effects parameters are justified. The sig-
nificance of parameters for random effects is assessed by means of likelihood ratio tests,
which are carried out by the anova() function when supplied with two mixed-effects
models that have the same fixed-effects structure but different numbers of random effects
parameters. For instance, we can evaluate the significance of the two by-subject random
effects for Subject by fitting a simpler model with only a by-subject random intercept
that we then compare with the full model:
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> lexdec3.lmerD1 = lmer(RT ˜ Trial + Length * NativeLanguage +
+ NativeLanguage * Frequency + (1|Subject) + (1|Word), data = lexdec3)
> anova(lexdec3.lmerD, lexdec3.lmerD1)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
lexdec3.lmerD1 9 -1327.88 -1279.73 672.94
lexdec3.lmerD 11 -1361.28 -1302.42 691.64 37.398 2 7.572e- 09

The likelihood ratio test takes the log likelihood (logLik , an important measure of good-
ness of fit) for the smaller model with 9 parameters (Df ) and compares it with the log
likelihood for the larger model with 11 parameters. The difference between the two log
likelihoods (692.76 − 673.85), multiplied by 2, follows a chi-squared distribution with as
degrees of freedom the difference in the number of parameters, 11 − 9 = 2. As the as-
sociated probability is small, the additional parameters in the more complex model are
justified. Similarly, we can peel off the random effect for Word to see whether the inclu-
sion of by-word random intercepts is justified.

> lexdec3.lmerD2 = lmer(RT ˜ Trial + Length * NativeLanguage +
+ NativeLanguage * Frequency + (1|Subject), data = lexdec3)
> anova(lexdec3.lmerD1, lexdec3.lmerD2)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
lexdec3.lmerD2 8 -1280.36 -1237.55 648.18
lexdec3.lmerD1 9 -1327.88 -1279.73 672.94 49.522 1 1.962e- 12

The large chi-squared value indicates that the random effect for Word is fully justified.
There is one potential problem with the correlation parameter for the by-subject ran-

dom slopes and intercepts, however. The values of Trial are all greater than zero, they
are bounded by zero to the left. As a consequence, a change in the slope may correlate
with a change in the intercept. This is illustrated in the left panel of Figure 7.5. The solid
line fits the bivariate normal simulated data points shown in the scatterplot. When we
take the y-value for the minimum of x and increase it by 2, and likewise take the y-value
for the maximum of x and decrease it by 2, and then refit the model, we obtain the dashed
regression line. The resulting small shift in the slope of the regression line is accompa-
nied by a small change in the intercept. Suppose that we have many parallel plots like the
one shown in the left panel of Figure 7.5, one for each subject. Then we may expect that
across subjects, slopes and intercepts will covary. The way to eliminate such a spurious
correlation is to center the data by subtracting the mean of x from each x-value, as shown
in the right panel of Figure 7.5. Both regression lines cross the vertical axis at the same
point: Intercept and slope can now be varied independently. We therefore center Trial
and refit the model.

> lexdec3$cTrial = lexdec3$Trial - mean(lexdec3$Trial)
> lexdec3.lmerD3 = lmer(RT ˜ cTrial + Length * NativeLanguage +
+ NativeLanguage * Frequency + (1+cTrial|Subject) + (1|Word), lexdec3)
> lexdec3.lmerD3
Random effects:

Groups Name Variance Std.Dev. Corr
Word (Intercept) 2.2520e-03 0.04745557
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Figure 7.5: A small change in the data may change the slope of the regression line, with
a concomitant change in the intercept when the X-values are not centered. (The vertical
dotted grey lines represent the Y -axes.) As a consequence, random intercepts and slopes
may be correlated in uncentered data (left panel) but uncorrelated in centered data (right
panel).

Subject (Intercept) 1.4874e-02 0.12195841
cTrial 4.5662e-07 0.00067573 -0.417

Residual 2.1286e-02 0.14589851

The likelihood ratio test shows that after centering the correlation parameter has nearly
halved. We can test formally whether its presence in the model is still justified by fit-
ting a new model without the correlation parameter, which we then compare with our
present model using the likelihood ratio test. In the model formula we first specify the
random slopes for Subject . We then add a second term with Subject as grouping fac-
tor, (0+cTrial|Subject) which specifies the random by-subject slopes for Subject ,
with the zero indicating not to add the correlation parameter. An alternative equivalent
notation is (cTrial-1|Subject) , where the -1 indicates that the correlation parameter
should be taken out.

> lexdec3.lmerD3a = lmer(RT ˜ cTrial + Length * NativeLanguage +
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+ NativeLanguage * Frequency + (1|Subject)+(0+cTrial|Subject)+(1|Word),
+ lexdec3)
> anova(lexdec3.lmerD3a,lexdec3.lmerD3)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
lexdec3.lmerD3a 10 -1360.25 -1306.74 690.12
lexdec3.lmerD3 11 -1361.28 -1302.42 691.64 3.0282 1 0.0818 3

The p-value of the likelihood ratio test suggests that the correlation parameter may be su-
perfluous. This impression receives support from an inspection of the MCMC distribution
of the correlation parameter, obtained by running pvals.fnc() but now extracting the
random component of the list that it returns.

x = pvals.fnc(lexdec3.lmerD3, nsim = 10000)
x$random

MCMCmean HPD95lower HPD95upper
sigma 0.1459890 0.1408218 0.151687
Word.(In) 0.0470265 0.0359103 0.059393
Sbjc.(In) 0.1330270 0.0950869 0.188165
Sbjc.cTrl 0.0007254 0.0004736 0.001123
Sbj.(I).cTr -0.4361482 -0.7714082 0.114836

For each random effect in the model, the MCMC mean of the corresponding standard de-
viation is listed, together with its 95% HPD interval. When the model contains correlation
parameters, these are also listed, in this example at the bottom of the table. When reading
tables like this, it is important to carefully distinguish between the standard deviations
on the one hand, and the correlations on the other. Correlations are bounded between
minus one and plus one by definition. Hence it makes sense to ask ourselves whether
zero is contained in a correlation’s 95% confidence interval. For the present correlation
this is indeed the case, so we conclude that a model without the correlation parameter is
adequate.

Standard deviations, by contrast, are always positive, so their HPD interval will never
ever contain zero. As a consequence, we cannot use these confidence intervals to ascertain
whether the random effect is significant. In this case significance testing has to be done
by means of the likelihood ratio test. However, the HPD intervals do provide important
information about the standard deviations. They allow us to check whether the spread in
the distribution of the parameter makes sense. For all standard deviations in the above
table the intervals are narrow, which is good. But if the upper and lower limits of the
HPD interval differ substantially, this indicates there is something wrong with the model.
For instance, a by-item standard deviation with MCMC mean 0.02 and a 95% confidence
interval ranging from 0.00000001 to 0.6 would indicate that it is actually completely im-
possible to estimate this parameter. With so much uncertainty about its actual value, it
should be taken out of the model.

Our model for the reaction times in this lexical decision experiment is still incomplete.
Another predictor that we should consider is the by-subject mean of the estimated weight
of the referents of the words presented to the subjects, available in the data frame by the
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column name meanWeight . (As the NativeLanguage by Frequency interaction was
not significant, we remove it from the model specification.)

> lexdec3.lmerE = lmer(RT ˜ cTrial + Frequency +
+ NativeLanguage * Length + meanWeight +
+ (1|Subject) + (0+cTrial|Subject) + (1|Word), lexdec3)
> lexdec3.lmerE
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.4319956 0.0545209 117.97
cTrial -0.0002089 0.0001668 -1.25
Frequency -0.0404232 0.0057107 -7.08
NativeLanguageOther 0.0303136 0.0594427 0.51
Length 0.0028283 0.0039709 0.71
meanWeight 0.0235385 0.0064834 3.63
NativeLanguageOther:Length 0.0181745 0.0040862 4.45

We see that objects that are judged to be heavier elicited longer response latencies.
As always, we have to check the residuals for potential problems with the model spec-

ification. The upper panels of Figure 7.6 show that the model is not coping properly with
especially the longer response latencies. A simple solution for checking that the pattern
of results obtained is not due to the presence of outliers is to remove the extreme outliers
from the data, to refit the model, and to inspect whether the nonnormality of the resid-
uals has been removed or at least attenuated. Refitting the model after excluding the 37
outliers with a standardized residual at a distance greater than 2.5 standard deviations
from zero,

> lexdec3.lmerEtrimmed =
+ lmer(RT ˜ cTrial + Frequency + meanWeight + NativeLanguage * Length +
+ (1|Subject) + (0+cTrial|Subject) + (1|Word),
+ data = lexdec3, subset = abs(scale(resid(lexdec3.lmerE) )) < 2.5)
> nrow(lexdec3)-nrow(lexdec3[abs(scale(resid(lexdec3 .lmerE))) < 2.5,])
[1] 37

we find that that the quantile-quantile plot has improved somewhat, as shown in the
lower panels of Figure 7.6.

> par(mfrow=c(2,2))
> plot(fitted(lexdec3.lmerE), residuals(lexdec3.lmerE ))
> qqnorm(residuals(lexdec3.lmerE), main=" ")
> qqline(residuals(lexdec3.lmerE))
> plot(fitted(lexdec3.lmerEtrimmed), residuals(lexdec 3.lmerEtrimmed))
> qqnorm(residuals(lexdec3.lmerEtrimmed), main=" ")
> qqline(residuals(lexdec3.lmerEtrimmed))
> par(mfrow=c(1,1))

In the trimmed model, the same predictors have remained significant. The estimates of
the coefficients have changed slightly, however, and may now be somewhat more precise.
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Since very long reaction times in lexical decision are likely to be co-determined by later
processes that are usually not of primary interest to the researcher, trimming the model is
justified not only technically but also conceptually.

> x = pvals.fnc(lexdec3.lmerEtrimmed)
> x$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 6.411494 6.4117333 6.3084566 6.5264888 0.000 1 0.0000
cTrial -0.000192 -0.0001945 -0.0004923 0.0001250 0.2082 0 .2058
Frequency -0.037813 -0.0377575 -0.0490303 -0.0264884 0.0 001 0.0000
meanWeight 0.020679 0.0206687 0.0079811 0.0337784 0.0030 0.0015
NatLanOther 0.039060 0.0389072 -0.0828886 0.1585393 0.51 66 0.5091
Length 0.003183 0.0031761 -0.0044192 0.0110505 0.4142 0.4 157
NatLanOth:Len 0.017492 0.0174837 0.0103630 0.0243377 0.0 001 0.0000
> x$random

MCMCmean HPD95lower HPD95upper
sigma 0.1269356 0.1223552 0.1317316
Word.(In) 0.0448592 0.0354490 0.0568323
Sbjc.cTrl 0.0006203 0.0004132 0.0009482
Sbjc.(In) 0.1274543 0.0930270 0.1781425
deviance -1741.5971505 -1750.1482009 -1731.9742494
> lexdec3.lmerEtrimmed
Random effects:

Groups Name Variance Std.Dev.
Word (Intercept) 2.0464e-03 0.04523680
Subject cTrial 3.8438e-07 0.00061998
Subject (Intercept) 1.5506e-02 0.12452139
Residual 1.6083e-02 0.12682059

Unlike summaries for lm or ols model objects, summary tables for mixed-effects
models obtained with lmer() do not list the proportion of variance (R2) accounted for.
This is not without reason, as there are a number of different sources of variance that are
modeled jointly. In addition to the variance explained by fixed effects, we have the vari-
ance explained by one or more random effects. As a consequence, an R2 calculated by
correlating observed and fitted values,

> cor(fitted(lexdec3.lmerE), lexdec3$RT)ˆ2
[1] 0.5296985

does not inform us at all about the variance explained by just the fixed effects, the vari-
ance that would be comparable to the explained variance by models obtained with lm()
or ols() (which contain fixed effects only). For mixed-effects models fit to experimental
data, a large part of the explained variance is often due to by-item and by-subject vari-
ability. We can gain some insight into the amount of variance accounted for by only non-
linguistic variables by fitting a model without lexical fixed-effect predictors and without
Word as random effect.
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Figure 7.6: Residual diagnostics for the models before (upper panels) and after (lower
panels) removal of 37 data points with extreme residuals.

> lexdec3.lmer00 = lmer(RT ˜ Trial +
+ (1|Subject) + (0+Trial|Subject), data = lexdec3)
> cor(fitted(lexdec3.lmer00), lexdec3$RT)ˆ2
[1] 0.4005094

This linguistically uninteresting model captures 0.4005/0.5297 = 76% of the variance ex-
plained by our full model. As is often the case in these kinds of experiments, a large
proportion of the variance is accounted for just by variability among subjects. In this
example, only 100 − 76 = 24% of the variance that we can account for can be traced to
linguistic variables, and almost all of this linguistic variance can already be captured just
by including the random effect for word.

> lexdec3.lmer0 = lmer(RT ˜ 1+(1|Subject)+(0+Trial|Subje ct)+(1|Word),
+ data = lexdec3)
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> cor(fitted(lexdec3.lmer0), lexdec3$RT)ˆ2
[1] 0.5263226

Only 0.3% of the overall variance can therefore be traced to the lexical predictors in the
fixed-effects structure of the model. Fortunately, inspection of the random effects struc-
ture of these models shows that including the lexical predictors does lead to a reduction
in the standard deviation for Word by 1 − (0.0419/0.0687) = 39%.

> lexdec3.lmer0
Random effects:

Groups Name Variance Std.Dev.
Word (Intercept) 4.7232e-03 0.06872577
Subject Trial 3.7151e-07 0.00060951
Subject (Intercept) 2.5022e-02 0.15818286
Residual 2.1663e-02 0.14718479

> lexdec3.lmerE
Random effects:

Groups Name Variance Std.Dev.
Word (Intercept) 1.7537e-03 0.04187756
Subject Trial 3.5455e-07 0.00059544
Subject (Intercept) 2.2573e-02 0.15024339
Residual 2.1375e-02 0.14620023

This example is typical of what we find across many psycholinguistic tasks, where the
method of data acquisition is inherently very noisy. The low signal-to-noise ratio is of
course exactly the reason why these experiments are generally run with many different
subjects and a wide range of items.

7.2 A comparison with traditional analyses

Mixed-effects models with crossed random effects are a very recent development in statis-
tics, Because these models are new, the present section discusses three common designs
in psycholinguistic studies, and compares the advantages of the mixed-effects approach
to the gold standards imposed over the last decades by many psycholinguistic journals.
Pinheiro and Bates [2000] is the authorative reference on mixed effect modeling in R, but
the software they discuss is suited primarily for analysing hierarchical, nested designs
(e.g., children nested under schools nested under cities). A short introduction to the more
recent package (lme4 ) used in this chapter is Bates [2005], Everitt and Hothorn [2006] pro-
vide some introductory discussion as well. More comprehensive discussion is available
in Faraway [2006] and Wood [2006]. A technical overview of the mathematics underlying
the implementation of mixed effect models in the lme4 package is Bates [2006].
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7.2.1 Mixed-effect models and Quasi-F

Mixed-effects models are the response of the statistical community to a problem that was
first encountered in the fourties of the previous century. The splitplot data set illus-
trates this problem. This (constructed) data set is taken from Raaijmakers et al. [1999] (see
their Table 2). Their data concern reaction times (RT) with Subject and Item as ran-
dom effects and SOA (stimulus onset asynchrony, the time between the presentation of a
prime or distractor and the presentation of the target in chronometric experiments) as a
fixed-effect factor.

> splitplot[1:4,]
Subject RT Item SOA

1 S1 546 W1 short
2 S2 566 W1 short
3 S3 567 W1 short
4 S4 556 W1 short

We inspect the experimental design by means of summary tables.

> table(splitplot$SOA)
long short

32 32

The treatment factorSOAhas two levels, long and short . Each subject responds to each
word once.

> table(splitplot$Subject, splitplot$Item)
W1 W2 W3 W4 W5 W6 W7 W8

S1 1 1 1 1 1 1 1 1
S2 1 1 1 1 1 1 1 1
S3 1 1 1 1 1 1 1 1
S4 1 1 1 1 1 1 1 1
S5 1 1 1 1 1 1 1 1
S6 1 1 1 1 1 1 1 1
S7 1 1 1 1 1 1 1 1
S8 1 1 1 1 1 1 1 1

Subject and item are CROSSED in this design. Subject and the SOAtreatment are also
crossed, and each subject responds an equal number of times to the items presented in
the two SOAconditions.

> table(splitplot$Subject, splitplot$SOA)
long short

S1 4 4
S2 4 4
S3 4 4
S4 4 4
S5 4 4
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S6 4 4
S7 4 4
S8 4 4

The items, however, are NESTED under SOA: items 1 through 4 are always used in the
short condition, and items 5 through 8 in the long condition:

> table(splitplot$Item, splitplot$SOA)

long short
W1 0 8
W2 0 8
W3 0 8
W4 0 8
W5 8 0
W6 8 0
W7 8 0
W8 8 0

This kind of design is known as a SPLIT-PLOT design.
It is straightforward to fit a linear mixed-effect model to this data set. We begin with a

model in which subjects and items receive random intercepts and in which subjects also
receive random slopes for the SOAtreatment.

> splitplot.lmer = lmer(RT ˜ SOA + (1+SOA|Subject) + (1|Item ),
+ data = splitplot)
> splitplot.lmer
Random effects:

Groups Name Variance Std.Dev. Corr
Subject (Intercept) 861.99 29.360

SOAshort 502.65 22.420 -0.813
Item (Intercept) 448.29 21.173
Residual 100.31 10.016

number of obs: 64, groups: Subject, 8; Item, 8

Fixed effects:
Estimate Std. Error t value

(Intercept) 540.91 14.93 36.23
SOAshort 22.41 17.12 1.31

We check that we really need this complex random effects structure for Subject by com-
paring it with a simpler model using the likelihood ratio test:

> splitplot.lmerA = lmer(RT ˜ SOA + (1|Subject) + (1|Item),
+ data = splitplot)
> anova(splitplot.lmer, splitplot.lmerA)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
splitplot.lmerA 4 580.29 588.92 -286.14
splitplot.lmer 6 555.72 568.67 -271.86 28.570 2 6.255e-07
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The small p-value shows that we need to stay with the original, full model. Note that we
do not have to take special measures to indicate that the items are nested under SOA, the
determination of nested or non-nested is done for us by lmer() . The t-value for SOA
is well below 2, so it is clear that it is not significant. For this small data set with only
64 observations, it is crucial to use the p-values obtained through MCMC sampling — the
p-value based on the t statistic is too small.

> pvals.fnc(splitplot.lmer, nsim = 50000)$fixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 540.91 540.95 500.03 580.97 0.00002 0.0000
SOAshort 22.41 22.33 -22.83 65.17 0.27224 0.1956

Doing the analysis the traditional way recommended by Raaijmakers et al. [1999] is
a pain. We begin with fitting a simple linear model with lm() , without distinguishing
between fixed and random effect terms.

> splitplot.lm = lm(RT ˜ SOA + Item + Subject + SOA:Subject +
+ Item:Subject, data = splitplot)
> anova(splitplot.lm)

Df Sum Sq Mean Sq F value Pr(>F)
SOA 1 8032.6 8032.6
Item 6 22174.5 3695.7
Subject 7 26251.6 3750.2
SOA:Subject 7 7586.7 1083.8
Item:Subject 42 4208.8 100.2
Residuals 0 0.0

The anova() summary does not produce any p-values. The model is SATURATED, the
residual error is zero, and the number of parameters in the model

> length(coef(splitplot.lm))
[1] 72

exceeds the number of data points,

> nrow(splitplot)
[1] 64

In fact, 8 of the coefficients in the model are inestimable:

> sum(is.na(coef(splitplot.lm)))
[1] 8

This model is completely useless for prediction for new subjects or new items, it overfits
the data, but we can squeeze out a p-value. Recall that in analysis of variance, the idea
is to compare variances in the form of mean squares. The problem that the present ex-
perimental design causes for classical analysis of variance is that there is no proper mean
squares to test the mean squares of SOAagainst. The way out of this dilemma was de-
veloped by Satterthwaite [1946] and Cochran [1951]. They devised an approximative F
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value known as quasi-F . For the present design, we can calculate this quasi-F ratio with
the function quasiF.fnc , which takes as input four mean squares and their associated
degrees of freedom as listed in the above anova() table.

> x = anova(dat.lm)
> quasiF.fnc(x["SOA","Mean Sq"], x["Item:Subject", "Mea n Sq"],
+ x["SOA:Subject", "Mean Sq"], x["Item", "Mean Sq"],
+ x["SOA","Df"], x["Item:Subject", "Df"],
+ x["SOA:Subject", "Df"], x["Item", "Df"])
$F
[1] 1.701588

$df1
[1] 1.025102

$df2
[1] 9.346185

$p
[1] 0.2239887

Instead of specifying the cells in the ANOVA table, we could also have plugged in the
values listed in the tables directly. The p-value returned for the quasi-F ratio, 0.224, is
slightly smaller than the p-value suggested by MCMC sampling.

In psycholinguistics, a specific methodology evolved over the years to work around
having to calculate quasi-F ratios, which were computationally very demanding 30 years
ago. Clark [1973] suggested an easy-to-calculate conservative estimate for quasi-F ratios
which involved two simpler F -values. These F -values were obtained by averaging over
the items to obtain subject means for each level of the treatment effect, and similarly by
averaging over subjects to obtain item means. Forster and Dickinson [1976] proposed
an alternative procedure, which has become the gold standard of psycholinguistics. In
this procedure, separate analyses of variance are carried out on the by-item and the by-
subject means. The by-item analysis is supposed to be informative over the reliability
of an effect across items, and the by-subject analysis is likewise supposed to ascertain
reliability across subjects. A predictor is accepted as significant only when it is significant
both by subjects and by items.

For the present example, the by-subject analysis proceeds as follows. We calculate the
mean RTs averaged over the items for each combination of Subject and SOAwith the
help of aggregate() , which has a syntax similar to that of tapply() .

> subjects = aggregate(splitplot$RT, list(splitplot$Sub ject,
+ splitplot$SOA),mean)
> subjects

Group.1 Group.2 x
1 S1 long 553.75
2 S2 long 532.00
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3 S3 long 546.25
4 S4 long 521.00
5 S5 long 569.75
6 S6 long 529.50
7 S7 long 490.00
8 S8 long 585.00
9 S1 short 556.50
10 S2 short 556.50
11 S3 short 579.25
12 S4 short 551.75
13 S5 short 594.25
14 S6 short 572.50
15 S7 short 535.75
16 S8 short 560.00

The column labels are unhelpful, however, so we rename them.

