ABOUT THE CATEGORIES OF
SEGAL TOPOLOGICAL ALGEBRAS

MART ABEL

Tallinn University and University of Tartu

ESTONIA
Definition 1. We say that a topological algebra \((A, \tau_A)\) is a left (right or two-sided) Segal topological algebra in a topological algebra \((B, \tau_B)\) via an algebra homomorphism \(f : A \to B\), if

1) \(\text{cl}_B(f(A)) = B\);
2) \(\tau_A \supseteq \{f^{-1}(U) : U \in \tau_B\}\), i.e., \(f\) is continuous;
3) \(f(A)\) is a left (respectively, right or two-sided) ideal of \(B\).
Definition 1. We say that a topological algebra \((A, \tau_A)\) is a left (right or two-sided) Segal topological algebra in a topological algebra \((B, \tau_B)\) via an algebra homomorphism \(f : A \to B\), if

1) \(\text{cl}_B(f(A)) = B\);
2) \(\tau_A \supseteq \{f^{-1}(U) : U \in \tau_B\}\), i.e., \(f\) is continuous;
3) \(f(A)\) is a left (respectively, right or two-sided) ideal of \(B\).

In what follows, a Segal topological algebra will be denoted shortly by a triple \((A, f, B)\) and could be left, right or two-sided.
The category $S(B)$ of Segal topological algebras
The category $S(B)$ of Segal topological algebras

Fix any topological algebra (B, τ_B).
The category $S(B)$ of Segal topological algebras

Fix any topological algebra (B, τ_B).

The objects of the category $S(B)$ are all Segal topological algebras in the topological algebra B, i.e., all Segal algebras in the form of triples $(A, f, B), (C, g, B),$
The category $S(B)$ of Segal topological algebras

Fix any topological algebra (B, τ_B).

The objects of the category $S(B)$ are all Segal topological algebras in the topological algebra B, i.e., all Segal algebras in the form of triples $(A, f, B), (C, g, B), \ldots$.

The morphisms between Segal topological algebras (A, f, B) and (C, g, B) are all continuous algebra homomorphisms $\alpha : A \to C$, satisfying $g(\alpha(a)) = (1_B \circ f)(a) = f(a)$ for every $a \in A$, i.e., making the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
C & \xrightarrow{g} & B \\
\end{array}
\]

commutative.
The composition of morphisms of $S(B)$ is defined componentwise as follows:
The composition of morphisms of \(S(B) \) is defined componentwise as follows:

for any \((A, f, B), (C, g, B), (E, h, B) \in \text{Ob}(\textbf{Seg})\) and arbitrary algebra homomorphisms \(\alpha : A \to C \), \(\gamma : C \to E \) such that \(g \circ \alpha = f \) and \(h \circ \gamma = g \), the composition of \(\gamma \) and \(\alpha \) is \(\gamma \circ \alpha \)

\[
\begin{align*}
A & \xrightarrow{f} B \\
\alpha \downarrow & \downarrow 1_B \\
C & \xrightarrow{g} B \\
\gamma \downarrow & \downarrow 1_B \\
E & \xrightarrow{h} B
\end{align*}
\]

\[
h \circ (\gamma \circ \alpha) = f.
\]
The category \textbf{Seg} of Segal topological algebras
The category Seg of Segal topological algebras

The objects of the category Seg are all Segal topological algebras.
The category Seg of Segal topological algebras

The objects of the category Seg are all Segal topological algebras. The morphisms between Segal topological algebras (A, f, B) and (C, g, D) are all such pairs (α, β) of continuous algebra homomorphisms $\alpha : A \to C$ and $\beta : B \to D$, for which $g \circ \alpha = \beta \circ f$.
The category Seg of Segal topological algebras

The objects of the category Seg are all Segal topological algebras. The morphisms between Segal topological algebras (A, f, B) and (C, g, D) are all such pairs (α, β) of continuous algebra homomorphisms $\alpha : A \to C$ and $\beta : B \to D$, for which $g \circ \alpha = \beta \circ f$.

Hence, in case $(A, f, B), (C, g, D) \in \text{Ob}(\text{Seg})$ and $(\alpha, \beta) \in \text{Mor}((A, f, B), (C, g, D))$, we have a commutative diagram

$$
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{\alpha} & & \downarrow{\beta} \\
C & \xrightarrow{g} & D
\end{array}
$$
The composition of morphisms of Seg is defined componentwise as follows:
The composition of morphisms of \(\text{Seg} \) is defined componentwise as follows:

for any \((A, f, B), (C, g, D), (E, h, F) \in \text{Ob}(\text{Seg}) \) and arbitrary morphisms \((\alpha, \beta) : (A, f, B) \to (C, g, D), (\gamma, \delta) : (C, g, D) \to (E, h, F) \), the composition of \((\gamma, \delta) \) and \((\alpha, \beta) \) is \((\gamma, \delta) \circ (\alpha, \beta) = (\gamma \circ \alpha, \delta \circ \beta) \).