> colnames(subjects) = c("Subject", "SOA", "MeanRT")

We now test for an effect of SOAby means of an analysis of variance. Since subjects are
crossed with SOA, we have to use the aov() function with Subject specified explicitly
as ERROR STRATUM (random effect).

> summary(aov(MeanRT ˜ SOA + Error(Subject), data = subject s))

Error: Subject
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 7 6562.9 937.6

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
SOA 1 2008.16 2008.16 7.4114 0.02966
Residuals 7 1896.68 270.95

The summary reports two error strata, one concerning the variance between subjects, and
one concerning the variance within subjects. It is in the second part of the table that we
find the F -value for SOA, which for 1 and 7 degrees of freedom happens to be significant.

For the by-item analysis, we proceed along similar lines. We first construct a data
frame with the by-item means

> items = aggregate(splitplot$RT, list(splitplot$Item, s plitplot$SOA),
+ mean)
> items

Group.1 Group.2 x
1 W5 long 533.125
2 W6 long 529.250
3 W7 long 583.250
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4 W8 long 518.000
5 W1 short 559.625
6 W2 short 575.250
7 W3 short 553.375
8 W4 short 565.000
> colnames(items) = c("Item", "SOA", "MeanRT")

and then run the by-item analysis of variance. Because items are nested under SOAinstead
of crossed, we can simply run a one-way analysis of variance.

> summary(aov(MeanRT ˜ SOA, items))
Df Sum Sq Mean Sq F value Pr(>F)
SOA 1 1004.08 1004.08 2.1735 0.1908
Residuals 6 2771.81 461.97

In contrast to the by-subject analysis, there is no trace of significance in the by-item anal-
ysis. As it is not the case that both the by-subject (or F1) analysis and the by-item (or F2)
analysis are both significant, the effect of SOAis evaluated as not significant. Thus, we
reach the same conclusion as offered by the quasi-F test and the mixed-effects model.

Inspection of a single data set is not that informative about how the different tech-
niques perform across experiments. The simulateSplitPlot.fnc() function allows
us to examine multiple simulated data sets with the same underlying structure. It takes
three arguments: a data set with the same design and variable names as our current ex-
ample data frame splitplot , the number of simulation runs required, and whether an
effect of SOAshould be present (with = TRUE ) or absent (with = FALSE ). The func-
tion estimates fixed and random effects by fitting a mixed-effects model to the input data
frame, and then constructs simulated data sets that follow the corresponding theoreti-
cal distribution. Its output is a list that specifies for both the 95% and 99% significance
levels what the proportion of simulation runs is for which a significant effect for SOAis
observed.

We apply this simulation function, once with and once without an effect of SOA. The
first simulation will tell us how succesful our models are in detecting an effect that is
really there. It informs us about the POWER of the models. The second simulation will
tell us how often the models incorrectly lead us to believe that there is a significant effect.
It provides an estimate of the TYPE I ERROR RATE of the models. (These simulations may
take a long time to run.)

> y3 = simulateSplitPlot.fnc(splitplot, nruns=1000, with =FALSE)
> y3$alpha05

quasi-F by-subject by-item F1+F2 lmer:pt lmer:pMCMC
0.055 0.310 0.081 0.079 0.088 0.032

> y3$alpha01
quasi-F by-subject by-item F1+F2 lmer:pt lmer:pMCMC

0.005 0.158 0.014 0.009 0.031 0.000

The error rates for the quasi-F test are close to the nominal levels. The by-subject analysis
by itself is far off, and the by-item analysis by itself has a high error rate for α = 0.05.

288



D
R

A
FT

This high error rate carries over to the F1+F2 procedure. As expected for small samples,
the p-values for lmer() based on the t statistic are clearly anti-conservative. By contrast,
the p-values based on MCMC sampling are somewhat conservative. When we consider
the power for those techniques with nominal Type I error rates (editing the output of
simulateSplitPlot.fnc() )

> x3 = simulateSplitPlot.fnc(splitplot, nruns=1000, with =TRUE)
> x3$alpha05

quasi-F lmer:pMCMC
0.233 0.163

> x3$alpha01
quasi-F F1+F2 lmer:pMCMC

0.087 0.089 0.043

we find that the quasi-F test has the greatest power. This suggests that for small data
sets as typically found in textbooks the quasi-F test is to be preferred. We should keep in
mind, however, that in real life experiments are characterized by missing data and that,
unlike mixed-effects models, the quasi-F test is highly vulnerable to missing data and
inapplicable to unbalanced designs.

This example illustrates that the p-values based on the t statistic in mixed-effects mod-
els are anticonservative for small data sets with a split plot design. For larger numbers
of subjects and items, this anti-conservatism is largely eliminated. This is easy to see in a
series of simulations in which we use 20 instead of 8 subjects and 40 instead of 8 items.

> y4 = simulateSplitPlot.fnc(splitplot, nruns=1000, nsub =20, nitem=40,
+ with = F)
> y4$alpha05

quasi-F by-subject by-item F1+F2 lmer:pt lmer:pMCMC
0.052 0.238 0.102 0.099 0.055 0.027

> y4$alpha01
quasi-F by-subject by-item F1+F2 lmer:pt lmer:pMCMC

0.009 0.120 0.036 0.036 0.013 0.001

The F1+F2 procedure emerges as slightly anti-conservative at both alpha levels. If we
now consider the power for the subset of techniques with nominal error rates,

> x4 = simulateSplitPlot.fnc(splitplot, nruns=1000, nsub =20, nitem=40)
> x4$alpha05

quasi-F lmer:pt lmer:pMCMC
0.809 0.823 0.681

> x4$alpha01
quasi-F lmer:pt lmer:pMCMC

0.587 0.618 0.392

we find that lmer() ’s p-values based on the t distribution are now an excellent choice.
The MCMC p-values remain conservative.
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In summary, for realistic data sets mixed-effects models have at least the same power
as the quasi-F test of detecting an effect if it is there, while the risk of incorrectly conclud-
ing a predictor is significant is comparable. Mixed-effects models offer the advantages
of being robust with respect to missing data, of allowing covariates to be taken into ac-
count, and of providing insight into the full structure of your data, including the random
effects. They can also be applied straightforwardly to other designs for which quasi-F
ratios would be difficult and cumbersome to derive.

7.2.2 Mixed-effect models and Latin Square designs

For a second design that is commonly encountered in psycholinguistic studies, Raaijmak-
ers et al. (1999) recommend an F1 analysis. Let’s consider this recommendation in some
more detail as well. We load the data set that they discuss (their Table 4), available as
latinsquare .

> latinsquare[1:4, ]
Group Subject Word RT SOA List

1 G1 S1 W1 532 short L1
2 G1 S2 W1 542 short L1
3 G1 S3 W1 615 short L1
4 G1 S4 W1 547 short L1

In this (constructed) data set, the factor SOAhas three levels (short, medium, long ).
The design underlying this data set is that of the LATIN SQUARE. The 12 words in this
experiment were divided into 3 lists with 4 words each. These 3 lists were rotated over
subjects, such that each subject was exposed to a given list for a single condition of SOA.
There were three groups of 4 subjects, which differed only with respect to which combi-
nation of List and SOAwas presented to them:

> table(latinsquare$Group,
+ as.factor(paste(latinsquare$List, latinsquare$SOA)) )

L1 long L1 medium L1 short
G1 0 0 16
G2 0 16 0
G3 16 0 0

L2 long L2 medium L2 short
G1 0 16 0
G2 16 0 0
G3 0 0 16

L3 long L3 medium L3 short
G1 16 0 0
G2 0 0 16
G3 0 16 0
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Analysing these data with lmer() is as straightforward as for split plot designs.

> latinsquare.lmer = lmer(RT ˜ SOA + (1|Word) + (1|Subject),
+ data = latinsquare)

We use pvals.fnc() to generate p-values, and specify that it should also save the matrix
with the simulated MCMC data.

> x = pvals.fnc(latinsquare.lmer, nsim=10000, withMCMC=T RUE)
> names(x)
[1] "fixed" "random" "mcmc"
> x$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 533.9583 533.7189 504.252 562.985 0.0001 0.00 00
SOAmedium 2.1250 2.1363 -1.767 6.197 0.2886 0.2912
SOAshort -0.4583 -0.4463 -4.297 3.648 0.8184 0.8196

Since SOAis now a factor with three levels, we have two contrast coefficients, neither
of which is significantly different from zero. In order to evaluate the significance of the
factor SOAas a whole, we use aovlmer.fnc() . Its arguments are a fitted mixed effects
model, a matrix of MCMC samples as provided by pvals.fnc() , and the rownames of
the factor levels that are to be evaluated.

> latinsquare.aov = aovlmer.fnc(latinsquare.lmer, x$mcm c,
+ c("SOAmedium", "SOAshort"))

The output is a list with two elements. The first element is a list with the MCMC p-value
and the factor levels that are jointly evaluated. The second element is an anova table with
a potentially anticonservative p-value.

> latinsquare.aov
$MCMC
$MCMC$p
[1] 0.3855
$MCMC$which
[1] "SOAmedium" "SOAshort"

$Ftests
Analysis of Variance Table

Df Sum Sq Mean Sq F Df2 p
SOA 2 182.389 91.194 0.9444 141.000 0.391

For the present design, the p-values based on the MCMC samples and those based on the
t-statistic are very similar. Both suggest that SOAis not a significant predictor.

The by-subject analysis recommended by Raaijmakers et al. requires more work. We
first average RTs for each combination of List , SOAand Subject .
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> subjects = aggregate(latinsquare$RT, list(latinsquare $Subject,
+ latinsquare$Group, latinsquare$SOA, latinsquare$List ), mean)
> colnames(subjects) = c("Subject", "Group", "SOA", "List ", "MeanRT")
> subjects[1:12,]

Subject Group SOA List MeanRT
1 S10 G3 long L1 592.25
2 S11 G3 long L1 508.75
3 S12 G3 long L1 483.00
4 S9 G3 long L1 534.25
5 S5 G2 medium L1 590.50
6 S6 G2 medium L1 483.25
7 S7 G2 medium L1 513.50
8 S8 G2 medium L1 560.50
9 S1 G1 short L1 511.00
10 S2 G1 short L1 521.50
11 S3 G1 short L1 588.50
12 S4 G1 short L1 554.75

As a next step, we fit a model with Subject nested under Group and with SOAin inter-
action with List .

> subjects.lm = lm(MeanRT ˜ Group/Subject + SOA * List, data = subjects)

We then obtain an analysis of variance table, but we ignore the last two columns because
the F -values and p-values are based on the assumption that all factors are fixed, contrary
to fact.

> anova(subjects.lm)[,1:3]
Df Sum Sq Mean Sq F value Pr(>F)

Group 2 1696 848 28.9395 2.379e-06
SOA 2 46 23 0.7781 0.4741
List 2 3116 1558 53.1724 2.791e-08
Group:Subject 9 47305 5256 179.3974 9.422e-16
SOA:List 2 40 20 0.6830 0.5177
Residuals 18 527 29

In order to obtain the desired p-value, we compare the Mean Sq for SOAwith that for
SOA:List , and obtain an F -value of 23/20 = 1.15 and a p-value of

> 1 - pf(23/20, 2, 2)
[1] 0.4651163

This by-subject analysis also points to a non-significant effect of SOA.
The averaging procedure of Raaijmakers and colleagues yields a larger p-value than

the mixed-effects model, suggesting that it is more conservative and may have less power
to detect the significance of predictors. We investigate whether this is indeed the case with
simulateLatinsquare.fnc() . This function takes a data set as input, fits a mixed-
effects model to this data set, extracts the coefficients of the fixed effects (using fixef() )
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and the random effects parameters (estimating standard deviations from the output of
ranef() ), and uses the values obtained to generate random samples according to the
theoretical distribution of the fitted model. When the option with is set to FALSE, the
contrasts for SOAare set to zero. The Type I error rates are in conformity with the nominal
levels,

> latinsqY = simulateLatinsquare.fnc(latinsquare, nruns =1000, with=F)
> latinsqY$alpha05
Ftest MCMC F1
0.055 0.053 0.052
> latinsqY$alpha01
Ftest MCMC F1
0.011 0.011 0.010

irrespective of whether we use the by-subject analysis (F1), the F -test of the mixed model
(Ftest ), or the MCMC-based test (MCMC). However, the mixed-effects model has greater
power.

> latinsqX = simulateLatinsquare.fnc(latinsquare, nruns =1000, with=T)
> latinsqX$alpha05
Ftest MCMC F1
0.262 0.257 0.092
> latinsqX$alpha01
Ftest MCMC F1
0.082 0.080 0.020

7.2.3 Regression with subjects and items

In the psycholinguistic literature, a range of regression techniques are in use for data
sets with subjects and items. We illustrate this by means of simulated data sets in which
reaction time is defined as linearly dependent on three fixed effect predictors, X , Y , and
Z. The fixed effects are tied to the items and quantify properties of these items. For items
that are words, these properties could be word length, word frequency, and inflectional
entropy. Each subject provides one RT to each item. The function make.reg.fnc()
creates simulated data sets with this layout.

A simulated data set obtained with make.reg.fnc() allows us to reconstruct exactly
how the RTs depend on the fixed and random effects.

> simdat = make.reg.fnc()
> simdat[1:4, ]

Intr X Y Z Item RanefItem RanefSubj Subject Error RT
1 1 1 8 7 Item1 -81.56308 137.1683 Subj1 16.22481 549.8300
2 1 2 13 8 Item2 14.27047 137.1683 Subj1 -16.89636 648.5424
3 1 3 5 1 Item3 19.51690 137.1683 Subj1 34.03299 630.7182
4 1 4 19 18 Item4 -63.28945 137.1683 Subj1 68.03613 735.9150
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The RT on the first line, for instance, can be reconstructed given the vector of fixed-effects
coefficients (400, 2, 6, 4) for the intercept and X , Y , and Z that make.reg.fnc() works
with by default, together with the random effect adjustments for subject and item and the
error term.

> 400 * 1 + 2* 1 + 6* 8 + 4* 7 - 81.56308 + 137.1683 + 16.22481
[1] 549.83

The task of a regression analysis is to infer from the data the parameters of the model: the
coefficients for the fixed effects, and the standard deviations for the random effects. Here
is what lmer() reports for this particular simulation run.

> simdat.lmer = lmer(RT ˜ X+Y+Z+(1|Item)+(1|Subject), dat a=simdat)
> simdat.lmer
Random effects:

Groups Name Variance Std.Dev.
Item (Intercept) 2051.4 45.293
Subject (Intercept) 3881.5 62.301
Residual 2645.7 51.436

number of obs: 200, groups: Item, 20; Subject, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 436.490 39.320 11.101
X 2.410 2.008 1.200
Y 5.178 1.926 2.689
Z 2.643 1.988 1.329

The estimates for the fixed effects in the summary table of this MIXED-EFFECTS REGRES-
SION model are close to the values that we used to generate this data set, (400, 1, 6, 4). Av-
eraged over a large series of simulated data sets, these estimates become more and more
similar to the values that we actually used to construct the data sets. Turning to the ran-
dom effects, we observe that the estimated standard deviations are also well-estimated:
the standard deviations that make.reg.fnc() assumes by default are 40 for item, 80 for
subject, and 50 for the residual error.

Traditionally, regression for data with subjects and items is carried out with the help of
two separate regression analyses. One regression begins with calculating by-item means,
averaging over subjects, and then proceeds with ordinary least squares regression. We
will refer to this as BY-ITEM REGRESSION.

> items = aggregate(simdat$RT, list(simdat$Item), mean)
> colnames(items) = c("Item", "Means")
> items = merge(items, unique(simdat[,c("Item", "X", "Y", "Z")]),
+ by.x = "Item", by.y = "Item")
> items.lm = lm(Means ˜ X + Y + Z, data = items)
> summary(items.lm)
Residuals:
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Min 1Q Median 3Q Max
-100.570 -6.932 4.895 20.553 85.639

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 436.490 34.029 12.827 7.79e-10
X 2.410 2.008 1.200 0.2476
Y 5.178 1.926 2.689 0.0161
Z 2.643 1.988 1.329 0.2024

Residual standard error: 48.12 on 16 degrees of freedom
Multiple R-Squared: 0.4299, Adjusted R-squared: 0.323
F-statistic: 4.022 on 3 and 16 DF, p-value: 0.02611

These estimates for the fixed-effects coefficients are identical to those returned by lmer() .
Across regression techniques, this is almost always the case. When we compare p-values
for the by-item regression with those for mixed-effect regression, we also obtain compa-
rable values:

> pvals.fnc(simdat.lmer)$fixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 436.490 436.247 356.687 520.706 0.0001 0.0000
X 2.410 2.425 -2.021 6.498 0.2326 0.2316
Y 5.178 5.188 1.037 8.923 0.0106 0.0078
Z 2.643 2.653 -1.429 6.913 0.1996 0.1853

Rather different p-values are obtained with a second regression technique known as RAN-
DOM REGRESSION. This kind of regression has been advocated in psychology by Lorch
and Myers [1990], and has become the gold standard in psycholinguistics. In random
regression, we fit a separate model to the data for each individual subject. The function
from the lme4 package that calculates these by-subject coefficients is lmList() :

> simdat.lmList = lmList(RT ˜ X + Y + Z | Subject, simdat)
> coef(simdat.lmList)

(Intercept) X Y Z
Subj1 628.1484 -1.9141021 1.649215 3.4021119
Subj2 458.7045 3.1036178 3.374996 1.5192233
Subj3 469.3044 2.9379676 3.484233 2.8355168
Subj4 418.5968 5.6396018 4.241479 -0.4764763
Subj5 467.6317 4.1477264 7.123812 -0.6388146
Subj6 328.9318 3.8245708 7.373426 2.5304837
Subj7 308.7975 3.0110525 6.709779 1.7966127
Subj8 360.2321 2.6404247 7.098332 6.0430440
Subj9 473.5752 0.1909166 3.849270 5.4122264
Subj10 450.9785 0.5152209 6.873633 4.0021081

We note that for Y , the coefficient is greater than zero for all subjects, while for X , one
coefficient is negative and nine are positive. For Z, two coefficients are negative and eight
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are positive. We formally test whether the coefficients are significantly different from zero
(at the risk of combining precise and imprecise information) by means of one-sample t-
tests. We do so for all four columns simultaneously with apply() .

> apply(coef(simdat.lmList), 2, t.test)

Abbreviating the output, we obtain means that are again identical to the estimates ob-
tained with lmer() and by-item regression.

$‘(Intercept)‘
t = 15.1338, df = 9, p-value = 1.044e-07; mean of x 436.4901
$X
t = 3.4527, df = 9, p-value = 0.007244; mean of x 2.409700
$Y
t = 7.8931, df = 9, p-value = 2.464e-05; mean of x 5.177817
$Z
t = 3.7716, df = 9, p-value = 0.004406; mean of x 2.642604

However, the p-values are much smaller, and would suggest that all predictors are sig-
nificant. Interestingly, when we run a mixed-effect model with only Subject as random
effect, omitting Item , we also obtain similarly small p-values.

> simdat.lmerS = lmer(RT ˜ X+Y+Z + (1|Subject), data=simdat )
> pvals.fnc(simdat.lmerS)$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
Intr 436.490 436.746 386.3913 490.913 0.0001 0.0000
X 2.410 2.420 0.7133 4.111 0.0070 0.0065
Y 5.178 5.168 3.4939 6.838 0.0001 0.0000
Z 2.643 2.639 0.8610 4.301 0.0036 0.0026

Inspection of the random effects structure of the model

> simdat.lmerS
Random effects:

Groups Name Variance Std.Dev.
Subject (Intercept) 3793.7 61.593
Residual 4401.0 66.340

and a comparison with the random effects structure for the model including Item as a
random effect shows that the standard deviation for the residual error is overestimated:
The value used when constructing the data set was 50, the model with subject and item as
random effects estimated it at 51, but the present model at 66. This model is confounding
item-bound systematic error with the residual error.

Because mixed-effect models were developed historically for NESTED designs, there
are proposals in the literature that items should be analysed as nested under subjects
(see, e.g., Quené and Van den Bergh [2004]). It is important to realize the consequences
of this proposal. Nesting items under subjects implies that we allow ourselves to assume
that each subject is exposed to in principle a completely different set of items. The idea
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that a given item has basically the same effect on any subject (modulo the residual error)
is completely given up. The design of the lmer() function forces the distinction between
crossed and nested effects out into the open. Because lmer() figures out from the input
data frame whether subject and item are crossed or nested, crossing versus nesting has
to be made fully explicit in the input. In simdat , every level of Subject occurs in
conjunction with the same 20 levels of item , as shown by cross-tabulation of subject and
item.

> table(simdat$Subject, simdat$Item)[1:4, 1:4]

Item1 Item10 Item11 Item12
Subj1 1 1 1 1
Subj2 1 1 1 1
Subj3 1 1 1 1
Subj4 1 1 1 1

In order to specify that the items are nested under subject instead of crossed, we have to
create new names for the items, such that the labels for the 20 items will be different for
each subject. We can achieve this by pasting the name of the item onto the name of the
subject, by converting the resulting character vector into a factor, and adding the result as
a new column to simdat .

> simdat$Item2 = factor(paste(simdat$Subject, simdat$It em, sep = "."))

A cross-tabulation now results in a table of 10 rows (subjects) by 200 columns (the new
items). Most of the cells of this table are zero.

> table(simdat$Subject, simdat$Item2)[1:10, 1:4]

Subj10.Item1 Subj10.Item10 Subj10.Item11 Subj10.Item12
Subj1 0 0 0 0
Subj2 0 0 0 0
Subj3 0 0 0 0
Subj4 0 0 0 0
Subj5 0 0 0 0
Subj6 0 0 0 0
Subj7 0 0 0 0
Subj8 0 0 0 0
Subj9 0 0 0 0
Subj10 1 1 1 1

Note that effectively we now have 200 different items, instead of just 20 items. In other
words, nesting implies that one subject may respond to, say, scythe, in the way another
subject might respond to, say, antidisestablishmentarianism, once the fixed effect predictors
have been accounted for. This is not what we want, not for the present data, and more in
general not for linguistic data sets in which the items are sensibly distinct. Proponents of
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nesting argue that nesting does justice to the idea that each subject has her own experi-
ence with a given item. With respect to the mental lexicon, for instance, expertise in the
nautical domain and expertise in the medical domain will lead to differential familiarity
with nautical terms and medical terms across subpopulations. However, nesting gives
up on the commonality of words altogether. Also note that with full nesting structure the
random effect for Item is CONFOUNDED with the residual error. We have 200 data points,
so 200 residual error values, but also 200 by-item adjustments. As a consequence, nesting
of items under subjects leads to an ill-defined model. If items are truly nested, then the
simpler model with only Subject as random effect is appropriate.

Thus far, we have considered only one simulated data set. But it is useful to know
how these regression techniques perform across many simulated data sets. The function
simulateRegression.fnc() applies the different regression techniques to a series of
simulated data sets. We apply it once with and once without an effect for the predic-
tor Z. Table 7.1 summarizes the results. The upper half of the table shows that the by-
subject methods (lmerS and lmList ) so badly inflate the Type I error compared to the
nominal 0.05 and 0.01 values that it does not make sense to consider them in the power
comparison. The rows for these models are therefore shown in grey in the lower half of
Table 7.1. It is clear that the only acceptable models are the by-item regression and the
mixed-effects regression with crossed random effects for subject and item. Of these two,
the mixed-effects model has slightly greater power.

It is also worth noting that the mixed-effects model with only subject as random effect
(lmerS ) does not provide proper estimates of the standard deviations of the random
effects (defined in the model as 40 for Item , 80 for Subject , and 50 for the residual
error). Averaged across 1000 simulation runs for the simulation without an effect for Z,

> s = simulateRegression.fnc(beta = c(400, 2, 6, 0), nruns = 1 000)
> s$ranef

Item Subject Residual
lmer 39.35468 77.22093 49.84096
lmerS NA 76.74287 62.04566

we find that the estimate provided by lmerS for the residual error is too high, and that
for subject is too low. The same pattern emerges for the simulation with an effect of Z
included.

Mixed-effects regression with crossed random effects for subject and item therefore
offers several advantages. First, it provides insight into the full random effects struc-
ture. Second, it has slightly superior power. Third, it allows us to bring into the model
longitudinal effects and also to study more complex random effects structure with ran-
dom slopes. Finally, mixed-effect regression makes it possible to include in the model
by-subject predictors such as age or education level along with by-item predictors such
as frequency and length.

Under what conditions, then, is random regression or mixed-effect regression with
subject as only random effect, appropriate? The answer is simple: When the predictors
are true TREATMENT factors that have no relation to the properties of the basic unit in
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Table 7.1: Type I error rate and power comparison for four regression models (lmer :
mixed-effects regression with crossed random effects for subject and item, lmerS : mixed-
effects regression with random effect for subject only, lmList : random regression, item :
by-item regression) across 1000 simulation runs. The mcmcextension denotes p-values
based on 10000 Markov chain Monte Carlo samples.

βZ = 0
α = 0.05 α = 0.01

X Y Z X Y Z
lmer 0.248 0.898 0.077 0.106 0.752 0.018
lmer-mcmc 0.219 0.879 0.067 0.069 0.674 0.013
lmerS 0.609 0.990 0.380 0.503 0.982 0.238
lmerS-mcmc 0.606 0.991 0.376 0.503 0.982 0.239
lmList 0.677 0.995 0.435 0.519 0.979 0.269
item 0.210 0.873 0.063 0.066 0.670 0.012

βZ = 4
α = 0.05 α = 0.01

X Y Z X Y Z
lmer 0.219 0.897 0.626 0.089 0.780 0.415
lmer-mcmc 0.190 0.881 0.587 0.061 0.651 0.304
lmerS 0.597 0.989 0.925 0.488 0.978 0.867
lmerS-mcmc 0.594 0.989 0.924 0.485 0.978 0.869
lmList 0.650 0.992 0.931 0.487 0.979 0.868
item 0.183 0.875 0.574 0.055 0.642 0.295

the experiment. Consider, for instance, an experiment measuring the velocity of a tennis
ball with as predictors the humidity of the air and wind force. When the same tennis
ball is tested under different treatments of humidity and wind force, there is no by-item
random effect. When the same experiment is repeated across laboratory, laboratory can be
included as random effect. But no random effect is necessary at the item level. However,
in linguistics and psycholinguistics, we hardly ever study just a single linguistic object.
A word’s frequency, for instance, is not a treatment that can be applied to it. Frequency
is an intrinsic property of individual words, and it is highly correlated to many other
lexical properties, as we have seen in preceding chapters. We have no guarantee that
all relevant item-specific properties are actually captured adequately by our item-specific
predictors. It is much more likely that there is still unexplained by-item variance. In these
circumstances, one must bring item as random effect into the model.

7.3 Shrinkage in mixed-effect models

Linear mixed-effect models are also attractive compared to classical analysis of variance
and multiple regression because they provide SHRINKAGE estimates for the by-subject
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and by-item adjustments — the best linear unbiased predictors or BLUPs. To illustrate
shrinkage in mixed-effects models, it is useful to consider a simple simulated experiment
with 10 subjects and 20 words in which we have a dependent variable (RT) that is mod-
eled as a straightforward linear function (with an intercept of 400 and a slope of 5) of a
numerical predictor (frequency ). The frequencies of the 20 items were simulated by
sampling 20 random numbers from a normal distribution with a mean of 20 and a stan-
dard deviation of 4. This data set, available as shrinkage , was created with two random
effects: random intercepts for subject, and the residual error. For simplicity, there are no
random intercepts for item. The standard deviation for the subject random effect for the
intercept was 20, and the standard deviation of the residual error was 50. We load these
data, and run lmer() to see how it reconstructs the parameters that we used to construct
the data set.

> shrinkage.lmer = lmer(RT ˜ frequency + (1|subject), data = shrinkage)
> shrinkage.lmer
Random effects:

Groups Name Variance Std.Dev.
subject (Intercept) 185.99 13.638
Residual 2444.57 49.443

number of obs: 200, groups: subject, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 393.0311 21.4566 18.318
frequency 1.0866 0.1936 5.613

The summary reports the estimates for our four parameters. The estimate for the intercept
is close, as is the estimate of the standard deviation of the residual error. The standard
deviation for subjects is somewhat too low, and the slope for frequency is likewise under-
estimated. This is the best we can do, given the level of noise in this data set.

Now consider a random regression on this data set.

> shrinkage.lmList = lmList(RT ˜ frequency | subject, data = shrinkage)
> coef(shrinkage.lmList)

(Intercept) frequency
S1 365.2841 1.2281146
S10 377.3522 1.1365690
S2 319.4524 1.7300404
S3 445.8967 0.6943159
S4 542.5428 -0.2364537
S5 325.6736 1.6250778
S6 478.6631 0.2033189
S7 471.4654 0.6686009
S8 367.1283 1.5067342
S9 236.8524 2.3100814

A t-test on the slope for frequency yields a significant p-value, as expected given that
only subject S4 had a negative slope.
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> t.test(coef(shrinkage.lmList)$frequency)
t = 4.4952, df = 9, p-value = 0.001499
mean of x

1.08664

As before, the mean slope, 1.08664, is indistinguishable from the slope estimated by
lmer() .
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Figure 7.7: The estimated intercepts for subjects (S1, S2, . . . , S10) in random regression
(left panel) and mixed-effect regression (right panel). The grey circles represent the actual
intercepts that were present in the simulation. The dark grey horizontal line denotes the
true mean of the intercept (400). The horizontal axes represent the rank of the intercept as
estimated in the random regression model.

However, mixed-effect models provide improved estimates of the by-subject differ-
ences compared to random regression. To see this, we first tabulate the estimated coeffi-
cients for the two models side by side.
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> coef(shrinkage.lmList) > coef(shrinkage.lmer)$subjec t
(Intercept) frequency (Intercept) frequency

S1 365.2841 1.2281146 S1 385.4278 1.08664
S10 377.3522 1.1365690 S10 386.7957 1.08664
S2 319.4524 1.7300404 S2 390.1994 1.08664
S3 445.8967 0.6943159 S3 399.5851 1.08664
S4 542.5428 -0.2364537 S4 397.7705 1.08664
S5 325.6736 1.6250778 S5 387.1721 1.08664
S6 478.6631 0.2033189 S6 387.6356 1.08664
S7 471.4654 0.6686009 S7 413.3528 1.08664
S8 367.1283 1.5067342 S8 404.5415 1.08664
S9 236.8524 2.3100814 S9 377.8304 1.08664

There are two striking differences. First, the mixed-effect model does not vary the coeffi-
cient for frequency across subjects, as there is no random slope in the model. Second,
the random regression offers estimates for the intercept that have a much wider range
than those for the mixed-effect model. This is illustrated graphically in Figure 7.7. In
both panels, the circles represent the intercepts that were actually used to construct the
RTs in the simulated data set. The intercepts labeled S1, S2, . . . , S10 represent the es-
timated intercepts. The left panel shows the estimates for random regression, the right
panel shows the estimates for mixed-effect regression. It is immediately apparent that the
mixed-effect model does a much better job at getting accurate estimates that approach the
true by-subject differences in the intercept.

The reason that lmer() is so much more succesful is that lmer() considers a given
subject in the light of what it knows about the other subjects. Consider again the left panel
of Figure 7.7. The horizontal axis ranks the subjects from short to long RTs (intercepts).
Subject S9 is extremely fast, and subject S4 extremely slow. Such extremes are unlikely
to be observed for the same subjects in a second experiment with these same subjects. In
such a second experiment, they are much more likely to have less extreme intercepts. In
other words, the estimates for the intercepts are subject to a general phenomenon known
as REGRESSION TOWARDS THE MEAN: In replication studies with the same subjects, the
extremely slow subjects will be faster, and the extremely fast subjects will be slower re-
sponders. SHRINKAGE towards the mean across replication studies is an adverse result
of traditional modeling. The model provides too tight a fit to the data. In mixed-effects
regression, this shrinkage is anticipated and brought into the model. Informally, you can
think of this in terms of the model considering the behavior of any given subject in the
light of what it knows about the behavior of all the other subjects. In the present example,
for instance, the assumption of a common slope in the lmer model damps the variation
in the intercept. As a consequence, the BLUPs produced by lmer() are much closer to
the actual values. Because they have already been shrunk towards the mean in the model,
they no longer shrink towards the mean when you repeat the experiment. Hence, they
make more precise prediction possible.
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7.4 Generalized linear mixed models

Thus far, we have considered mixed-effects models that extend ordinary least squares
models fitted with lm() or ols() . In this section we consider the mixed-effects parallel
to glm() and lrm() , the GENERALIZED LINEAR MIXED MODEL. We return for a final time
to the data of Bresnan et al. [2007] addressing the choice between the PP and NP realization
of the dative in English, available as the data set dative . In Chapter 5 we analysed this
data set by means of a CART tree. Here, we use logistic regression. We begin with an
analysis using the lrm() function from the Design package discussed in Chapter 6, and
consider a model with main effects only.

> library(Design)
> dative.dd = datadist(dative)
> options(datadist = ’dative.dd’)
> dative.lrm = lrm(RealizationOfRecipient ˜
+ AccessOfTheme + AccessOfRec + LengthOfRecipient + Animac yOfRec +
+ AnimacyOfTheme + PronomOfTheme + DefinOfTheme + LengthOf Theme+
+ SemanticClass + Modality,
+ data = dative)
> anova(dative.lrm)
Wald Statistics

Factor Chi-Square d.f. P
AccessOfTheme 30.79 2 <.0001
AccessOfRec 258.06 2 <.0001
LengthOfRecipient 69.87 1 <.0001
AnimacyOfRec 93.35 1 <.0001
AnimacyOfTheme 3.71 1 0.0542
PronomOfTheme 54.42 1 <.0001
DefinOfTheme 28.72 1 <.0001
LengthOfTheme 79.03 1 <.0001
SemanticClass 166.55 4 <.0001
Modality 49.91 1 <.0001
TOTAL 747.64 15 <.0001

The animacy of the theme is the only potentially irrelevant predictor. However, the prob-
lem with this analysis is that we have repeated measures for many of the verbs.

> rev(sort(table(dative$Verb)))
give pay sell send cost tell
1666 207 206 172 169 128

offer teach take show bring charge
79 64 58 58 55 43

owe do loan lend award write
31 31 21 20 19 17

feed hand mail grant allow deny
17 15 14 13 13 12
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...
get funnel float flip carry bequeath

1 1 1 1 1 1
assess afford accord

1 1 1

The structure of this data set differs from the data set of Dutch verbs that we analysed in
Chapter 4. The Dutch data set contained nearly 1100 verbs, but each verb occurred only
once. In the data of Bresnan and colleagues, some verbs occur only once, but others are
highly frequent, with give as the most frequent verb of all.

It is not unlikely that the data of just the single verb give dominate the effects observed
with lrm() . To alleviate this problem, we rerun the analysis with a mixed-effect logistic
regression with a random effect for Verb . It remains unfortunate that the numbers of
observations for the different verbs are so different. This is a problem that one often
encounters in corpus studies. We will therefore have to depend on the robustness of the
mixed-effect algorithms with respect to unequal numbers of observations.

For a generalized linear mixed-effect model, we again use lmer() , but now select the
binomial distribution and the logistic link function with family = "binomial" .

> library(lme4, keep.source=F)
> dative.glmm = lmer(RealizationOfRecipient ˜ AccessOfTh eme +
+ AccessOfRec + LengthOfRecipient + AnimacyOfRec + Animacy OfTheme +
+ PronomOfTheme + DefinOfTheme + LengthOfTheme + SemanticC lass +
+ Modality + (1|Verb), data = dative, family = "binomial")

I have used the extension glmm to mark the object as a Generalized Linear Mixed Model,
in order to distinguish it from ’normal’ mixed models, which I give the extension lmer .

> print(dative.glmm, corr = FALSE)
Random effects:

Groups Name Variance Std.Dev.
Verb (Intercept) 4.3982 2.0972

number of obs: 3263, groups: Verb, 75

Estimated scale (compare to 1 ) 0.870155

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.29308 0.65005 1.989 0.0467
AccessOfThemegiven 1.50541 0.25504 5.903 3.58e-09
AccessOfThemenew -0.41979 0.19067 -2.202 0.0277
AccessOfRecgiven -2.46129 0.17761 -13.858 < 2e-16
AccessOfRecnew 0.12461 0.24423 0.510 0.6099
LengthOfRecipient 0.41485 0.04754 8.727 < 2e-16
AnimacyOfRecinanimate 2.24228 0.25864 8.669 < 2e-16
AnimacyOfThemeinanimate -0.86354 0.48283 -1.788 0.0737
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PronomOfThemepronominal 2.20501 0.24624 8.955 < 2e-16
DefinOfThemeindefinite -0.93295 0.19024 -4.904 9.39e-07
LengthOfTheme -0.23354 0.02766 -8.443 < 2e-16
SemanticClassc 0.38583 0.34929 1.105 0.2693
SemanticClassf 0.02204 0.57971 0.038 0.9697
SemanticClassp -3.77588 1.47575 -2.559 0.0105
SemanticClasst 0.31043 0.20895 1.486 0.1374
Modalitywritten 0.85021 0.18536 4.587 4.50e-06

The estimated scale parameter at the beginning of the summary is a measure for how
the actual variance in the data compares to the variance assumed by the binomial model.
Ideally, it is close to 1. In the present example, it is somewhat smaller than 1 (underdis-
persion), probably because of the very unequal numbers of verbs in the data. It is not so
low as to be a cause of serious concern.

The estimates of the coefficients are very similar to those estimated by lrm() :

> cor.test(coef(dative.lrm), fixef(dative.glmm))
t = 8.5114, df = 14, p-value = 6.609e-07

cor
0.9154485

The main difference concerns the p-values for the contrasts for semantic class. According
to lrm() , most contrasts are highly significant, but once we have taken by-verb variabil-
ity into account, there is little left for semantic class to explain. Apparently, there is much
more variation among individual verbs than among semantic classes. In other words, se-
mantic class was an indirect and imperfect means for accounting for by-verb variability.

Unlike lrm() , lmer() does not specify Somers’ Dxy or the C index of concordance,.
A function from the Hmisc package that calculates these measures for a vector of pre-
dicted probabilities and a vector of observed binary outcomes is somers2() . We trans-
form the fitted log odds ratios into probabilities either by hand

> probs = 1/(1+exp(-fitted(dative.glmm)))

or with

> probs = binomial()$linkinv(fitted(dative.glmm))

and then apply somers2() .

> somers2(probs, as.numeric(dative$RealizationOfRec)- 1)
C Dxy n Missing

0.9613449 0.9226899 3263.0000000 0.0000000

Both measures indicate the fit is excellent.
Another way of inspecting the goodness of fit is to divide the range of possible ex-

pected probabilities into ten equally sized bins (0 − 0.1, 0.1 − 0.2, . . . , 0.9 − 1.0), and to
compare for each bin the mean expected proportion of successes with the observed pro-
portion of successes for the data points falling into that bin. plot.logistic.fit.fnc
carries out this comparison. It takes as arguments a model fit by either lrm() or lmer() ,
and the corresponding data frame.
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Figure 7.8: Observed proportions of PP realizations and the corresponding mean pre-
dicted probabilities for dative.lrm (left) and dative.glmm (right).

> par(mfrow=c(1,2))
> plot.logistic.fit.fnc (dative.lrm, dative)
> mtext("lrm", 3, 0.5)
> plot.logistic.fit.fnc (dative.glmm, dative)
> mtext("lmer", 3, 0.5)
> par(mfrow=c(1,1))

As can be seen in Figure 7.8, the observed proportions and the corresponding mean ex-
pected probabilities are very similar for both models.

In our analyses thus far, we have ignored a potentially important source of variation,
the speakers whose utterances were sampled. For the subset of spoken English, identifiers
for the individual speakers are available. It turns out that the numbers of observations
contributed by a given speaker vary substantially:

> spoken = dative[dative$Modality != "written",]
> spoken$Speaker = spoken$Speaker[drop=TRUE]
> range(table(spoken$Speaker))
[1] 1 40
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In principle, we can include a random effect for Speaker in our model, accepting that
subjects with few observations contribute almost no information.

> spoken.glmm = lmer(RealizationOfRecipient ˜
+ AccessOfTheme + AccessOfRec + LengthOfRecipient + Animac yOfRec +
+ AnimacyOfTheme + PronomOfTheme + DefinOfTheme + LengthOf Theme +
+ SemanticClass + (1|Verb) + (1|Speaker),
+ data = spoken, family = "binomial")

The model comes with a warning, however, that the estimated variance for factor Speaker
is effectively zero. This is also evident from the table of random effects:

> print(spoken.glmm, corr=FALSE)
Random effects:

Groups Name Variance Std.Dev.
Speaker (Intercept) 5.0000e-10 2.2361e-05
Verb (Intercept) 4.3753e+00 2.0917e+00

The random effect for Speaker is superfluous. From this we conclude that speaker vari-
ation is unlikely to distort our conclusions. Another way in which we may ascertain that
our results are valid across speakers is to run a bootstrap validation in which we sample
speakers (and all their datapoints) with replacement.

> speakers = levels(spoken$Speaker)
+ nruns = 100 # number of bootstrap runs
+ for (run in 1:nruns) {
+ # sample with replacement from the speakers
+ mysampleofspeakers = sample(speakers, replace = TRUE)
+ # select rows from data frame for the sampled speakers
+ mysample = spoken[is.element(spoken$Speaker, mysample ofspeakers),]
+ # fit a mixed effects model
+ mysample.lmer = lmer(RealizationOfRecipient ˜ Semantic Class +
+ AccessOfRec + AccessOfTheme + PronomOfRec + PronomOfThem e +
+ DefinOfRec + DefinOfTheme + AnimacyOfRec + LengthOfTheme +
+ LengthOfRecipient + (1|Verb), family="binomial", data= mysample)
+ # extract fixed effects from the model
+ fixedEffects = fixef(mysample.lmer)
+ # and save them for later inspection
+ if (run == 1) res = fixedEffects
+ else res = rbind(res, fixedEffects)
+ # this takes time, so output dots to indicate progress
+ cat(".")
+ }
+ cat("\n") # add newline to console
+ # assign sensible rownames
+ rownames(res) = 1:nruns
+ # and convert into data frame
+ res = data.frame(res)
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The res data frame contains, for each of the predictors, 100 bootstrap estimates of the
coefficients.

> res[1:4, c("AccessOfThemegiven", "AccessOfThemenew") ]
AccessOfThemegiven AccessOfThemenew

1 1.928998 -0.2662725
2 1.894876 -0.4450632
3 1.891211 -0.6237502
4 1.347860 -0.3443248

With the help of the quantile() function we obtain for a given column the correspond-
ing 95% confidence interval as well as the median.

> quantile(res$AccessOfThemegiven, c(0.025, 0.5, 0.975) )
2.5% 50% 97.5%

1.248588 1.682959 2.346539

We apply the quantile function to all columns simultaneously, and transpose the resulting
table for expository convenience.

> t(apply(res, 2, quantile, c(0.025, 0.5, 0.975)))
2.5% 50% 97.5%

X.Intercept. -0.75399640 0.07348911 1.07283054
SemanticClassc -0.68274579 0.16244792 0.80071553
SemanticClassf -1.51546566 0.12709561 1.62158050
SemanticClassp -216.54050927 -4.40976146 -3.65166274
SemanticClasst -0.03004542 0.32834900 0.89482430
AccessOfRecgiven -1.98532032 -1.41952502 -0.83553953
AccessOfRecnew -1.40423078 -0.64366428 -0.04868748
AccessOfThemegiven 1.14068980 1.73408922 2.07713229
AccessOfThemenew -0.65928103 -0.28711212 0.14225554
PronomOfRecpronominal -2.35856122 -1.76332487 -1.17819 294
PronomOfThemepronominal 2.14508430 2.45161684 2.804068 41
DefinOfRecindefinite 0.24902836 0.58052840 1.14548685
DefinOfThemeindefinite -1.65686315 -1.14979881 -0.7266 2940
AnimacyOfRecinanimate 1.86492658 2.53141426 3.13096327
LengthOfTheme -0.31025375 -0.19152255 -0.12557149
LengthOfRecipient 0.29265114 0.43854148 0.65946138

Confidence intervals that do not include zero, i.e., rows with only positive or only nega-
tive values, characterize coefficients that are significantly different from zero at the 5% sig-
nificance level. For instance, since the 95% confidence interval for AccessOfThemegiven
does not include zero, in contrast to the 95% confidence interval for AccessOfThemenew ,
only the former coefficient is significant.
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7.5 Case studies

This section discusses four case studies that illustrate some of the new possibilities offered
by mixed-effects models for coming to grips with the structure of your data.

7.5.1 Primed lexical decision latencies for Dutch neologisms

De Vaan et al. [2007] report a priming study using visual lexical decision that addressed
the question of whether new complex words that subjects have not seen before are pro-
cessed differently when encountered for the first time or for the second time. The data
set primingHeid concerns forty newly created neologisms with the Dutch suffix -heid,
e.g., lobbigheid, ’fluffiness’, which we presented to 26 subjects in two conditions. In the
first condition, subjects first responded to the base (lobbig) and 40 trials later encountered
its derivative (lobbigheid). In the alternative condition, they were exposed to the complex
word (lobbigheid), and 40 trials later this same word was repeated. A given subject was
exposed to a word in either the base-priming condition or in the derivative-priming con-
dition. Our expectation was that subjects who had seen the complex word before would
respond more quickly at the second exposure compared to subjects who had only seen
the stem before, due to a nascent frequency effect.

> primingHeid.lmer0 = lmer(RT ˜ Condition +
+ (1|Subject) + (1|Word), data = primingHeid)
> print(primingHeid.lmer0, corr = FALSE)
Random effects:

Groups Name Variance Std.Dev.
Word (Intercept) 0.0034119 0.058412
Subject (Intercept) 0.0408438 0.202098
Residual 0.0440838 0.209962

number of obs: 832, groups: Word, 40; Subject, 26

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.60297 0.04215 156.66
Conditionheid 0.03127 0.01467 2.13

The p-value suggests there is indeed an effect of condition, surprisingly an effect that is
inhibitory instead of facilitatory. Inspection of the residuals reveals that the model fails to
fit the longer reaction times, as shown in the upper panels of Figure 7.9.

> qqnorm(residuals(primingHeid.lmer0),
+ main = "residuals primingHeid.lmer0")
> qqline(residuals(primingHeid.lmer0))
> plot(sort(primingHeid$RT), main = "primingHeid.lmer0" )

We remove the outliers with the greatest reaction times
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> primingHeid2 = primingHeid[primingHeid$RT < 7.1,]
> nrow(primingHeid)-nrow(primingHeid2)
[1] 45
> 45/nrow(primingHeid)
[1] 0.05408654

and refit the model:

> primingHeid2.lmer0 = lmer(RT˜Condition+
+ (1|Subject)+(1|Word), data = primingHeid2)
> primingHeid2.lmer0
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.580379 0.035929 183.15
Conditionheid 0.009115 0.012695 0.72

The effect of Condition is no longer significant. Thus it would seem that the effect of
priming condition is carried only by 45 atypical data points, a mere 5% of the full data set.

It is at this point that we can profit from the full power of mixed-effect modeling.
The central concept of priming is that prior processing affects later processing of related
words. By only looking at the effect of condition by itself, we are in fact ignoring two
important sources of variation. First, a subject may have decided that the base or the ne-
ologism was a non-word 40 trials back. If so, that prior rejection must have been revised,
as the data that we are analysing only contains the yes-responses. Such a revision may
introduce variance, variance that we have left unaccounted for thus far. Furthermore, the
latency elicited for the prime may help predict the latency for the target word. Again, this
is a source of variation that we can bring into the model. Finally, it is conceivable that
the latency for the prime is not a good predictor for the latency to the target in case the
prime was rejected as a word, as a process of revision of opinion is then superimposed
— only targets eliciting a yes response are considered here. We therefore include as new
predictors the reaction time for the prime (RTtoPrime ), whether the prime was accepted
or rejected as a word (ResponseToPrime ), and the interaction of these two predictors.
This leads to the following model:

> primingHeid2.lmer1 = lmer(RT ˜ RTtoPrime * ResponseToPrime+Condition+
+ (1|Subject) + (1|Word), data = primingHeid2)
> pvals.fnc(primingHeid2.lmer1, nsim=10000)$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 5.27072 5.33992 4.93105 5.78696 0.0001 0.0000
RTtoPrime 0.19871 0.18840 0.12483 0.25336 0.0001 0.0000
Respincrrct 1.63316 1.50885 0.75650 2.23385 0.0001 0.0000
Conditionheid -0.03876 -0.03845 -0.06644 -0.01127 0.0060 0.0055
RTtoPrime:

Respincorrct -0.22877 -0.21081 -0.32099 -0.10025 0.0001 0 .0000

We see that the two new predictors are relevant. The RT for the prime is a predictor for
the RT to the target. However, the interaction indicates that this positive correlation holds
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Figure 7.9: Residuals for the initial model for priming condition (upper left), the ordered
reaction times, and the residuals for the model with 45 extremely long and atypical reac-
tion times removed.
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only when the prime was accepted as a word. When it was rejected, we have to adjust the
coefficient for the RT to the prime down to roughly zero. As expected, revision of opinion
masks the correlation with earlier processing. Crucially, we now see a solidly significant
effect of Condition , indicating that indeed a neologism is responded to more quickly
upon the second exposure. This may indicate that memory traces for complex words
begin to develop already after the very first time they have been encountered. A check of
the residuals of this model (as depicted in the lower right panel of Figure 7.9) shows that
there is still room for improvement, but there is no serious worry about atypical outliers
driving the effects.

> qqnorm(residuals(primingHeid2.lmer1),
+ main="residuals primingHeid2.lmer1")
> qqline(residuals(primingHeid2.lmer1))

It is left to the reader as an exercise to verify that none of the other predictors in the
data frame (family size, length in letters, number of synsets, or trial) are sufficient by
themselves to pull the effect of condition out of the noise. To do so, it is crucial to have
access to the specific response latencies of subjects to the specific primes they encountered
earlier in the experiment. There is no way in which this can be accomplished with the
traditional by-subject and by-item analyses.

7.5.2 Self-paced reading latencies for Dutch neologisms

[De Vaan et al., 2007] also used the experimental design described in the previous sec-
tion with another task, self-paced reading. Instead of embedding primes and targets in
a list of isolated words, they embedded them in short texts. The question is whether
neologisms will similarly benefit from prior exposure when there is meaningful context
to guide interpretation. We remove a few extremely low-valued outliers and a few high-
valued outliers, 13 data points in all.

> selfPacedReadingHeid=selfPacedReadingHeid[selfPace dReadingHeid$RT>5 &
+ selfPacedReadingHeid$RT < 7.2,]

A simple model with Condition as only predictor does not support an effect for this
predictor.

> selfPacedReadingHeid.lmer = lmer(RT ˜ Condition +
+ (1|Subject) + (1|Word), data = selfPacedReadingHeid)
> selfPacedReadingHeid.lmer
Fixed effects:

Estimate Std. Error t value
(Intercept) 5.95569 0.05023 118.57
Conditionheidheid 0.01157 0.02139 0.54

Adding the reading latency for the prime as covariate does help.
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> selfPacedReadingHeid.lmer = lmer(RT ˜ RTtoPrime + Condit ion +
+ (1|Subject) + (1|Word), data = selfPacedReadingHeid)
> selfPacedReadingHeid.lmer
Fixed effects:

Estimate Std. Error t value
(Intercept) 4.91831 0.15260 32.23
RTtoPrime 0.17574 0.02485 7.07
Conditionheidheid -0.01648 0.02148 -0.77

What we need to do at this point is examine whether we can control for differences in how
the words immediately preceding the target word were read. The preceding discourse
context may lead up to the target to a greater or lesser extent. It may be necessary to bring
this source of variance under control in order for the effect of Condition to become
visible. We therefore inspect the correlations of the reading latency for the target word
with the latencies to the four words preceding the target word.

> round(cor(selfPacedReadingHeid[,c(3, 12:15)]),3)
RT RT4WordsBack RT3WordsBack RT2WordsBack RT1WordBack

RT 1.000 0.453 0.490 0.408 0.453
RT4WordsBack 0.453 1.000 0.484 0.387 0.391
RT3WordsBack 0.490 0.484 1.000 0.405 0.397
RT2WordsBack 0.408 0.387 0.405 1.000 0.453
RT1WordBack 0.453 0.391 0.397 0.453 1.000

There is considerable correlational structure here. Including four correlated variables as
separate predictors makes no sense, as it would give rise to very high collinearity. A solu-
tion is to orthogonalize the latencies for the preceding words using principal components
analysis, and to add the first three (orthogonal) principal components as predictors to the
model:

> x = selfPacedReadingHeid[,12:15]
> x.pr = prcomp(x, center = T, scale = T)
> selfPacedReadingHeid$PC1 = x.pr$x[,1]
> selfPacedReadingHeid$PC2 = x.pr$x[,2]
> selfPacedReadingHeid$PC3 = x.pr$x[,3]
> selfPacedReadingHeid.lmer = lmer(RT ˜ RTtoPrime + PC1 + PC 2 + PC3 +
+ Condition + (1|Subject) + (1|Word), data = selfPacedReadi ngHeid)
> selfPacedReadingHeid.lmer
Fixed effects:

Estimate Std. Error t value
(Intercept) 5.250310 0.139242 37.71
RTtoPrime 0.119199 0.023283 5.12
PC1 0.150975 0.008757 17.24
PC2 -0.010937 0.012907 -0.85
PC3 0.020720 0.013742 1.51
Conditionheidheid -0.003850 0.020160 -0.19
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Only the first principal component (which captures 55.4% of the variance of the four pre-
ceding reading latencies) is required in the model. We remove the other principal compo-
nents, and test for interactions with PC1.

> selfPacedReadingHeid.lmer = lmer(RT ˜ (RTtoPrime + Condi tion) * PC1 +
+ (1|Subject) + (1|Word), data = selfPacedReadingHeid)
> pvals.fnc(selfPacedReadingHeid.lmer, nsim=10000)$fi xed

Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 5.244705 4.95947 5.523279 0.0001 0.0000
RTtoPrime 0.119359 0.07438 0.169190 0.0001 0.0000
Conditionheidheid -0.005128 -0.04612 0.034474 0.7878 0.7 991
PC1 0.080316 -0.05934 0.225098 0.2654 0.2729
RTtoPrime:PC1 0.013893 -0.01027 0.037403 0.2504 0.2549
Conditionheidheid:PC1 -0.028234 -0.05575 -0.001841 0.03 90 0.0367

Since PC1 is positively correlated with the latencies to the preceding words,

> cor(selfPacedReadingHeid[,c(19,12:15)])[,"PC1"]
PC1 RT4WordsBack RT3WordsBack RT2WordsBack RT1WordBack

1.0000000 0.7536694 0.7636564 0.7446181 0.7432292

we may interpret PC1 as a measure of the difficulty of the immediately preceding dis-
course. The more difficult the preceding discourse is, the longer the reading latencies for
the target, as witnessed by the positive sign of the coefficient of PC1. The interaction with
Condition shows that if the neologism had been read 40 words earlier in the discourse,
the inhibitory effect of PC1 is attenuated compared to when the base had been read pre-
viously. Inspection of the residuals shows that there still is some lack of goodness of fit
for the longest latencies. The effect of Condition remains stable after removal of out-
liers with high standardized residuals, however, so it is not driven by a few atypical data
points.

> selfPacedReadingHeid.lmer = lmer(RT ˜ RTtoPrime +
+ PC1 * Condition + (1|Subject) + (1|Word),
+ data = selfPacedReadingHeid)
> selfPacedReadingHeid.lmerA = lmer(RT ˜ RTtoPrime +
+ PC1 * Condition + (1|Subject) + (1|Word), data =
+ selfPacedReadingHeid[abs(scale(residuals(selfPaced ReadingHeid.lmer)))
+ < 2.5, ])
> pvals.fnc(selfPacedReadingHeid.lmerA,nsim=10000)$f ixed

Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 5.32173 5.07890 5.559462 0.0001 0.0000
RTtoPrime 0.10532 0.06571 0.145635 0.0001 0.0000
PC1 0.15057 0.13161 0.169758 0.0001 0.0000
Conditionheidheid -0.01810 -0.05148 0.015194 0.2848 0.28 36
PC1:Conditionheidheid -0.02673 -0.04882 -0.005017 0.018 4 0.0175

To conclude, this example shows how an effect that is masked initially by a strong effect
of context can nevertheless be detected, but only by taking into account the correlational
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structure with the reading times of the words in the immediately preceding discourse.
There is no way of doing so with traditional analyses requiring prior averaging over sub-
jects and items.

7.5.3 Visual lexical decision latencies of Dutch eight-year olds

Perdijk et al. [2006] studied the reading skills of eight-year old Dutch children using visual
lexical decision. Key questions addressed by this experiment are whether the morpho-
logical family size measure is predictive for beginning readers, and whether systematic
differences between beginning readers can be traced to lexical predictors such as a word’s
frequency and orthographic length. Perdijk’s data, with the latencies of 59 children to 184
words, are available as the data set beginningReaders . The list of column names

> colnames(beginningReaders)
[1] "Word" "Subject" "LogRT"
[4] "Trial" "OrthLength" "LogFrequency"
[7] "LogFamilySize" "ReadingScore" "ProportionOfErrors "

[10] "PC1" "PC2" "PC3"
[13] "PC4"

includes two random effect variables, Subject and Word, and as the dependent variable
the log-transformed reaction time (LogRT). Predictors are Trial (the rank of a trial in the
experimental list), length in letters (OrthLength ), log frequency in a word frequency list
based on reading materials for children (LogFrequency ), log morphological family size
with counts of words not known to young children removed (LogFamilySize ), by-word
error proportions (ProportionOfErrors ), a score for reading proficiency (Reading
Score ), and four principal components orthogonalizing the reaction times to the preced-
ing four trials. We centralize OrthLength and LogFrequency because, as we shall see
shortly, by-subject random slopes are required for these predictors and we want to avoid
running into spurious correlation parameters for our random effects.

> beginningReaders$OrthLength = scale(beginningReaders $OrthLength,
+ scale=FALSE)
> beginningReaders$LogFrequency = scale(beginningReade rs$LogFrequency,
+ scale=FALSE)

A first mixed effect model for this data set is

> beginningReaders.lmer = lmer(LogRT ˜ PC1+PC2+PC3 + Readi ngScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilyS ize +
+ (1|Word) + (1 |Subject), data = beginningReaders)
> pvals.fnc(beginningReaders.lmer, nsim = 1000)$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 7.545557 7.547105 7.476803 7.617784 0.001 0.0 000
PC1 0.135777 0.135792 0.129275 0.142626 0.001 0.0000
PC2 0.056464 0.056584 0.047318 0.068183 0.001 0.0000
PC3 -0.027804 -0.027779 -0.039130 -0.017392 0.001 0.0000
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ReadingScore -0.004119 -0.004141 -0.005425 -0.002939 0.0 01 0.0000
OrthLength 0.045510 0.045346 0.036436 0.053244 0.001 0.00 00
I(OrthLenˆ2) -0.004114 -0.004107 -0.007593 -0.001189 0.0 20 0.0165
LogFrequency -0.043652 -0.043798 -0.057531 -0.031607 0.0 01 0.0000
LogFamilySize -0.014483 -0.014721 -0.031604 0.002729 0.0 90 0.0908

We note that there is an effect of family size, facilitatory as expected given previous work,
and significant at the 5% level when evaluated with one-tailed tests.

Of special interest in this data set is the random effects structure. In our initial model,
we included only random intercepts, one for Word and one for Subject . However, in
general, predictors tied to subjects (age, sex, handedness, education level, etc.) may re-
quire by-item random slopes, and predictors related to items (frequency, length, number
of neighbors, etc.) may require by-subject random slopes. For the present example, it
turns out we need by-subject random slopes for word length. These random slopes allow
us to bring into the model that children cope in rather different ways with reading long
words.

> beginningReaders.lmer1 = lmer(LogRT ˜ PC1+PC2+PC3 + Read ingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilyS ize +
+ (1|Word) + (1|Subject)+(0+OrthLength|Subject), beginn ingReaders)
> anova(beginningReaders.lmer1, beginningReaders.lmer )

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
begReaders.lmer 11 6019.1 6095.9 -2998.6
begReaders.lmer1 12 5976.8 6060.5 -2976.4 44.383 1 2.701e- 11
> beginningReaders.lmer2 = lmer(LogRT ˜ PC1+PC2+PC3 + Read ingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilyS ize +
+ (1|Word) + (1|Subject)+(1+OrthLength|Subject), beginn ingReaders)
> anova(beginningReaders.lmer1, beginningReaders.lmer 2)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
begReaders.lmer1 12 5976.8 6060.5 -2976.4
begReaders.lmer2 14 5980.1 6077.8 -2976.0 0.6781 2 0.7125

A similar series of steps shows we also need random slopes for LogFrequency and that
again the correlation parameter can be dispensed with.

> beginningReaders.lmer3 = lmer(LogRT ˜ PC1+PC2+PC3 + Read ingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilyS ize +
+ (1|Word) + (1|Subject)+(0+OrthLength|Subject) +
+ (1+LogFrequency|Subject), data = beginningReaders)
> anova(beginningReaders.lmer1, beginningReaders.lmer 3)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
begReaders.lmer1 12 5976.8 6060.5 -2976.4
begReaders.lmer3 15 5962.1 6066.8 -2966.1 20.647 3 0.00012 46
> beginningReaders.lmer4 = lmer(LogRT ˜ PC1+PC2+PC3 + Read ingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilyS ize +
+ (1|Word) + (1|Subject)+(0+OrthLength|Subject) +
+ (0+LogFrequency|Subject), data = beginningReaders)
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> anova(beginningReaders.lmer4, beginningReaders.lmer 3)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

begReaders.lmer4 13 5961.1 6051.8 -2967.6
begReaders.lmer3 15 5962.1 6066.8 -2966.1 2.9944 2 0.2238
> anova(beginningReaders.lmer4, beginningReaders.lmer 1)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
begReaders.lmer1 12 5976.8 6060.5 -2976.4
begReaders.lmer4 13 5961.1 6051.8 -2967.6 17.652 1 2.652e- 05

After removal of outliers and refitting, we make sure that the random effects parameters
have sensible values and have properly constrained confidence intervals.

> beginningReaders.lmer4a = lmer(LogRT ˜ PC1+PC2+PC3 + Rea dingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilyS ize +
+ (1|Word) + (1|Subject)+(0+OrthLength|Subject) +
+ (0+LogFrequency|Subject), data = beginningReaders,
+ subset=abs(scale(resid(beginningReaders.lmer4)))<2 .5)
> x = pvals.fnc(beginningReaders.lmer4a, nsim=10000)
> x$random

MCMCmean HPD95lower HPD95upper
sigma 0.30937 0.30436 0.31441
Word.(In) 0.06650 0.05690 0.07781
Sbjc.(In) 0.11441 0.09364 0.13845
Sbjc.OrtL 0.03182 0.02443 0.04168
Sbjc.LgFr 0.03191 0.02258 0.04416
deviance 4327.23205 4315.36462 4340.66993

Without linear mixed-effects models, it would be a formidable task to trace differential
effects for frequency and word length such as observed for the children in this reading
experiment in a principled way. Estimates of by-subject differences, which in actual tests
evaluating reading skills in schools may be quite important, would be suboptimal with-
out shrinkage (see Figure 7.10).

Finally, we examine the table of coefficients. The morphological family size effect
(LogFamilySize ) is now significant at the 5% level (one-tailed tests) according to both
the MCMC p-value and the p-value based on the t statistic.

> x = pvals.fnc(beginningReaders.lmer4a, nsim = 10000, wit hMCMC=TRUE)
> x$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 7.584160 7.584132 7.505149 7.659856 0.0001 0. 0000
PC1 0.127112 0.127097 0.120748 0.133404 0.0001 0.0000
PC2 0.050347 0.050476 0.040787 0.059970 0.0001 0.0000
PC3 -0.024551 -0.024680 -0.034846 -0.014469 0.0001 0.0000
ReadingScore -0.004687 -0.004687 -0.006160 -0.003246 0.0 001 0.0000
OrthLength 0.048587 0.048587 0.036764 0.060110 0.0001 0.0 000
I(OrthLenhˆ2) -0.004540 -0.004530 -0.007847 -0.001198 0. 0084 0.0076
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Figure 7.10: Shrinkage for the by-subject coefficients for frequency and intercept:
lmList() (circles, within-group estimates) versus lmer() (+ symbols). Solid grey lines
denote the population means.

LogFrequency -0.046391 -0.046363 -0.061484 -0.030940 0.0 001 0.0000
LogFamSize -0.015548 -0.015412 -0.031732 0.001559 0.0756 0.0669

It is often useful to plot the fixed effects, but as yet there is no general plot method for
lmer objects. As a consequence, we have to make the plots ourselves. As a first step, we
extract the coefficients with fixef() .

> coefs = fixef(beginningReaders.lmer4a)
> coefs

(Intercept) PC1 PC2 PC3 ReadingScore

318



D
R

A
FT

7.584160135 0.127111560 0.050346964 -0.024551161 -0.004 687245
OrthLength I(OrthLengthˆ2) LogFrequency LogFamilySize

0.048587098 -0.004540186 -0.046390578 -0.015547652

We also attach the data frame.: attaching a data frame makes the columns of the data
frame immediately available.

> attach(beginningReaders)

Next, we select the ranges for each of the predictors for which we want to graph the
partial effect on the reaction times, using the max() and min() functions, and feed these
extreme values to seq() with the specification that it should create a vector with 40
equally spaced points in the range specified, except for the discrete length variable.

> pc1 = seq(min(PC1), max(PC1), length = 40)
> pc2 = seq(min(PC2), max(PC2), length = 40)
> pc3 = seq(min(PC3), max(PC3), length = 40)
> score = seq(min(ReadingScore), max(ReadingScore), leng th = 40)
> freq = seq(min(LogFrequency), max(LogFrequency), lengt h = 40)
> olength = sort(unique(OrthLength))
> famsize = seq(min(LogFamilySize), max(LogFamilySize), length = 40)

Now consider plotting the partial effect for LogFrequency . We start with the intercept,
and add the product of the coefficient for frequency and the vector of frequencies freq .

> plot(freq, coefs["(Intercept)"] + coefs["LogFrequency "] * freq)

This is sufficient to visualize the shape of the frequency effect, but if we would stop here
the intercept of the regression line would be positioned for words with zero as the value
for all other predictors. This is undesirable, as there are no words with zero length, for
instance. To obtain an intercept that is appropriate for the most typical values of the other
predictors, we adjust the intercept for the effects of the other predictors at their medians.
We therefore define a vector with these adjustments.

> adjustments = c(coefs["PC1"] * median(PC1),
+ coefs["PC2"] * median(PC2),
+ coefs["PC3"] * median(PC3),
+ coefs["ReadingScore"] * median(ReadingScore),
+ coefs["OrthLength"] * median(OrthLength) +
+ coefs["I(OrthLengthˆ2)"] * median(OrthLength)ˆ2,
+ coefs["LogFrequency"] * median(LogFrequency),
+ coefs["LogFamilySize"] * median(LogFamilySize))
> adjustments

PC1 PC2 PC3 ReadingScore
2.653726e-02 -4.719135e-04 3.194531e-05 -2.192327e-01

OrthLength LogFrequency LogFamilySize
1.101314e-02 3.487795e-03 -2.105395e-02
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Figure 7.11: Partial effects of frequency, word length and family size for Dutch 8-year olds
in visual lexical decision. Length in letters and Log Frequency have been centralized.

The required adjustment to the intercept for the partial effect of frequency is the sum of all
these individual adjustments, with the exception of the adjustment for frequency itself,
the sixth element of the vector of adjustments.

> sum(adjustments[-6])
[1] -0.2031762

We combine all bits and pieces into a data frame
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> dfr = data.frame(
+ x =
+ c(pc1, pc2, pc3, score, olength, freq, famsize),
+ y =
+ c(coefs["(Intercept)"] + coefs["PC1"] * pc1 + sum(adjustments[-1]),
+ coefs["(Intercept)"] + coefs["PC2"] * pc2 + sum(adjustments[-2]),
+ coefs["(Intercept)"] + coefs["PC3"] * pc3 + sum(adjustments[-3]),
+ coefs["(Intercept)"] + coefs["ReadingScore"] * score +
+ sum(adjustments[-4]),
+ coefs["(Intercept)"] + coefs["OrthLength"] * olength +
+ coefs["I(OrthLengthˆ2)"] * olengthˆ2 + sum(adjustments[-5]),
+ coefs["(Intercept)"] + coefs["LogFrequency"] * freq +
+ sum(adjustments[-6]),
+ coefs["(Intercept)"] + coefs["LogFamilySize"] * famsize +
+ sum(adjustments[-7])),
+ which = # the grouping factor for xyplot()
+ c(rep("PC1", length(pc1)), rep("PC2", length(pc2)),
+ rep("PC3", length(pc3)), rep("Reading Score", length(s core)),
+ rep("Length in Letters", length(olength)),
+ rep("Log Frequency", length(freq)), rep("Log Family Siz e",
+ length(famsize))))

and produce Figure 7.11 with xyplot() .

> xyplot(y˜x|which, data=dfr, ylim=c(6.5,8.0), scales=" free",
+ as.table = TRUE, xlab=" ", ylab="Log RT",
+ panel = function(x, y) panel.lines(x,y))

The effects for frequency, word length, and reading score are large compared to the effect
of family size, but small compared to that of PC1. Note that the non-linear effect for length
suggests a ceiling effect — beginning readers have difficulties with longer word lengths,
but by a length of 9, reaction times are just about as slow as they can be. We should keep
in mind that we imposed a functional form on the effect of length by using a quadratic
polynomial. Once predicted values can be obtained with lmer objects, however, more
flexible modeling tools such as restricted cubic splines should be considered instead.

7.5.4 Mixed-effect models in corpus linguistics

The final example of a mixed-effects model comes from corpus linguistics. Keune et al.
[2005] studied the frequency of use of words ending in the Dutch suffix -lijk (compare
-ly in English) in written Dutch in the Netherlands and in Flanders. The data, avail-
able as writtenVariationLijk , bring together counts in seven newspapers, four from
Flanders and three from the Netherlands, representing three global registers (Regional ,
National , and Quality newspapers). From each of these newspapers, the first 1.5 mil-
lion words available in the condiv corpus [Grondelaers et al., 2000] were selected. The
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frequencies for the 80 most frequent words in -lijk are available in the column labeled
Count .

> writtenVariationLijk[1:4,]
Corpus Word Count Country Register

1 belang aantrekkelijk 26 Flanders Regional
2 gazet aantrekkelijk 17 Flanders Regional
3 laatnieu aantrekkelijk 19 Flanders National
4 limburg aantrekkelijk 33 Netherlands Regional

There are two sets of questions that we want to address. First of all, are words in -lijk used
more often in the Netherlands, or more often in Flanders? Are there similar differences
in their use across written registers? These are questions that concern the presence or
absence of main effects of Country and Register , as well as their interaction. Second,
to what extent might main effects be modulated by differences that are specific to the
individual words in -lijk? Questions of this kind concern the random effects of Word.

We analyse the data with a generalized mixed-effects model, but we do not use the
BINOMIAL DISTRIBUTION, which is appropriate for counts of successes and failures. In-
stead, we use the POISSON DISTRIBUTION (with a log link function), which is appropriate
for counts of events in a fixed time window. Here, the fixed time window is 1.5 million
words. Note that a count of, e.g., 26 occurrences for aantrekkelijk in a subcorpus of 1.5
million words defines the rate at which this word appears in that subcorpus.

We begin with a simple model with only random intercepts,

> writtenVariationLijk.lmer = lmer(Count ˜ Country * Register + (1|Word),
+ data = writtenVariationLijk, family = "poisson")

and then fit a more complex model with random slopes for Country :

> writtenVariationLijk.lmer1 = lmer(Count ˜ Country * Register +
+ (1+Country|Word), data = writtenVariationLijk,
+ family = "poisson")

A likelihood ratio test shows that adding random slopes is fully justified, and the sum-
mary of the model provides reasonable estimates.

> anova(writtenVariationLijk.lmer, writtenVariationLi jk.lmer1)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

writVarLijk.lmer 7 4505.6 4535.9 -2245.8
writVarLijk.lmer1 9 2856.5 2895.5 -1419.3 1653.1 2 < 2.2e-1 6
> print(writtenVariationLijk.lmer1, corr=FALSE)
Random effects:

Groups Name Variance Std.Dev. Corr
Word (Intercept) 0.87432 0.93505

CountryNetherlands 0.40269 0.63458 -0.356
number of obs: 560, groups: Word, 80
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Estimated scale (compare to 1 ) 1.948123

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.62081 0.10576 34.24 < 2e-16
CountryNetherlands 0.28381 0.07421 3.82 0.000131
RegisterQuality -0.04582 0.01992 -2.30 0.021447
RegisterRegional 0.14419 0.01667 8.65 < 2e-16
CountryNeth:RegisterQuality 0.02022 0.02649 0.76 0.4452 75
CountryNeth:RegisterRegional -0.22597 0.02432 -9.29 < 2e -16

However, the choice of the Poisson distribution entails the assumption that the variance
of the errors increases with the mean. The ratio of the two should be 1. The estimated
actual ratio for our data, listed as Estimated scale is 1.9, so we are running the risk
of overdispersion. There are several ways in which this lack of goodness of fit can be
addressed. One option is to allow the variance of the errors to increase with the square
of the mean, instead of with the mean, retaining the log link function to constrain the
predicted counts to be non-negative.

> writtenVariationLijk.lmer1A = lmer(Count ˜ Country * Register +
+ (1|Word) + (1+Country|Word), data = writtenVariationLij k,
+ family = quasi(link = "log", variance = muˆ2))

We inspect the coefficients with pvals.fnc() . As Markov Chain Monte Carlo sampling
is not yet implemented for generalized linear mixed models, p-values are based on the
t-statistic.

> pvals.fnc(writtenVariationLijk.lmer1A)
Estimate Pr(>|t|)

(Intercept) 3.5683284 0.0000
CountryNetherlands 0.3867314 0.0000
RegisterQuality 0.1518658 0.0825
RegisterRegional 0.2493743 0.0010
CountryNetherlands:RegisterQuality -0.1162445 0.3469
CountryNetherlands:RegisterRegional -0.3455769 0.0029

An alternative for count data is to apply either a square root transformation or a log trans-
formation. We select the square root transformation here, leaving the log transformation
as an exercise, and now fit a straightforward linear mixed-effect model.

> writtenVariationLijk.lmer1B = lmer(sqrt(Count) ˜ Count ry * Register +
+ (1+Country|Word), data = writtenVariationLijk)
> pvals.fnc(writtenVariationLijk.lmer1B)$fixed

Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 6.5878 5.60904 7.5638 0.0001 0.0000
CountryNetherlands 1.2284 0.69321 1.7596 0.0001 0.0000
RegisterQuality 0.3026 -0.04734 0.6415 0.0872 0.0885

323 D
R

A
FT

RegisterRegional 0.7884 0.49056 1.0944 0.0001 0.0000
CountryNeth:RegQuality -0.2273 -0.74825 0.2355 0.3506 0. 3652
CountryNeth:RegRegional -1.1157 -1.58444 -0.6503 0.0001 0.0000

Since the two alternative models support the presence of the same main effects and their
interaction, we return to the original Poisson model. We add the fitted counts to the data,
and compare them with the observed counts for the adjective aantrekkelijk.

> writtenVariationLijk$fitted = exp(fitted(writtenVari ationLijk.lmer1))
> cor(writtenVariationLijk$fitted, writtenVariationLi jk$Count)ˆ2
[1] 0.9709

It is clear that the fit is good.
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Figure 7.12: The BLUPs for intercept and CountryNetherlands in the Poisson model fit
to counts of words with the Dutch suffix -lijk in seven Dutch and Flemish newspapers.

We can visualize how the coefficients of individual words compare to the population
means by plotting pairs of random effects. For instance, suppose we want to compare
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differences in the frequencies of the words as they are used in the Dutch and Flemish
national newspapers. Since the national newspapers represent the reference level, this
comparison can be carried out graphically by plotting the BLUPs for the intercept against
the BLUPs for CountryNetherlands , as shown in Figure 7.12. One can read off the
scatterplot that mogelijk (’possible’) and duidelijk (’clear’) are words that appear more often
in the Flemish newspaper (they are at the far right of the plot), whereas landelijk (’country-
specific’) and kennelijk (’apparently’) are more fashionable in the corresponding Dutch
newspaper (they are at the top of the graph).

> ranefs = ranef(writtenVariationLijk.lmer1)$Word
> plot(ranefs$"(Intercept)", ranefs$CountryNetherland s, type="n")
> text(ranefs$"(Intercept)", ranefs$CountryNetherland s,
+ rownames(ranefs), cex = 0.8)

When we are dealing with random slopes for a factor, a different parameterization is
available that assumes (i) that the adjustments for different levels are uncorrelated and
(ii) that the variances for the different factor levels are identical. This is often useful for
factors with more than two levels. We illustrate it here for the two-level factor Country .

> writtenVariationLijk.lmer2 = lmer(Count ˜ Country * Register +
+ (1|Word)+(1|Country:Word), writtenVariationLijk, fam ily="poisson")
> writtenVariationLijk.lmer2
Random effects:

Groups Name Variance Std.Dev.
Country:Word (Intercept) 0.20135 0.44872
Word (Intercept) 0.66323 0.81439

number of obs: 560, groups: Country:Word, 160; Word, 80

The BLUPs for word now specify adjustments for the words with respect to their popula-
tion average,

> words = ranef(writtenVariationLijk.lmer2)[[2]]
> head(words, 3)

(Intercept)
aantrekkelijk -0.3008298
aanvankelijk 0.8413145
aanzienlijk 0.1609281

and the BLUPs for Country now specify independent country-specific adjustments.

> countries = ranef(writtenVariationLijk.lmer2)[[1]]
> head(countries,3)

(Intercept)
Flanders:aantrekkelijk -0.24646081
Flanders:aanvankelijk -0.01005619
Flanders:aanzienlijk -0.25390726
> tail(countries, 3)

(Intercept)
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Figure 7.13: By-word adjustments for Flanders and The Netherlands according to a
mixed-effects Poisson model with equal variances for the random effects for Country .
Words with positive scores are used more often than the population average, words above
the diagonal are used preferentially in Flanders.

Netherlands:werkelijk 0.13987759
Netherlands:wetenschappelijk -0.09695836
Netherlands:wettelijk -0.07178403

We can combine these BLUPs to obtain by-word adjustments for Flanders and for the
Netherlands. When plotted (see Figure 7.13) they provide an intuitive overview of the
country-specific preferences.

> countries$which = factor(substr(rownames(countries), 1,4))
> countries$words = rep(rownames(words),2)
> countries$intWords = rep(words[,1], 2)
> countries$ranef = countries$"(Intercept)" + countries$ intWords
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> vl = countries[countries$which=="Flan",]
> nl = countries[countries$which!="Flan",]
> plot(nl$ranef, vl$ranef, type="n")
> text(nl$ranef, vl$ranef, nl$words, cex=0.7)
> abline(0, 1, col="grey")

Mixed-effect models thus provide a useful tool side by side with principal components
analysis and correspondence analysis for the joint study of the textual frequencies of a
large number of words. They offer the advantage that the significance of main effects and
interactions can be ascertained directly, while offering insight into the specific properties
of the individual words through their BLUPs.

7.6 Exercises

1. Consider our final model for the visual lexical decision data lexdec3.lmerE , and
test whether subjects differ in their sensitivity to word length. Answering this ex-
ercise involves three steps. First, recreate lexdec3 and make sure that Trial and
also Length are centered. Then recreate lexdec3.lmerE with the centered ver-
sion of word length as predictor. Second, add Length as a random slope for subject,
once without and once with a correlation parameter for the random intercepts and
random slopes for length. Third, use the anova() function to select the appropriate
model.

2. Above, we modeled the reaction times of young children to Dutch words with a
mixed-effects model with both Subject and Word as random effect.

> beginningReaders.lmer4 = lmer(LogRT ˜ PC1 + PC2 + PC3 +
+ ReadingScore + OrthLength + I(OrthLengthˆ2) + LogFrequen cy +
+ LogFamilySize + (1|Word) + (1|Subject)+(0+LogFrequency |Subject) +
+ (0+OrthLength|Subject), data = beginningReaders)

Show that the presence of the random effect for Word is justified by first fitting a
model with the same fixed effects but without Word as random effect, followed by
a likelihood ratio test comparing beginningReaders.lmer4 with this new, more
parsimonious model. Next, consider whether random slopes are required for PC1.
Do not include parameters for correlations with other random slopes.

3. Investigate whether the following predictors should be added to the model for the
self-paced reading latencies (reading.lmerA ): subjective frequency rating (Rating ),
word length (LengthInLetters ) and the number of synsets (NumberOfSynsets ).
The starting model of this exercise is obtained with the following lines of code.

> selfPacedReadingHeid =
+ selfPacedReadingHeid[selfPacedReadingHeid$RT > 5 &
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+ selfPacedReadingHeid$RT < 7.2,]
> x = selfPacedReadingHeid[,12:15]
> x.pr = prcomp(x, center = T, scale = T)
> selfPacedReadingHeid$PC1 = x.pr$x[,1]
> selfPacedReadingHeid$PC2 = x.pr$x[,2]
> selfPacedReadingHeid$PC3 = x.pr$x[,3]
> selfPacedReadingHeid.lmer = lmer(RT ˜ RTtoPrime +
+ LengthInLetters + PC1 * Condition + (1|Subject) + (1|Word),
+ data = selfPacedReadingHeid)

4. Use the writtenVariationLijk data set to fit a mixed-effect model with the log-
arithm of Count as the dependent variable, with Country and Register and their
interaction as fixed effect predictors, and with random intercepts for Word and by-
word random slopes for Country . Consider the residuals, remove outliers, refit the
model, and inspect the residuals of the trimmed model.

5. We return to the data on the use of word order and ergative case marking in Laja-
manu Warlpiri for which the first exercise of Chapter 2 considered a mosaic plot.
Use a mixed-effects logistic regression model with Speaker and Text as random
effects, CaseMarking (ergative versus other) as dependent variable, and as predic-
tors AnimacyOfSubject , AnimacyOfObject , WordOrder (whether the subject
is initial), and AgeGroup (child versus adult) to study how children and adults
use the ergative case. Begin with a simple main effects model with all predic-
tors included. (The warning arises due to data sparseness.) Then remove the two
object-related predictors, and refit. Finally include an interaction of AgeGroup by
WordOrder . The data set is available as warlpiri .

6. In Chapter 4 (section 4.4.1) we fitted a model of covariance to size ratings obtained
by averaging over subjects. The question addressed here is whether the results of
this by-item analysis are supported by a mixed-effects model. The data are avail-
able as the data set sizeRatings . Fit a model with Subject and Word as crossed
random effects, with Rating as dependent variable, and with the MeanFamiliar-
ity ratings for the words and Class as predictors. Also include two variables
that provide information on the subjects: Language , which specifies whether their
native language is English, and Naive , which specifies whether the subjects were
informed about the purpose of the experiment. Include interactions of Class by
Naive and of Language by the linear and quadratic terms of MeanFamiliarity .
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Appendix A

Solutions to the exercises

1.1

> spanishMeta
Author YearOfBirth TextName PubDate Nwords FullName

1 C 1916 X14458gll 1983 2972 Cela
2 C 1916 X14459gll 1951 3040 Cela
...
> colnames(spanishMeta)
[1] "Author" "YearOfBirth" "TextName" "PubDate" "Nwords"
[6] "FullName"
> nrow(spanishMeta)
[1] 15

1.2

> xtabs(˜ Author, data=spanishMeta)
Author
C M V
5 5 5

The means can be obtained in two ways:

> aggregate(spanishMeta$PubDate, list(spanishMeta$Aut hor), mean)
Group.1 x

1 C 1956.0
2 M 1990.2
3 V 1974.6
> tapply(spanishMeta$PubDate, list(spanishMeta$Author ), mean)

C M V
1956.0 1990.2 1974.6

1.3

> spanishMeta[order(spanishMeta$YearOfBirth, spanishM eta$Nwords),]
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1.4

> v = spanishMeta$PubDate
> sort(v)

[1] 1942 1948 1951 1956 1963 1965 1977 1981 1982 1983
[11] 1986 1987 1989 1992 2002
> ?sort
> sort(v, decreasing=T)

[1] 2002 1992 1989 1987 1986 1983 1982 1981 1977 1965
[11] 1963 1956 1951 1948 1942
> sort(rownames(spanishMeta))

[1] "1" "10" "11" "12" "13" "14" "15" "2" "3" "4"
[11] "5" "6" "7" "8" "9"

1.5

> spanishMeta[spanishMeta$PubDate < 1980, ]

1.6

> mean(spanishMeta$PubDate)
[1] 1973.6
> sum(spanishMeta$PubDate)/length(spanishMeta$PubDat e)
[1] 1973.6

1.7

> spanishMeta = merge(spanishMeta, composer, by.x="FullN ame",
+ by.y="Author")

2.1

> warlpiri.xtabs= xtabs( ˜ CaseMarking + AnimacyOfSubject + AgeGroup +
+ WordOrder, data = warlpiri)
> mosaicplot(warlpiri.xtabs)

Figure A.1 reveals an asymmetry in how frequently adults and children use ergative case
marking across word orders. For instance, in subject-initial sentences, adults are more
likely to use ergative case marking for animate subjects than children.
2.2 (Figure A.2)

> par(mfrow = c(1, 2))
> plot(exp(heid2$BaseFrequency), exp(heid2$MeanRT))
> plot(heid2$BaseFrequency, heid2$MeanRT)
> par(mfrow=c(1, 1))

2.3 (Figure A.3)
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Figure A.1: Mosaic plot for the use of ergative case marking in Lajamanu Warlpiri, cross-
classified by the animacy of the subject (left), word order (left), age group (top) and case-
marking (top).
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Figure A.2: Scatterplots of reaction time in visual lexical decision by base frequency for
neologisms in -heid without (left) and with (right) logarithmically transformed variables.
Note that without the log transformation, the pattern in the data is dominated by just one
word with a very high base frequency.

> plot(log(ranks), log(moby.table),
+ xlab = "log rank", ylab = "log frequency")

2.4

> xylowess.fnc(RT ˜ Trial | Subject, data = lexdec, ylab="lo g RT")

Figure A.4 suggests that subject T2 speeds up as the experiment proceeds, possibly due to
within-experiment learning of how to do lexical decision efficiently. Subject Dstarted out
with fast response latencies, but slowed down later in the experiment, possibly because
of fatigue.

2.5

> library(MASS)
> par(mfrow = c(1, 2))
> truehist(english$RTnaming)
> plot(density(english$RTnaming))
> par(mfrow = c(1, 1))
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Figure A.3: Scatterplot for frequency and rank in the double logarithmic plane for
Melville’s Moby Dick. Except for the 6 highest-frequency words, the pattern is reason-
ably linear, as expected on the basis of Zipf’s law.

The histogram and the density of Figure A.5 show two separate peaks or MODES. This
BIMODAL distribution consists of two almost separate distributions, one for the younger
subjects, and one for the older subjects.

> library(lattice)
> bwplot(RTnaming ˜ Voice | AgeSubject, data = english)

The trellis boxplot (not shown) illustrates that the distribution of longer latencies belongs
to the older subjects. The boxplot also visualizes the effect of the differential sensitivity
of the voicekey for how naming latencies are registered: Voiced phonemes are registered
earlier.

3.1

> wonderland$hare = wonderland$word=="hare" #March Hare
> countOfHare = tapply(wonderland$hare, wonderland$chun k, sum)
> countOfHare.tab = xtabs(˜hare)
> wonderland$very = wonderland$word=="very"
> countOfVery = tapply(wonderland$very, wonderland$chun k, sum)
> countOfVery.tab = xtabs(˜very)
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Figure A.4: Trellis scatterplot with smoother for RT as a function of Trial. Each panel
represents one subject.

3.2

> plot(1:40, countOfAlice, type = "h")
> plot(1:40, countOfVery, type = "h")
> plot(1:40, countOfHare, type = "h")

The three leftmost panels in Figure A.6 illustrate that Alice and very occur relatively uni-
formly through the text, but that hare occurs only in the second half of the text (in the
collocate March Hare), and even there it is bursty instead of being relatively evenly dis-
tributed across the chunks.

3.3
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Figure A.5: Histogram and density of the naming latencies to 2197 English monomor-
phemic monosyllabic words, collected for two subject populations (old and young speak-
ers).

> plot(as.numeric(names(countOfAlice.tab)), countOfAl ice.tab/
+ sum(countOfAlice.tab), type = "h", xlim = c(0,15), ylim = c (0,0.9))
> plot(as.numeric(names(countOfVery.tab)), countOfVer y.tab/
+ sum(countOfVery.tab), type = "h", xlim = c(0,15), ylim = c( 0,0.4))
> plot(as.numeric(names(countOfHare.tab)), countOfHar e.tab/
+ sum(countOfHare.tab), type = "h", xlim = c(0,15), ylim = c( 0,0.9))

See the three center panels in Figure A.6.

3.4

> plot(0:15, dpois(0:15, mean(countOfAlice)), type = "h",
+ xlim = c(0, 15), ylim = c(0, 0.9))
> plot(0:15, dpois(0:15, mean(countOfVery)), type = "h",
+ xlim = c(0, 15), ylim = c(0, 0.4))
> plot(0:15, dpois(0:15, mean(countOfHare)), type = "h",
+ xlim = c(0, 15), ylim = c(0, 0.9))

Note that for Alice and very, the Poisson densities might be smoothed versions of the
sample densities. However, for hare the sample densities are very unevenly distributed
compared to the Poisson density. This is not surprising given that hare is a bursty word.
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Figure A.6: Counts of the occurrences of Alice, hare and very across text chunks (left),
sample densities (second column), the corresponding Poisson densities (third column),
and quantile-quantile plots (right).
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3.5

> plot(qpois(1:20 / 20, mean(countOfAlice)), quantile(co untOfAlice,
+ 1:20 / 20), xlab="theoretical quantiles", ylab = "sample q uantiles")
> plot(qpois(1:20 / 20, mean(countOfVery)), quantile(cou ntOfVery,
+ 1:20 / 20), xlab="theoretical quantiles", ylab = "sample q uantiles")
> plot(qpois(1:20 / 20, mean(countOfHare)), quantile(cou ntOfHare,
+ 1:20 / 20), xlab="theoretical quantiles", ylab = "sample q uantiles")

The quantile-quantile plots are roughly linear for Alice and very, and therefore support
the possibility that Alice and very are Poisson-distributed. By contrast, hare clearly does
not follow a Poisson distribution.

3.6

> 1 - ppois(10, 5)
[1] 0.01369527

As 5 is a much better (but still poor) estimate of λ (the mean across chunks, 9.4) than 3,
we expect this probability to be superior than the probability

> 1 - ppois(10, 9.425)
[1] 0.3454281

That this is a good estimate of the actual proportion of chunks with 10 or more occurrences
is verified with the quantile() function, supplied with the complementary proportion.

> quantile(countOfAlice, 0.6545719)
65.45719%

10.52830

4.1

> chisq.test(verbs.xtabs)

Pearson’s Chi-squared test with Yates’ continuity correct ion

data: verbs.xtabs
X-squared = 13.9948, df = 1, p-value = 0.0001833

4.2 We first estimate the rate at which het appears in chunks of 1000 words.

> lambda = mean(havelaar$Frequency)

Given lambda , we apply a Kolmogorov-Smirnov test, with the vector of frequencies as
its first argument, the distribution function ppois() as its second argument, and the
Poisson parameter lambda as its third argument.
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> ks.test(havelaar$Frequency, "ppois", lambda)

One-sample Kolmogorov-Smirnov test

D = 0.1198, p-value = 0.1164

Warning message: cannot compute correct p-values with ties

The large p-value suggests that there is no reason to suppose that the frequency of ’het’
does not follow a Poisson distribution. However, if we resolve the ties using jitter() ,
we do find evidence against het following a Poisson distribution.

> ks.test(jitter(havelaar$Frequency), "ppois", lambda)
D = 0.1738, p-value = 0.004389

4.3 Density plots (Figure A.7 show that DurationOfPrefix is roughly symmetrically
distributed, but that Frequency is roughly symmetric only after a log transform.

> par(mfrow = c(1, 3), pty = "s")
> plot(density(durationsGe$DurationOfPrefix), main="d uration")
> plot(density(durationsGe$Frequency), main = "frequenc y")
> plot(density(log(durationsGe$Frequency)), main = "log frequency")
> par(mfrow = c(1, 1), pty = "m")

Both distributions have slightly thicker right tails, so it does not come as a surprise that
the Shapiro-Wilk test of normality is significant.

> shapiro.test(durationsGe$DurationOfPrefix)
...
W = 0.9633, p-value = 7.37e-09

> shapiro.test(log(ge$Frequency))
...
W = 0.9796, p-value = 9.981e-06

There is sufficient symmetry to run a linear model, although we should keep an eye open
for the harmful effect of outliers (see Chapter 6 for further discussion).

> ge.lm = lm(DurationOfPrefix ˜ log(Frequency + 1), data = du rationsGe)
> summary(ge.lm)

Call:
lm(formula = DurationOfPrefix ˜ log(Frequency + 1), data = g e)

Residuals:
Min 1Q Median 3Q Max

-0.101404 -0.031994 -0.006107 0.027866 0.185379
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.139883 0.005028 27.82 < 2e-16
log(Frequency + 1) -0.004658 0.001429 -3.26 0.00121
---

Residual standard error: 0.04689 on 426 degrees of freedom
Multiple R-Squared: 0.02433, Adjusted R-squared: 0.02204
F-statistic: 10.62 on 1 and 426 DF, p-value: 0.001205

We observe significant predictivity for frequency: More frequent words tend to have past
participles with a shorter prefix. The R-squared, however, is only a mere 2%. On the one
hand, this is not surprising, as the model neglects many other potential predictors such
as speech rate. On the other hand, these data do not suggest that the quality of a speech
synthesis system would benefit greatly by making the duration of the prefix depend on
word frequency.
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Figure A.7: Densities for the duration of the Dutch prefix ge- and the frequencies of its
carrier words.

4.4 A model with an interaction with the quadratic term is specified as follows:
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> ratings.lm = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2) * Class, data = ratings)

Inspection of the summary

> summary(ratings.lm)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.16838 0.59476 7.008 8.95e-10
meanFamiliarity -0.48424 0.32304 -1.499 0.1381
Classplant 1.02187 1.86988 0.546 0.5864
I(meanFamiliarityˆ2) 0.09049 0.04168 2.171 0.0331
meanFamiliarity:Classplant -1.18747 0.87990 -1.350 0.18 12
Classplant:I(meanFamiliarityˆ2) 0.11254 0.10087 1.116 0 .2681
...

shows that this interaction is not significant. Note that by including one superfluous in-
teraction the significance of the majority of other predictors in the model is masked.

4.5 Given the objects alice , very and hare as created in the exercise for Chapter 2, we
carry out the Kolmogorov-Smirnov tests as follows.

> ks.test(countOfAlice, ppois, mean(countOfAlice))
D = 0.1515, p-value = 0.3174
> ks.test(countOfVery, ppois, mean(countOfVery))
D = 0.192, p-value = 0.1046
> ks.test(countOfHare, ppois, mean(countOfHare))
D = 0.4607, p-value = 8.449e-08

There is no evidence that Alice and very do not follow a Poisson distribution. Hare, how-
ever, is clearly not Poisson-distributed.

4.6 We have the choice between using lm() for a one-way analysis of variance,

> english.lm = lm(RTlexdec ˜ AgeSubject, data = english)
> summary(english.lm)$coef
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.493500 0.001069 6073.7 <2e-16
AgeSubjectyoung -0.341989 0.001512 -226.2 <2e-16

or between using the aov() function:

> summary(aov(RTnaming ˜ AgeSubject, data = english))
Df Sum Sq Mean Sq F value Pr(>F)

AgeSubject 1 133.564 133.564 51161 < 2.2e-16
Residuals 4566 11.920 0.003

340



D
R

A
FT

The lm() function is more useful, because it informs us that the difference between the
two group means is −0.34, and that the group mean for the old subjects is 6.49. To obtain
the group mean for the young subjects, we subtract 0.34:

> 6.493500 - 0.341989
[1] 6.151511

4.7 We use lm() for the analysis of covariance.

> summary(lm(DurationPrefixNasal ˜ PlosivePresent + Freq uency,
+ data = durationsOnt, subset = DurationPrefixNasal > 0))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0723609 0.0037796 19.145 < 2e-16
PlosivePresentyes -0.0218871 0.0034788 -6.292 9.88e-09
log(Frequency) -0.0016590 0.0009575 -1.733 0.0864
---
Residual standard error: 0.0155 on 94 degrees of freedom
Multiple R-Squared: 0.3194, Adjusted R-squared: 0.305
F-statistic: 22.06 on 2 and 94 DF, p-value: 1.395e-08

The effect of frequency is in the expected direction: a greater frequency of use implies
greater reduction. Hence, we are allowed to use a one-tailed test, and accept it as a sig-
nificant predictor. If the plosive is present, the nasal is realized shorter than when it is
absent, which is suggestive of a compensatory lengthening effect.

5.1

> dat = affixProductivity[affixProductivity$Registers = = "L", ]
> dat.pr = prcomp(dat[ , 1:27], center = T, scale = T)
> summary(dat.pr)
Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 2.030 1.768 1.635 1.5789 1.5271
Proportion of Variance 0.153 0.116 0.099 0.0923 0.0864
Cumulative Proportion 0.153 0.268 0.367 0.4597 0.5461

We visually inspect the first 4 PCs with pairscor.fnc() .

> pairscor.fnc(data.frame(dat.pr$x[,1:4], birth = dat$B irth))

The result is shown in Figure A.8. Date of birth is significantly correlated with PC2, also
when Milton and Startrek are removed from the data set.

> dat2 = dat[-c(21, 18),]
> dat2.pr = prcomp(dat2[ , 1:27], center = T, scale = T)
> cor.test(dat2.pr$x[,2], dat2$Birth)
t = -4.3786, df = 24, p-value = 0.0002017

cor
-0.6663968
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Figure A.8: Scatterplot matrix for the correlations of the principal components for 27 texts
in productivity space. Note that all PCs are pairwise uncorrelated, as expected, and that
PC2 is significantly correlated with year of birth.
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A biplot (Figure A.9) suggests that the early authors used -able, -est and -be more produc-
tively, and that the late authors used -ize and -less more productively.

> biplot(dat2.pr, var.axes = F)
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Figure A.9: Biplot for texts and affixes, the second principal component captures year of
birth.

5.2

> lexicalMeasures.cor = cor(lexicalMeasures[, -1], metho d = "spearman")ˆ2
> lexicalMeasures.scale = cmdscale(dist(lexicalMeasure s.cor), k = 2)

To plot the two kinds of measures in red and blue, we define a vector with the semantic
measures, and take advantage of the subscripting capacities of R.

> semanticvars = c("Vf", "Dent", "NsyC", "NsyS", "CelS", "F dif",
+ "NVratio", "Ient")
> plot(lexicalMeasures.scale[,c(1,2)],type="n")
> text(lexicalMeasures.scale[,c(1,2)], rownames(lexic alMeasures.scale),
+ col=c("red","blue")[(rownames(lexicalMeasures.scal e) %in% semanticvars)+
+ 1])
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Figure A.10: Multidimensional scaling for the correlation matrix of lexical measures for
2233 English monomorphemic and monosyllabic words. Semantic measures are shown
in blue, non-semantic measures are depicted in red.

5.3

> finalDevoicing[1:3,]
Word Onset1Type Onset2Type VowelType ConsonantType

1 madelief None Sonorant iuy None
2 boes None Obstruent iuy None
3 accuraat None Sonorant long None

Obstruent Nsyll Stress Voice
1 F 3 F voiced
2 S 1 F voiced
3 T 3 F voiceless

A CART tree is fitted to the data with

> finalDevoicing.rp = rpart(Voice ˜ ., data = finalDevoicin g[ , -1])
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where we exclude the column labeling the words. We examine the cross-validation error
scores by plotting the object, select cp = 0.021 and prune accordingly.

> plotcp(finalDevoicing.rp)
> finalDevoicing.rp1 = prune(finalDevoicing.rp, cp = 0.02 1)

Finally, we plot the cross-validated tree, shown in Figure A.11.

> plot(finalDevoicing.rp1, margin = 0.1, compress = T)
> text(finalDevoicing.rp1, use.n = T, pretty = 0)

The main split is on the type of obstruent: labiodental and velar fricatives (F, X), as op-
posed to alveolar fricatives (S) and plosives (P, T). The latter subset is partitioned by vowel
type (phonologically long vowels, including phonetically short high vowels) versus short
vowels, short vowels. The phonologically long vowels are in turn partitioned by whether
the obstruent is an alveolar fricative or a plosive. Final splits are by sonorant type. Note
that, not surprisingly, the characteristics of the onset (Onset1Type, Onset2Type ) are
not predictive. We cross-tabulate observed and expected voicing,

> xtab = xtabs(˜ finalDevoicing$Voice +
+ predict(finalDevoicing.rp1, finalDevoicing, type="cl ass"))
> xtab

predict(finalDevoicing.rp1, finalDevoicing, type = "cla ss")
finalDevoicing$Voice voiced voiceless

voiced 387 205
voiceless 104 1001

and observe a classification accuracy of 82% that is a significant improvement on the
classification accuracy of a baseline model that always selects voiceless .

> xtabs(˜finalDevoicing$Voice)
finalDevoicing$Voice

voiced voiceless
592 1105

> prop.test(c(387+1001, 1105), rep(nrow(finalDevoicing ), 2))
...
X-squared = 120.1608, df = 1, p-value < 2.2e-16

prop 1 prop 2
...
0.8179140 0.6511491

5.4 We follow exactly the same steps as in the analysis of the tag trigrams.

> spanishFunctionWords.t = t(spanishFunctionWords)
> spanishFunctionWords.t =
+ spanishFunctionWords.t[order(rownames(spanishFunct ionWords.t)), ]
> spanishFunctionWords.pca =
+ prcomp(spanishFunctionWords.t, center = T, scale = T)
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Figure A.11: Classification tree for the voicing alternation of stem-final obstruents in
Dutch monomorphemic verbs.

The number of orthogonal dimensions to be considered in what follows is

> sdevs = spanishFunctionWords.pca$sdevˆ2
> n = sum(sdevs/sum(sdevs)> 0.05)
> n
[1] 8

The cross-validation for loop is

> predictedClasses = rep("", 15)
> for (i in 1:15) {
+ training = spanishFunctionWords.t[-i,]
+ trainingAuthor = spanishMeta[-i,]$Author
+ training.pca = prcomp(training, center = T, scale = T)
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+ training.x = data.frame(training.pca$x)
+ training.x = training.x[order(rownames(training.x)), ]
+ training.pca.lda = lda(training[ , 1:n], trainingAuthor )
+ cl=predict(training.pca.lda,spanishFunctionWords.t [,1:n])$class[i]
+ predictedClasses[i] = as.character(cl)
+ }

and the number of correctly attributed texts is

> sum(predictedClasses==spanishMeta$Author)
[1] 8

which fails to reach significance.

> sum(dbinom(8:15, 15, 1/3))
[1] 0.0882316

As is often found, trigram probabilities emerge as superior to the probabilities of function
words.

5.5

> regularity.svm = svm(regularity[, -c(1, 8, 10)],
+ regularity$Regularity, cross=10)
> summary(regularity.svm)
10-fold cross-validation on training data:

Total Accuracy: 81.85714
Single Accuracies:

80 72.85714 82.85714 87.14286 78.57143 84.28571 80 87.1428 6 ...

The cross-validated number of correct classifications is

> round(0.81857 * nrow(regularity),1)
[1] 573

and given that selecting the majority option would result in 541 correct classifications,

> xtabs(˜regularity$Regularity)
regularity$Regularity
irregular regular

159 541

we apply a proportions test
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> prop.test(c(541, 573), rep(nrow(regularity),2))
X-squared = 4.2228, df = 1, p-value = 0.03988
alternative hypothesis: two.sided
95 percent confidence interval:

-0.08931373 -0.00211484
sample estimates:

prop 1 prop 2
0.7728571 0.8185714

and observe we have achieved a small but significant gain in classification accuracy with
the support vector machine.

6.1 Running the examples for the english data set with

> example(english)

will add the PCs to the data frame. A model which takes PC1 to have a linear effect on
naming latency

> naming.ols = ols(RTnaming ˜ AgeSubject + rcs(WrittenFreq uency, 3) +
+ rcs(WrittenFrequency,3) : AgeSubject + PC1,
+ data = english, x = T, y = T)
> naming.ols
Coefficients:

Value Std. Error t Pr(>|t|)
Intercept 6.565e+00 0.0050947 1288.5788 0.000e+00
AgeSubject=young -3.753e-01 0.0071771 -52.2845 0.000e+0 0
WrittenFrequency -1.536e-02 0.0013106 -11.7213 0.000e+0 0
WrittenFrequency’ 5.160e-03 0.0016263 3.1731 1.518e-03
PC1 -5.792e-05 0.0003473 -0.1668 8.676e-01
Age=young * WrittenFreq 7.497e-03 0.0018488 4.0552 5.092e-05
Age=young * WrittenFreq’ -3.937e-03 0.0022998 -1.7120 8.696e-02

suggests that it is not significant, its slope is very small and indistinguishable from a zero
slope. However, models that allow PC1to have a non-linear effect

> naming.ols = ols(RTnaming ˜ AgeSubject + rcs(WrittenFreq uency, 3) +
+ rcs(WrittenFrequency, 3) : AgeSubject + rcs(PC1, 3),
+ data = english, x = T, y = T)
> naming.ols
Coefficients:

Value Std. Error t Pr(>|t|)
Intercept 6.554979 0.0052809 1241.260 0.000e+00
AgeSubject=young -0.375250 0.0071427 -52.536 0.000e+00
WrittenFrequency -0.014801 0.0013070 -11.325 0.000e+00
WrittenFrequency’ 0.004611 0.0016206 2.845 4.455e-03
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PC1 -0.004213 0.0007091 -5.941 3.039e-09
PC1’ 0.005685 0.0008471 6.711 2.173e-11
Age=young * WrittenFreq 0.007497 0.0018399 4.075 4.685e-05
Age=young * WrittenFreq’ -0.003937 0.0022888 -1.720 8.545e-02

suggest it is a significant predictor. Figure A.12

> plot(naming.ols, PC1 = NA)

reveals initial facilitation followed by inhibition. A linear model averages over these op-
posite trends, unsurprisingly resulting in a null effect.
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Figure A.12: The partial effect of PC1 on the naming latencies in the english data set.

6.2 We first create the data distribution object.

> finalDevoicing.dd = datadist(finalDevoicing)
> options(datadist = "finalDevoicing.dd")

We the fit a logistic regression model to the data with lrm() ,

> finalDevoicing.lrm = lrm(Voice ˜ VowelType+ConsonantTy pe+
+ Obstruent+Nsyll+Stress+Onset1Type+Onset2Type, data= finalDevoicing)

and inspect the significance of the predictors with an ANOVA table.
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> anova(finalDevoicing.lrm)
Wald Statistics Response: Voice

Factor Chi-Square d.f. P
VowelType 130.65 2 <.0001
ConsonantType 103.40 2 <.0001
Obstruent 194.87 4 <.0001
Nsyll 20.77 1 <.0001
Stress 5.67 2 0.0586
Onset1Type 0.77 2 0.6811
Onset2Type 6.06 2 0.0483
TOTAL 351.37 15 <.0001

The relevance of the last three variables is questionable, unsurprisingly, they are removed
by fastbw() .

> fastbw(finalDevoicing.lrm)

Deleted Chi-Sq d.f. P Residual d.f. P AIC
Onset1Type 0.77 2 0.6811 0.77 2 0.6811 -3.23
Onset2Type 5.30 2 0.0707 6.07 4 0.1942 -1.93
Stress 5.38 2 0.0678 11.45 6 0.0755 -0.55

...

We redo the simplified model by hand,

> finalDevoicing.lrm = lrm(Voice ˜ VowelType + ConsonantTy pe +
+ Obstruent + Nsyll, data = finalDevoicing, x = T, y = T)
> anova(finalDevoicing.lrm)

Wald Statistics Response: Voice

Factor Chi-Square d.f. P
VowelType 128.24 2 <.0001
ConsonantType 100.25 2 <.0001
Obstruent 196.45 4 <.0001
Nsyll 18.01 1 <.0001
TOTAL 348.07 9 <.0001

and plot the partial effects, as shown in Figure A.13.

> plot(finalDevoicing.lrm, fun = plogis, ylim = c(0, 1),
+ ylab = "p(voiceless)")

Finally, we validate the model with 200 bootstrap runs.

> validate(finalDevoicing.lrm, B = 200)
...

index.orig training test optimism

350



D
R

A
FTVowelType

p(
vo

ic
el

es
s)

akort iuy  lang 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−

−
−

−

−

−

 
ConsonantType

p(
vo

ic
el

es
s)

AObstruent None      Sonorant  

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−

−

−

−
−

−

 

Obstruent

p(
vo

ic
el

es
s)

AP F S T X 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−

−

−
−

−

−

−

−
−

−

 
Nsyll

p(
vo

ic
el

es
s)

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
− − −

−
− − −

 

Figure A.13: Partial effects of the predictors in a logistic regression model for the proba-
bility of a Dutch verb having a non-alternating final obstruent.

Dxy 0.755124129 0.752633653 0.7493642840 0.003269369
R2 0.517717019 0.520005018 0.5126806067 0.007324411
Intercept 0.000000000 0.000000000 0.0017320605 -0.00173 2060
Slope 1.000000000 1.000000000 0.9764758156 0.023524184
...

index.corrected n
Dxy 0.7518547594 200
R2 0.5103926079 200
Intercept 0.0017320605 200
Slope 0.9764758156 200
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...

The small values for the optimism show that the model validates well.

6.3

> validate(dutch.lrm.pen, B = 200)
index.orig training test optimism

Dxy 0.686301864 0.695511136 0.6717651914 0.023745944
R2 0.397411938 0.407178229 0.3842901407 0.022888089
Intercept 0.000000000 0.000000000 0.0347286565 -0.03472 8656
Slope 1.000000000 1.000000000 0.9615599722 0.038440028

index.corrected
Dxy 0.6625559192
R2 0.3745238493
Intercept 0.0347286565
Slope 0.9615599722

The slope is closer to one, and the intercept closer to zero, so the danger of overfitting has
indeed been reduced.

6.4 We rerun the model,

> etym.lrm = lrm(formula = Regularity ˜ rcs(WrittenFrequen cy, 3) +
+ rcs(FamilySize, 3) + NcountStem + InflectionalEntropy + A uxiliary +
+ Valency + NVratio + WrittenSpokenRatio + EtymAge, data = et ym,
+ x = T, y = T)
> anova(etym.lrm)

Wald Statistics Response: Regularity

Factor Chi-Square d.f. P
WrittenFrequency 18.15 2 0.0001

Nonlinear 15.67 1 0.0001
FamilySize 7.28 2 0.0262

Nonlinear 6.46 1 0.0110
NcountStem 10.23 1 0.0014
InflectionalEntropy 4.53 1 0.0334
Auxiliary 6.64 2 0.0362
Valency 6.67 1 0.0098
NVratio 4.97 1 0.0257
WrittenSpokenRatio 4.18 1 0.0408
EtymAge 12.96 4 0.0115
TOTAL NONLINEAR 18.50 2 0.0001
TOTAL 55.77 15 <.0001

but before we accept it, we should validate it.
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> validate(etym.lrm, bw = T, B = 200)
...

Frequencies of Numbers of Factors Retained

2 3 4 5 6 7 8 9
1 1 14 28 39 39 41 37

index.orig training test optimism
Dxy 0.621491185 0.639033808 0.549117995 0.089915814
R2 0.382722800 0.404198572 0.300891734 0.103306838
Intercept 0.000000000 0.000000000 0.004753967 -0.004753 967
Slope 1.000000000 1.000000000 0.749752658 0.250247342

index.corrected
Dxy 0.531575371
R2 0.279415962
Intercept 0.004753967
Slope 0.749752658
...

There is substantial optimisim and a large change in the slope, so it makes sense to use to
shrink the estimated coefficients.

> pentrace(etym.lrm, seq(0, 0.8, by = 0.05))

Best penalty:

penalty df
0.65 13.76719

...

> etym.lrm2 = update(etym.lrm, penalty = 0.65, x = T, y = T)
> anova(etym.lrm2)

Wald Statistics Response: Regularity

Factor Chi-Square d.f. P
WrittenFrequency 15.99 2 0.0003

Nonlinear 13.57 1 0.0002
FamilySize 5.92 2 0.0518

Nonlinear 5.25 1 0.0219
NcountStem 9.62 1 0.0019
InflectionalEntropy 4.39 1 0.0362
Auxiliary 6.17 2 0.0458
Valency 6.73 1 0.0095
NVratio 5.01 1 0.0251
WrittenSpokenRatio 3.53 1 0.0601
EtymAge 11.58 4 0.0207
TOTAL NONLINEAR 16.36 2 0.0003
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TOTAL 57.42 15 <.0001
> plot(etym.lrm2, EtymAge = NA, fun = plogis, ylab = "p(regul ar)",
+ ylim = c(0,1))

The partial effects of the predictors are shown in Figure A.14. The lower right panel shows
the effect of etymological age. Only two of the labels for the tick marks are shown. As
the labels are ordered by the ordering of the factor levels, etymological age increases from
left to right. Hence, we see that the probability of being regular decreases with increasing
etymological age.

The nonlinear effect of frequency in the upper left panel is an artefact of the selection
of the data. The present subset of verbs was selected such that the mean written frequency
for regulars and irregulars was approximately matched. As there are approximately the
same number of regular and irregular verbs in the sample, and as low-frequency irregular
verbs are infrequent, the composition of the sample is such that low-frequency regular
verbs are underrepresented compared to the population.

6.5 The second correct model formulation specifies the slope for the second part of the
data as an adjustment to the slope for the first part. The model with both main effects
includes two intercepts, one for the regression line to the left of the vertical axis, and a
second intercept for the regression line to its right. For our breakpoint analysis, we want
a model with a single intercept that is shared by both lines. The anova test shows that this
additional intercept is indeed superfluous:

> faz.both = lm(LogFrequency ˜ ShiftedLogDistance : PastBr eakPoint,
+ data = faz)
> faz.bothB = lm(LogFrequency ˜ ShiftedLogDistance * PastBreakPoint,
+ data = faz)
> anova(faz.both, faz.bothB)
Analysis of Variance Table

Model 1: LogFrequency ˜ ShiftedLogDistance:PastBreakPoi nt
Model 2: LogFrequency ˜ ShiftedLogDistance * PastBreakPoint

Res.Df RSS Df Sum of Sq F Pr(>F)
1 797 259.430
2 796 259.429 1 0.001 0.0033 0.9544

6.6 We convert words to lower case with tolower() for each text.

> alice = tolower(alice)
> through = tolower(through)
> oz = tolower(oz)
> moby = tolower(moby)

We base our comparisons on the first 25942 words in each text.
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Figure A.14: The partial effects in a penalized maximum likelihood logistic regression
model for Regularity for a data set of 285 Dutch verbs.
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> compare.richness.fnc(alice, through[1:25942])
Tokens Types HapaxLegomena GrowthRate

alice 25942 2634 1188 0.04579
through[1:25942] 25942 2665 1189 0.04583

two-tailed tests:
Z p

Vocabulary Size -0.7461 0.4556
Vocabulary Growth Rate -0.0240 0.9808

Clearly, there is no difference in lexical richness between the two novels by Carroll.

> compare.richness.fnc(alice, oz[1:25942])
Tokens Types HapaxLegomena GrowthRate

alice 25942 2634 1188 0.04579
oz[1:25942] 25942 2388 1035 0.03990

two-tailed tests:
Z p

Vocabulary Size 6.1063 0e+00
Vocabulary Growth Rate 3.7904 2e-04

The Wonderful Wizard of Oz, on the other hand, has a significantly smaller lexical richness
than Alice’s Adventures in Wonderland. The lexical richness of Moby Dick is substantially
greater, as expected for a novel aimed at an adult audience.

> compare.richness.fnc(alice, moby[1:25942])
Tokens Types HapaxLegomena GrowthRate

alice 25942 2634 1188 0.04579
moby[1:25942] 25942 5351 3316 0.12782

two-tailed tests:
Z p

Vocabulary Size -45.8058 0
Vocabulary Growth Rate -36.4235 0

6.7

> nesscg.spc = spc(m = nesscg$m, Vm = nesscg$Vm)
> nessw.spc = spc(m = nessw$m, Vm = nessw$Vm)
> nessdemog.spc = spc(m = nessdemog$m, Vm = nessdemog$Vm)

A model for context-governed spoken English with an excellent fit is obtained with

> nesscg.fzm = lnre("fzm", nesscg.spc)
> nesscg.fzm
finite Zipf-Mandelbrot LNRE model.
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...
Population size: S = 810.356
...
Goodness-of-fit (multivariate chi-squared test):

X2 df p
6.811325 4 0.1462011

A very similar model for the demographic sample of spoken English is

> nessdemog.fzm = lnre("fzm", nessdemog.spc)
> nessdemog.fzm
...
Population size: S = 839.2886
...
Goodness-of-fit (multivariate chi-squared test):

X2 df p
4.157912 3 0.2449096

A finite Zipf-Mandelbrot model

> nessw.fzm = lnre("fzm", nessw.spc)
> nessw.fzm
finite Zipf-Mandelbrot LNRE model.
...
Population size: S = 4867.91
...
Goodness-of-fit (multivariate chi-squared test):

X2 df p
31.76712 13 0.002600682

turns out to be inferior to a Generalized Inverse Gauss-Poisson model:

> nessw.gigp = lnre("gigp", nessw.spc)
> nessw.gigp
Generalized Inverse Gauss-Poisson (GIGP) LNRE model.
...
Population size: S = 5974.933
...
Goodness-of-fit (multivariate chi-squared test):

X2 df p
22.62322 13 0.04642629

We plot the growth curves for 40 equally-sized intervals between 0 and 106957, the num-
ber of tokens sampled for -ness in the written subcorpus, the largest subcorpus of the
BNC. After calculating the vocabulary growth curves with lnre.vgc() ,

> nessw.vgc = lnre.vgc(nessw.gigp, seq(0, N(nessw.spc), l ength = 40))
> nessdemog.vgc = lnre.vgc(nessdemog.fzm, seq(0, N(nessw .spc),
+ length = 40))
> nesscg.vgc = lnre.vgc(nesscg.fzm, seq(0, N(nessw.spc), length = 40))
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we graph them with plot() , adding a legend (see Figure A.15).

> plot(nessw.vgc, nessdemog.vgc, nesscg.vgc, lwd = rep(1, 3),
+ legend=c("written", "spoken:demographic", "spoken:co ntext-governed"))

The population number of types estimated for the demographic and context-governed
subcorpora are 839 and 810 respectively. We add these horizontal asymptotes to the plot,

> abline(h = 839, col = "red")
> abline(h = 810, col = "green")

note that both curves for spoken language have almost reached their asymptotic values
within the range of sample sizes shown. By contrast, -ness in written English is nowhere
near reaching its asymptote, which is estimated at 5975 types. This difference between
morphological productivity between spoken and written registers of English is also ap-
parent from the growth rates of the vocabulary, which we calculate here for the sample
size of the sample with largest number of tokens.

> nessw.lnre.spc = lnre.spc(nessw.gigp, N(nessw.spc), m. max = 1)
> Vm(nessw.lnre.spc, 1)/N(nessw.lnre.spc)
[1] 0.008786915
> nessdemog.lnre.spc = lnre.spc(nessdemog.fzm, N(nessw. spc),
+ m.max = 1)
> Vm(nessdemog.lnre.spc, 1)/N(nessdemog.lnre.spc)
[1] 0.0003230424
> nesscg.lnre.spc = lnre.spc(nesscg.fzm, N(nessw.spc),m .max=1)
> Vm(nesscg.lnre.spc, 1)/N(nesscg.lnre.spc)
[1] 0.0002389207

At this large sample size, the differences in productivity are even more pronounced than
for a comparison based on the smallest sample size, the demographic subcorpus.

> nessw.lnre.spc = lnre.spc(nessw.gigp, N(nessdemog.spc ), m.max = 1)
> Vm(nessw.lnre.spc, 1)/N(nessw.lnre.spc)
[1] 0.1544806
> nessdemog.lnre.spc=lnre.spc(nessdemog.fzm,N(nessde mog.spc),m.max=1)
> Vm(nessdemog.lnre.spc, 1)/N(nessdemog.lnre.spc)
[1] 0.08195576
> nesscg.lnre.spc = lnre.spc(nesscg.fzm, N(nessdemog.sp c),m.max=1)
> Vm(nesscg.lnre.spc, 1)/N(nesscg.lnre.spc)
[1] 0.08755167

6.8 We fit a first covariance model.

> imaging.lm=lm(FilteredSignal˜BehavioralScore * Condition,data=imaging)
> summary(imaging.lm)
Residuals:
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Figure A.15: The growth curve of the vocabulary for the English suffix -ness in the three
main subcorpora of the British National Corpus.

Min 1Q Median 3Q Max
-22.5836 -2.7216 -0.7092 3.7008 10.1119

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 69.5804 4.2089 16.532 < 2e-16
BehavioralScore -0.2606 0.2147 -1.214 0.23405
Conditionsemantics -10.2184 4.6626 -2.192 0.03605
BehavioralScore:Conditionsemantics 0.7787 0.2498 3.118 0.00392

Residual standard error: 5.926 on 31 degrees of freedom
Multiple R-Squared: 0.3674, Adjusted R-squared: 0.3061
F-statistic: 6.001 on 3 and 31 DF, p-value: 0.002396

The residuals of this model are clearly asymmetrical, not surprising given the marked
outlier structure visible in Figure 6.20, so model criticism is called for. A plot of the model
provides a series of diagnostic plots, from which data points with row numbers 1 and 19
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emerge as outliers with high leverage (see Figure A.16).

> par(mfrow=c(2,3))
> plot(imaging.lm, which = 1:6)
> par(mfrow=c(1,1))
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Figure A.16: Diagnostic plots for the linear model fit to the reconstructed patient data
from Tyler et al. [2005].

After removal of these two outliers, there are no significant effects.

> imaging.lm = lm(FilteredSignal ˜ BehavioralScore * Condition,
+ data = imaging[-c(1,19), ])
> summary(imaging.lm)
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Residuals:
Min 1Q Median 3Q Max

-6.525 -2.525 0.140 1.685 7.980

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.71994 2.67193 24.596 <2e-16
BehavioralScore 0.03398 0.14019 0.242 0.810
Conditionsemantics -2.71410 3.24800 -0.836 0.410
BehavioralScore:Conditionsemantics 0.23757 0.18560 1.2 80 0.211

Residual standard error: 3.673 on 29 degrees of freedom
Multiple R-Squared: 0.1494, Adjusted R-squared: 0.06145
F-statistic: 1.698 on 3 and 29 DF, p-value: 0.1892

The correlation of 0.82 reported by Tyler and colleagues for the semantic condition de-
pends on the presence of a single outlier, and reduces to 0.52 after removal of this outlier.
We conclude that it cannot be claimed for this data set that the priming scores for the
semantic condition are predictive for the intensity of the filtered signal.

7.1 We first rebuild lexdec3.lmerE .

> lexdec2 = lexdec[lexdec$RT < 7 , ]
> lexdec3 = lexdec2[lexdec2$Correct == "correct", ]
> lexdec3$cTrial = lexdec3$Trial - mean(lexdec3$Trial)
> lexdec3$cLength = lexdec3$Length - mean(lexdec3$Length )
> lexdec3.lmerE = lmer(RT ˜ cTrial + Frequency +
+ NativeLanguage * cLength + meanWeight +
+ (1|Subject) + (0+cTrial|Subject) + (1|Word), lexdec3)

Next, we add cLength to the random effects specification for Subject .

> lexdec3.lmerE1 = lmer(RT ˜ cTrial + Frequency + meanWeight +
+ NativeLanguage * cLength + (1|Word) + (1|Subject) +
+ (0+cTrial|Subject) + (0+cLength|Subject), data = lexdec 3)
> lexdec3.lmerE2 = lmer(RT ˜ cTrial + Frequency + meanWeight +
+ NativeLanguage * cLength + (1|Word) + (1+cLength|Subject) +
+ (0+cTrial|Subject), data = lexdec3)

Finally, we compare the models with the anova() function,

> anova(lexdec3.lmerE, lexdec3.lmerE1)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

lexdec3.lmerE 10 -1370.90 -1317.39 695.45
lexdec3.lmerE1 11 -1374.59 -1315.73 698.29 5.6933 1 0.0170 3
> anova(lexdec3.lmerE1, lexdec3.lmerE2)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
lexdec3.lmerE1 11 -1374.59 -1315.73 698.29
lexdec3.lmerE2 12 -1379.12 -1314.92 701.56 6.5351 1 0.0105 8
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and find that the correlation parameter for the by-subject slopes for length and intercepts
is justified. The table of coefficients shows that the interaction of NativeLanguage by
Length survives the subject variability for length.

> pvals.fnc(lexdec3.lmerE2, nsim=10000)$fixed
Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 6.4485380 6.356195 6.5442545 0.0001 0.0000
cTrial -0.0002073 -0.000551 0.0001224 0.2130 0.2098
Frequency -0.0404660 -0.051234 -0.0290932 0.0001 0.0000
meanWeight 0.0236185 0.009854 0.0360040 0.0004 0.0003
NatLanOth 0.1377618 0.022278 0.2629398 0.0278 0.0120
cLength 0.0026727 -0.007001 0.0125276 0.5776 0.5850
NatLanOth:cLen 0.0189074 0.006944 0.0308654 0.0038 0.001 5

7.2 We fit models with and without Word as random effect to the data,

> beginningReaders.lmer4 = lmer(LogRT ˜ PC1+PC2+PC3 + Read ingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilyS ize +
+ (1|Word) + (1|Subject)+(0+OrthLength|Subject) +
+ (0+LogFrequency|Subject), data = beginningReaders)
> beginningReaders.lmer4w = lmer(LogRT ˜ PC1+PC2+PC3 + Rea dingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilyS ize +
+ (1|Subject)+(0+OrthLength|Subject) + (0+LogFrequency |Subject),
+ data = beginningReaders)

and compare the two models with anova() .

> anova(beginningReaders.lmer4, beginningReaders.lmer 4w)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

begReaders.lmer4w 12 6059.5 6143.2 -3017.8
begReaders.lmer4 13 5961.1 6051.8 -2967.6 100.40 1 < 2.2e-1 6

The likelihood ratio test clearly provides ample justification for including Word as ran-
dom effect. Next, we add random slopes for PC1.

> beginningReaders.lmer4pc1 = lmer(LogRT ˜ PC1+PC2+PC3 + R eadingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilyS ize +
+ (1|Word) + (1|Subject) + (0+LogFrequency|Subject) +
+ (0+OrthLength|Subject) + (0+PC1|Subject), data = beginn ingReaders)

and carry out a likelihood ratio test to ascertain whether these random slopes are justified.

> anova(beginningReaders.lmer4, beginningReaders.lmer 4pc1)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

begReaders.lmer4 13 5961.1 6051.8 -2967.6
begReaders.lmer4pc1 14 5778.3 5876.0 -2875.2 184.8 1 < 2.2e -16

We check that the confidence intervals of the random effects are all properly bounded.
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> x = pvals.fnc(beginningReaders.lmer4pc1, nsim=10000)
> x$random

MCMCmean HPD95lower HPD95upper
sigma 0.33694 0.33167 0.34248
Word.(In) 0.06244 0.05412 0.07303
Sbjc.(In) 0.06304 0.05027 0.07901
Sbjc.LgFr 0.05190 0.04085 0.06596
Sbjc.OrtL 0.05307 0.04182 0.06773
Sbjc.PC1 0.06127 0.04853 0.07745

7.3

> reading.lmer = lmer(RT ˜ RTtoPrime + PC1 * Condition +
+ Rating + LengthInLetters + NumberOfSynsets +
+ (1|Subject) + (1|Word), data = selfPacedReadingHeid)
> pvals.fnc(reading.lmer, nsim=10000)$fixed

Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 5.005005 4.646787 5.364812 0.0001 0.0000
RTtoPrime 0.094166 0.051356 0.139342 0.0002 0.0000
PC1 0.153690 0.133163 0.174926 0.0001 0.0000
Conditnheidheid -0.005611 -0.043819 0.028946 0.7524 0.76 29
Rating 0.028568 -0.018961 0.079343 0.2560 0.2514
LengthInLetters 0.029624 0.001995 0.058489 0.0378 0.0362
NumberOfSynsets 0.011431 -0.012116 0.034077 0.3280 0.333 5
PC1:Condheidheid -0.025404 - -0.049701 -0.001355 0.0422 0 .0415

Only word length is relevant as additional predictor.

7.4 The desired initial model is

> writtenVariationLijk.lmer = lmer(log(Count) ˜ Country * Register +
+ (Country|Word), data = writtenVariationLijk)
> aovlmer.fnc(writtenVariationLijk.lmer, noMCMC=TRUE)
Analysis of Variance Table

Df Sum Sq Mean Sq F Df2 p
Country 1 0.98 0.98 6.7945 554.00 0.01
Register 2 2.70 1.35 9.3265 554.00 1.038e-04
Country:Register 2 3.79 1.89 13.0942 554.00 2.777e-06

but its residuals are weirdly distributed, as shown in the left panel of Figure A.17.

> qqnorm(resid(writtenVariationLijk.lmer))

We therefore consider a trimmed model with the offending data points excluded.

> writtenVariationLijk.lmerA = lmer(log(Count) ˜ Country * Register +
+ (Country|Word), data = writtenVariationLijk,
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Figure A.17: Quantile-quantile plots for linear mixed-effects models fit to the country
data, with log(Count) as dependent variable. Left: untrimmed model, right: trimmed
model.

+ subset = resid(writtenVariationLijk.lmer) > -0.5)
> aovlmer.fnc(writtenVariationLijk.lmerA, noMCMC=TRUE )

Df Sum Sq Mean Sq F Df2 p
Country 1 0.67 0.67 7.4609 524.00 0.01
Register 2 1.07 0.53 5.9767 524.00 2.713e-03
Country:Register 2 1.97 0.99 11.0275 524.00 2.036e-05

The residuals of this trimmed model are well-behaved, as shown in the right panel of
Figure A.17. Note that 30 outliers (the difference in Df2 ) gave rise to p-values for the
untrimmed model that are too small.

7.5

> warlpiri.lmer = lmer(CaseMarking ˜ WordOrder + AgeGroup +
+ AnimacyOfSubject + OvertnessOfObject + AnimacyOfObject +
+ (1|Text) + (1|Speaker), family = "binomial", data = warlpi ri)
There were 27 warnings (use warnings() to see them)
> warnings()
27: Estimated variance for factor Text is effectively zero

in: LMEopt(x = mer, value = cv)

The warning may indicate a problem of data sparseness. Inspection of the model sum-
mary shows that the two predictors relating specifically to the Object are irrelevant. We
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refit the model without them, and now include the interaction of AgeGroup by WordOrder
that emerged from the mosaic plot of this data set that we made earlier.

> warlpiri.lmer = lmer(CaseMarking ˜ WordOrder * AgeGroup +
+ AnimacyOfSubject + (1|Text) + (1|Speaker),
+ family = "binomial", data = warlpiri)
> warlpiri.lmer
Random effects:

Groups Name Variance Std.Dev.
Speaker (Intercept) 0.454679 0.67430
Text (Intercept) 0.019611 0.14004

Estimated scale (compare to 1 ) 0.948327
Fixed effects: Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.4064 0.3816 -6.307 2.85e-10
WordOrdersubNotInitial 0.2953 0.4994 0.591 0.55433
AgeGroupchild 1.2167 0.4691 2.594 0.00949
AnimacyOfSubjectinanimate 0.8378 0.3664 2.287 0.02221
WordOrdersubNotInitial:AgeGrpchild -1.8501 0.7326 -2.5 25 0.01156

Data sparseness is no longer a (technical) issue. The estimated scale is reasonably close
to 1, and the standard deviations for the random effects seem reasonable. Once MCMC

sampling is implemented for logistic mixed-effects models, one will also want to check
the HPD intervals for the random effects parameters.

7.6 We fit the requested model.

> size.lmer = lmer(Rating ˜ Class * Naive + MeanFamiliarity *
+ Language + I(MeanFamiliarityˆ2) * Language + (1|Subject) +
+ (1|Word), data = sizeRatings)
> pvals.fnc(size.lmer, nsim = 10000)$fixed

The coefficients involving the quadratic term for MeanFamiliarity do not reach signif-
icance. As we have 6 by-item predictors and fewer than 6 ∗ 15 data points, we run the risk
of overfitting, so we remove them without hesitation.

> size.lmer = lmer(Rating ˜ Class * Naive + MeanFamiliarity *
+ Language + (1|Subject) + (1|Word), data = sizeRatings)
> pvals.fnc(size.lmer, nsim = 10000)$fixed

Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 3.87498 3.34603 4.37861 0.0001 0.0000
Classplant -1.78310 -2.35496 -1.22164 0.0001 0.0000
NaivenotNaive -0.07878 -0.37866 0.20951 0.5924 0.5886
MeanFamiliarity -0.13910 -0.46626 0.19103 0.3864 0.3963
LanguagenotEnglish -0.14275 -0.44275 0.19711 0.3752 0.36 16
Clssplnt:NaivenotNaive -0.13866 -0.23985 -0.04267 0.005 4 0.0068
MeanFam:LangnotEnglish 0.07486 0.01206 0.13708 0.0178 0. 0182
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We conclude that the effect of lexical familiarity on size ratings appears to be restricted to
the nonnative speakers of English. Note, furthermore, that a subject’s prior knowledge of
Class as a predictor leads to a reduction of the effect of Class , but not to its elimination.
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Appendix B

Overview of R functions

WORKSPACE

list contents of current workspace objects() or ls()
remove object a from workspace rm(a)
quit R q()
file with R objects .RData
file with history of commands .Rhistory

PACKAGES

load a package library("libname")
unload a package detach("package:pkg")
attach a data set data() or data(package = ...)
load new functions from ASCII file source("filename")

THE HELP SYSTEM

help.start() start GUI or browser
example() run examples in the documentation
help(object), ?object show documentation for object
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OPERATORS

assignment to the left: =, <-
to the right: ->

arithmetic multiplication * and division /
addition + and subtraction -
exponentiation ∧ and remainder %%

logic AND &, OR | , NOT !
relations equality ==, inequality !=

smaller than <, smaller than or equal to <=
greater than >, greater than or equal to >=

numerical logarithm log() , exponential function exp()
smallest value min() , largest value max()
range of values range() , sum of values sum()

VECTORS

c(1, 3:5, 7) 1 3 4 5 7
seq(1, 10, by=2) 1 3 5 7 9
seq(1, 10, length=5) 1.00 3.25 5.50 7.75 10.00
1:10 1 2 3 4 5 6 7 8 9 10
10:1 10 9 8 7 6 5 4 3 2 1
rep(1, 5) 1 1 1 1 1
rep(1:3, 2:4) 1 1 2 2 2 3 3 3 3
length(rep(1:3,2:4)) 9

cbind(c(1,2), c(3,4))
1 3
2 4

rbind(c(1,2), c(3,4))
1 2
3 4

sort(c("b", "a")) "a" "b"

STRINGS

tolower("Alice") "alice"
substr("Alice", 2, 5) "lice"
paste("a", "lice", sep="-") "a-lice"
nchar("Alice") 5
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FACTORS

ordered() create ordered factor
as.factor() convert into factor
as.character() convert factor into character vector
relevel() select new reference level
[drop=TRUE] drop unused factor levels

DATA FRAMES

create data frame from vectors data.frame(X = x, Y = y)
add variable to data frame mydata$Z = z
first three rows mydata[1:3, ]
first three columns mydata[, 1:3]
rows where X < 5 mydata[mydata$X < 5,]
merge data frames merge()
dimensions of data frame dim()
row and column names rownames(), colnames()
initial rows, final rows head(), tail()
sort by column X mydata[order(mydata$X),]

GETTING DATA IN AND OUT OF R

load vector of numbers scan("file")
load vector of strings scan("file", what="character")
load table with column names read.table("file", header=TRUE)
load csv with column names read.csv("file", header=TRUE)
write data frame write.table(mydata, "file")
write data frame in csv format write.csv(mydata, "file")
execute code in file source("file")

369 D
R

A
FT

SUMMARY STATISTICS

mean mean()
median median()
variance var()
standard deviation sd()
quantiles quantile()
correlation cor()
covariance cov()

TABULATION, GROUPING, AGGREGATING

(cross)tabulation table() , xtabs()
table of means tapply()
table of proportions prop.table()
aggregate aggregate()
group cut()

GRAPHICS

scatterplot plot()
adds lines to scatterplot lines()
adds points to scatterplot points()
adds text to scatterplot text()
adds text in margins mtext()
adds regression line abline()
matrix of plots par(mfrow=c(x,y))
histogram hist()

truehist() (MASSpackage)
boxplot boxplot()
bar plot barplot()
mosaic plot mosaicplot()
scatterplot matrix pairs()
scatterplot matrix with correlations pairscor.fnc()
trellis scatterplots xyplot() , splom()
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(lattice package)
trellis boxplot bwplot()

(lattice package)
trellis scatterplots with smoother xylowess.fnc()
scatterplot matrix with qq-plots qqmath()
scatterplot matrix with densities densityplot()
saving graphics postscript() , jpeg , png()

DISTRIBUTIONS

normal pnorm(x, mean, sd)
lognormal plnorm(x, mean, sd)
student’s t pt(x, df)
F distribution pF(x, df1, df2)
chi-squared pchisq(x, df)
binomial pbinom(x, n, p)
poisson ppois(x, lambda)

DISTRIBUTION FUNCTIONS

density dnorm(), dt(), df() . . .
cumulative distribution pnorm(), pt(), pf() . . .
quantiles qnorm(), qt(), qf() . . .
random numbers rnorm(), rt(), rf() . . .

TESTS AND MODELS FOR CONTINUOUS VARIABLES

a single vector t.test(), wilcox.test()
shapiro.test() (for normality)

two vectors t.test(), wilcox.test()
ks.test()
var.test()

two paired vectors t.test(x, y, paired=T) ,
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wilcox.test(x, y, paired=T)
cor.test(x, y) ,
cor.test(x, y, method="spearman")
lm(y ∼ x)

multiple regression lm(y ∼ x1 + x2 + x3)
ols(y ∼ x1 + x2 + x3)
(Design package)

mixed-effects regression lmer(y ∼ x1 + x2 + x3 +
+ (1|Subject) + (1|Item)) ,
(lme4 package)

MODELS FOR A CONTINUOUS DEPENDENT VARIABLE AND FACTORS

one-way anova lm(y ∼ f) ,
aov(y ∼ f)
kruskal.test()
ols(y ∼ f) (Design )
lmer(y ∼ f + (1|G)) (lme4 )

two-way anova lm(y ∼ f1 + f2)
aov(y ∼ f1 + f2)
ols(y ∼ f1 + f2) (Design )
lmer(y ∼ f1 + f2 + (1|G)) (lme4 )

MODELS FOR A CONTINUOUS VARIABLE AND FACTORS

analysis of covariance lm(y ∼ x1 + x2 + f1 + f2) ,
ols(y ∼ x1 + x2 + f1 + f2)
(Design package)

mixed-effects analysis of covariance lmer(y ∼ x1 + x2 + f1 + f2 +
+ (1|Subject) + (1|Item))
(lme4 package)

TESTS AND MODELS FOR COUNTS
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contingency tables chisq.test(), fisher.test()
proportions test prop.test()
generalized linear models glm(cbind(s, f) ∼ x1 + f1,

family = "binomial")
logistic regression lrm(y ∼ x1 + f1)

(Design package)
mixed-effects logistic regression lmer(y ∼ x1 + f1 +

+ (1|Subject) + (1|Item),
family = "binomial")
(lme4 package)

MODEL SUMMARIES AND MODEL CRITICISM

coefficients coef()
t-tests coefficients summary()
sequential F -tests anova() (lm(), aov(), lmer() )
marginal F -tests anova() (ols(), lrm() )
multiple comparisons TukeyHSD()
predicted values predict()
fitted values fitted()
residuals resid()
fixed effects fixef() (lme4 package)
random effects ranef() (lme4 package)
p-values for lmer() pvals.fnc(), aovlmer.fnc()
outliers dfbetas(), which.influence() ,

dffits()
collinearity kappa(), collin.fnc()
bootstrap validation validate() (Design package)
Markov chain Monte Carlo sampling mcmcsamp()
Highest Posterior Density intervals HPDinterval() (coda package)

WORD FREQUENCY DISTRIBUTIONS

empirical vocabulary growth curve growth.fnc()
rank-frequency distribution zipf.fnc()
load frequecy spectrum read.spc() (zipfR package)
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create spectrum object spc() (zipfR package)
load vocabulary growth curve read.vgc() (zipfR package)
fit LNRE model lnre() (zipfR package)
plot growth curves plot.vgc() (zipfR package)

CLUSTERING

principal components analysis prcomp()
factor analysis factanal()
correspondence analysis corres.fnc()
multidimensional scaling cmdscale()
hierarchical cluster analysis hclust() (agglomerative)

diana() (divisive)
nj() (unrooted trees)

CLASSIFICATION

classification trees rpart()
discriminant analysis lda() (MASSpackage)
support vector machines svm() (e1071 package)

PROGRAMMING

for loop for (i in vec)
define new function function()
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Index

DATA SETS

affixProductivity, 127
alice, 70
auxiliaries, 112
beginningReaders, 315, 327
dative, 4, 34, 160, 303
durationsGe, 126
durationsOnt, 80, 126
dutchSpeakersDistMeta, 146
dutchSpeakersDist, 146
english, 45, 46, 126, 185, 214, 250
etymology, 229, 260
faz, 234
finalDevoicing, 178, 349
havelaar, 55
heid, 17, 45
imaging, 262
latinsquare, 290
lexdec, 26, 264
lexicalMeasures, 149, 178, 343
nesscg, 261
nessdemog, 261
nessw, 261
oldFrenchMeta, 139, 174
oldFrench, 139, 174
periphrasticDo, 239
phylogeny, 154
primingHeid, 309
ratings, 22, 89, 181
regularity, 179, 222
selfPacedReadingHeid, 312, 327
sizeRatings, 328, 365
spanishFunctionWords, 345
spanishMeta, 20, 167, 329

spanish, 168
twente, 253
variationLijk, 144
verbs, 4, 33
ver, 76
warlpiri, 45, 328, 330
weightRatings, 43
writtenVariationLijk, 321, 328

R

$, 6, 13, 97
&, |, 9
∼, 13
|, 9, 41
∧, 103
∧, 185
-> (assignment), 3
: (sequence operator), 8
<- (assignment), 3
== (equality), 9
= (assignment), 3, 9
HPDinterval() , 270
I() , 103
MASSpackage, 23, 105
N() , 255
TukeyHSD() , 114
Vm() , 261
.RData , 1, 19
.Rhistory , 1, 19
abline() , 64, 77, 92, 94
abs() , 207
aggregate() , 17, 286
anova() , 113, 183, 219, 222, 275
aov() , 115, 116, 287
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apply() , 296, 308
as.character() , 10, 38
as.dist() , 147
as.factor() , 10
as.numeric() , 55, 142
attach() , 319
attr() , 66
barplot() , 22, 33
biplot() , 134
boxplot() , 31
bwplot() , 46, 84
c() , 7
cat() , 209
cbind() , 107, 215
cex , 38
chisq.test() , 80, 122, 177, 188, 217
cluster package, 152
cmdscale() , 147
coda package, 270
coef() , 93
collin.fnc() , 200
colnames() , 9
col , 22
compare.richness.fnc() , 245, 246, 261
confint() , 124
consensus() (ape package), 159
contr.treatment() , 110
cor() , 98, 150, 189
cor.test() , 98, 150
corres.fnc() , 140
corsup.fnc() , 144
cut() , 70
cutree() , 152
data.frame() , 20, 70, 97
datadist() , 186
dbinom() , 51, 52, 57
demo() , 108
density() , 26, 27, 108, 189, 207
detach() , 23
dev.off() , 26
deviance() , 238
dfbetas() , 207

dffits() , 207
diag() , 176
diana() , 148, 152
dist() , 139, 152
dnorm() , 63
dpois() , 57
dt() , 68
e1071 package, 174
equal.count() , 45
example() , 6
exp() , 5
fastbw() , 204, 350
fisher.test() , 122
fitted() , 119, 188, 269, 324
fixef() , 318
glm() , 215
grid::grid.prompt() , 265
growth.fnc() , 244
hclust() , 148, 152
head() , 4, 245
help() , 6
install.packages() , 23
jitter() , 79, 84, 338
jpeg() , 25
kappa() , 200
kde2d() , 108
kruskal.test() , 116
ks.test() , 79
lattice , 264
lattice (package), 132
lda() , 168
length() , 20, 46, 67
levels() , 13
library() , 23
lines() , 28, 64, 119
list() , 17
lm() , 93, 116, 181, 191, 285
lmList() , 295
lmer() , 264
lmsreg() , 99
lnre() , 254, 356
lnre.spc() , 255
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lnre.vgc() , 257, 357
log() , 5
lowess() , 38, 100
lrm() , 230, 260, 303, 349
lty , 64
make.reg.fnc() , 293
manova() , 171
max() , 23
mcmcsamp() , 270
mean() , 16, 23
median() , 23
merge() , 18
mfrow() , 192
mfrow , 25
min() , 23, 319
mosaicplot() , 35, 45
mtext() , 30
mvrnorm() , 105
mvrnormplot.fnc() , 96
names() , 129
nchar() , 12
nj() (ape package), 155
nodelabels() (ape package), 159
nrow() , 15
objects() , 19
ols() , 186
options() , 186
order() , 11
ordered() , 229
pairs() , 40, 178
pairscor.fnc() , 178, 341
panel.abline() , 271
panel.xyplot() , 271
par() , 25
paste() , 31
pbinom() , 52, 55, 57
pchisq() , 69, 73, 80
pdf() , 25
pentrace() , 225
persp() , 108
pf() , 68, 73
plclust() , 152

plot() , 28, 162
plot.logistic.fit.fnc() , 305
plot.xmean.ordinaly() , 232
plotcp() , 164
png() , 25
pnorm() , 63, 64, 79
pol() , 191
postscript() , 25, 26
ppois() , 57
prcomp() , 129, 202
predict() , 103, 165, 170, 219
prop.clades() , 159
prop.table() , 15, 120
prop.test() , 177, 347
prune() , 164
pt() , 68, 73
pvals.fnc() , 270
q() , 19
qbinom() , 52, 55, 57
qnorm() , 63
qpois() , 57, 71
qqline() , 189
qqmath() , 264
qqnorm() , 77, 189, 207
qt() , 68, 251
quantile() , 30, 56, 71, 189, 308
quasiF.fnc() , 286
ranef() , 268
range() , 23, 28
rbind() , 203
rbinom() , 52, 54, 57
rcs() , 194
read.table() , 5
resid() , 188, 232
rlnorm() , 108
rm() , 19
rnorm() , 63, 88, 123
round() , 56, 60, 100
rownames() , 9
rpart() , 162
rpois() , 57, 108
rt() , 68
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scale() , 66, 315
scan() , 243
sd() , 66, 189
seq() , 31, 54, 103, 319
simulateLatinsquare.fnc() , 292
simulateRegression.fnc() , 298
simulateSplitPlot.fnc() , 288
somers2() , 166, 305
sort() , 12
spc() , 253, 356
splom() , 132
sqrt() , 4
substr() , 119
sum() , 15
summary() , 96, 130
svm() , 174, 179
t() , 168
t.test() , 81, 85, 89, 112
table() , 46
tail() , 245
tapply() , 16, 87, 116
text() , 38, 162
tolower() , 243, 354
toupper() , 155
truehist() , 25, 46
unique() , 18
update() , 226
validate() , 212
var() , 67
var.test() , 88
varclus() , 200
which.influence() , 207
wilcox.test() , 81, 87, 89, 91
with() , 17
write.table() , 5
xaxt , 30
xlab , 22
xlim , 28
xtabs() , 13, 45, 46, 54, 71
xylowess.fnc() , 43
xyplot() , 43
ylim , 28

zipf.fnc() , 249

TOPIC INDEX

α-level, 73, 114
agglomerative clustering, 148
Akaike Information Criterion, 225
alternative hypothesis, 81
analysis of covariance, 117
analysis of variance, 110, 115
anticonservative, 270
arithmetic operators, 2
assignment (=, <-, -> ), 3

bar plot, 22, 33
bimodal, 333
bimodal density, 83
bimodal distribution, 77
binomial distribution, 216, 322
binomial random variable, 49
biplot, 134, 139
bivariate standard normal distribution, 94
BLUP, 269
Bonferroni correction, 114
bootstrap, 158, 212, 224
boxplot, 31
breakpoint, 237
British National Corpus, 261
Brown corpus, 48
by-item regression, 294

canceling a command (CONTROL-C, ESC), 2
CART analysis, 161
CELEX, 47
celex, 17
χ2-distribution, 68
chi-squared distance, 139
chi-squared test, 80, 122
classification, 160
classification trees, 161
clustering, 160
coefficients, 93
collinearity, 198
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comments (#), 3
conditioning plot, 43
confidence interval, 81, 86
confidence intervals, 124, 250
confound, 298
contingency table, 13, 139
continuous distribution, 79
continuous random variable, 47, 61
correlation, 94
correlation coefficient, 94
correlation matrix, 135, 150
correlation test, 98
correspondence analysis, 139
cost-complexity pruning, 163
covariance, 107
covariance matrix, 135
CRAN, vi
cross-entropy, 146
cross-validation, 172, 176
crossed, 283
cumulative distribution function, 55, 57, 64,

68

data frame, 5
dative alternation, 4
deciles, 30
default level, 111
degrees of freedom, 67, 76
density estimation, 26
dependent variable, 14
deviance residuals, 217
dfbetas, 207
dffits, 207
discrete random variable, 47
distance matrices, 139
distances, 146
divisive clustering, 148
dummy coding, 110, 260
Dutch, 17, 45, 55, 76, 80, 112, 178, 221

eigenvalue rates, 141
encapsulated PostScript, 26
English, 4, 185, 261

equality, 9
error stratum, 287
explained variance, 96

F -distribution, 68
factor, 10
factor analysis, 135
factor rotation, 137
fast backwards elimination, 204
Fisher’s exact test of independence, 122
fitted values, 119
for loop, 108, 209
formula, 13, 93, 118
fractional degrees of freedom, 86
frequency function, 51
frequency spectrum, 252
functions, 4

generalized linear mixed model, 303
generalized linear model, 215
generalized linear models, 214
German, 234
graphical parameters: see par() , 25
grid prompt, 265
grouping factor, 40
grouping operator, 41
growth curve of the vocabulary, 244

hapax legomena, 244
Herdan’s law, 247
heteroskedasticity, 35, 207
high-density line, 51, 54
highest posterior density intervals, 270
histogram, 22, 25

independent random variables, 82
independent variable, 14
index of concordance, 305
indicator variable, 237
inflation in surprise, 114
interaction, 45, 118, 166, 182
intercept, 64, 92, 111
inverse, 55, 64

jitter, 84
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jpeg, 25

knots (of spline), 194
Kolmogorov-Smirnov test, 79, 84
Kruskal-Wallis rank sum test, 116

latent semantic analysis, 137
latent variable, 138
Latin Square design, 290
law of large numbers, 251
least squares, 186
least squares regression, 93
levels (of a factor), 10
leverage, 207
lexical richness, 244
linear combination, 104
linear discriminant analysis, 168
linear discriminants, 167
linear model, 93, 104
linearity assumption, 103
link function, 215
list, 16
LNRE distributions, 251
loadings, 134
log link function, 322, 323
logarithmic transformation, 33, 76, 100
logit, 215
lognormal distribution, 244
lognormal random variable, 108
lognormal-Poisson distribution, 108
long data format, 5, 221

Markov chain Monte Carlo sampling, 270
maximum likelihood, 214
mean, 62
mean squared error, 213
median, 23, 30
missing data, 142
mixed-effects regression, 294
mode, 23, 333
model criticism, 76
model likelihood, 223
mosaic plot, 35, 121, 331
multicollinearity, 40

multidimensional scaling, 146
multimodal, 152
multiple comparisons, 114
multivariate analysis of variance, 171
multivariate data, 127

negative subscripting, 40
neighbor joining, 155
nested, 284
noise, 79
non-parametric test, 82
non-sequential ANOVA table, 192
normal distribution, 62
null deviance, 223
null-deviance, 217
null-hypothesis, 73, 81, 124

one-tailed test, 75, 76, 81, 316
one-way analysis of variance, 110
optimism, 213
ordered factor, 229
ordinal logistic regression, 227
orthogonal predictors, 198
outliers, 29, 99, 100, 207, 208, 338
overdispersion, 218

paired t-test, 89
paired observations, 89
paired random variables, 82
parabola, 103
parameters of the binomial distribution, 49
parametric test, 82
partial effects, 192
partitioning, 148
pdf, 25
penalized maximum likelihood estimation,

225
penalty, 225
perspective plot, 108
phylogenetic classification, 154
phylogeny estimation, 155
png, 25
Poisson, 57
Poisson distribution, 57, 58, 108, 322
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polynomial, 191
population, 49
population probabilities, 51
posterior distribution, 270
PostScript, 25
power, 74, 82, 288
predictor, 14
principal components analysis, 128, 178
probability, 47
probability density function, 51, 57, 69
probability distribution, 22, 47
probability of failure, 49
probability of success, 49
productivity, 127
prompting, 265
proportional odds model, 232
proportions test, 177

quadratic term, 103
quantile function, 55, 57, 64
quantile-quantile plot, 56, 77
quartiles, 30
quasi-F , 286

ρ, 94
r, 94
rs, 98
R-squared, 96
random intercepts, 269
random noise, 123
random number generator, 57
random numbers, 54, 88
random regression, 295
random slopes, 270
random variable, 21, 47
rank-frequency step function, 250
recursive partitioning, 161
reference level, 111
register variation, 127
regression line, 94
regression towards the mean, 302
rejection regions, 81
relative frequency, 47

remainder operator, 70
repeatable factors, 263
residual deviance, 218, 223
residual standard error, 97, 188
residuals, 188
restricted cubic spline, 194
rotation matrix, 132

S-PLUS, viii
sample, 49, 54
scatterplot, 35, 91
scatterplot matrix, 38
scatterplot smoother, 38, 43
semantic transparency, 83
sequence, 8
sequential ANOVA table, 183
Shapiro-Wilk test for normality, 78, 81
shingle, 45
shrinkage, 225, 299, 302
significance level, 73
simple main effect, 181
skew, 76
skewed distributions, 81
skewness, 100
slope, 64, 92
Somers’ Dxy, 305
sorting, 11
Spearman correlation, 98, 152
split-plot design, 284
standard deviation, 62, 130
standard error, 97
standard normal distribution, 62, 66
standardization, 65
statistical significance, 73, 123
string, 8
subscripting, 6, 7, 140
supervised methods, 127
supplementary data, 144
supplementary rows, columns, 144
support vector machines, 173

t-distribution, 67
t-test, 80, 85, 112
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t-value, 97
test statistic, 73, 78–81
tick marks, 30
ties, 79, 84
tokens, 243
treatment, 298
treatment coding, 111
Tukey’s HSD test, 114
two-tailed test, 75, 76
type I error rate, 288
type-token ratio, 244, 245
types, 243

uniform random variable, 62
unsupervised methods, 127

validation, 212, 224
variance, 67
vector, 6–8
vocabulary growth rate, 244
vocabulary richness, 244

Warlpiri, 45, 328, 331
Welch t-test, 86
Wilcoxon test, 81, 87, 91
WordNet, 22

Zipf’s law, 248
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M. S. Spassova. Las Marcas Sintácticas de Atribución Forense de Autorı́a de Textos Es-
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