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow \alpha & & \downarrow \beta \\
C & \xrightarrow{g} & D \\
\downarrow \gamma & & \downarrow \delta \\
E & \xrightarrow{h} & F
\end{array}
\]

\[
h \circ (\gamma \circ \alpha) = (\delta \circ \beta) \circ f.
\]
An object O of the category C is called
An object O of the category \mathcal{C} is called
a) the **initial object** of the category \mathcal{C} if for any object $C \in \mathcal{C}$ the set $\text{Mor}(O, C)$ consists of exactly one morphism;
An object O of the category C is called
a) the initial object of the category C if for any object $C \in C$ the set $\text{Mor}(O, C)$ consists of exactly one morphism;
b) the terminal object of the category C if for any object $C \in C$ the set $\text{Mor}(C, O)$ consists of exactly one morphism;
An object O of the category C is called
a) the initial object of the category C if for any object $C \in C$ the set $\text{Mor}(O, C)$ consists of exactly one morphism;
b) the terminal object of the category C if for any object $C \in C$ the set $\text{Mor}(C, O)$ consists of exactly one morphism;
c) the zero object of the category C if O is both initial and terminal object of the category C.
Suppose that we have two objects A, B of category \mathcal{C} and two morphisms $f, g \in \text{Mor}(A, B)$.

d) The equalizer of morphisms f and g is the pair (O, m), where $O \in \text{Ob}(\mathcal{C}), m \in \text{Mor}(O, A)$ such that $f \circ m = g \circ m$ and for every pair (X, q) with $X \in \text{Ob}(\mathcal{C}), q \in \text{Mor}(X, A)$ and $f \circ q = g \circ q$, there exists a unique $p \in \text{Mor}(X, O)$ such that $q = m \circ p$;
Suppose that we have two objects A, B of category \mathcal{C} and two morphisms $f, g \in \text{Mor}(A, B)$.

d) The equalizer of morphisms f and g is the pair (O, m), where $O \in \text{Ob}(\mathcal{C})$, $m \in \text{Mor}(O, A)$ such that $f \circ m = g \circ m$ and for every pair (X, q) with $X \in \text{Ob}(\mathcal{C})$, $q \in \text{Mor}(X, A)$ and $f \circ q = g \circ q$, there exists a unique $p \in \text{Mor}(X, O)$ such that $q = m \circ p$;

\[
\begin{array}{ccc}
O & \xrightarrow{m} & A & \xrightarrow{f} & B & \xrightarrow{n} & P \\
\uparrow{p} & & \downarrow{q} & \xrightarrow{g} & \downarrow{r} & \downarrow{s} & \\
X & & & & & & Y
\end{array}
\]

e) the coequalizer of morphisms f and g is the pair (P, n), where $P \in \text{Ob}(\mathcal{C})$, $n \in \text{Mor}(B, P)$ such that $n \circ f = n \circ g$ and for every pair (Y, r) with $Y \in \text{Ob}(\mathcal{C})$, $r \in \text{Mor}(B, Y)$ and $r \circ f = r \circ g$, there exists a unique $s \in \text{Mor}(P, Y)$ such that $r = s \circ n$.
The **equalizer** of morphisms $\alpha, \beta \in \text{Mor}((A, f, B), (C, g, B))$ is a pair $((E, h, B); \epsilon)$ such that

1) $(E, h, B) \in \text{Ob}(S(B))$ and $\epsilon \in \text{Mor}((E, h, B), (A, f, B))$ with $\alpha \circ \epsilon = \beta \circ \epsilon$;

2) for any pair $((D, j, B); \delta)$ with $(D, j, B) \in \text{Ob}(S(B))$ and $\delta \in \text{Mor}((D, j, B), (A, f, B))$ with $\alpha \circ \delta = \beta \circ \delta$, there exists unique $\gamma \in \text{Mor}((D, j, B), (E, h, B))$ with $\epsilon \circ \gamma = \delta$:

```
D ----> j ----> B
|        |        |
|        |        |
|        |        |
|        |        |
|        |        |
E ----> h ----> B
|        |        |
|        |        |
|        |        |
|        |        |
|        |        |
A ----> f ----> B
|        |        |
|        |        |
|        |        |
|        |        |
|        |        |
C ----> g ----> B
```
Let A, B, C be any objects of a category C and $f : B \to A, g : C \to A$ any morphisms in C.

f) The pullback of morphisms f and g is an ordered triple (P, α, β) such that P is an object of C, $\alpha : P \to B, \beta : P \to C$ are the morphisms in C such that $f \circ \alpha = g \circ \beta$ and for every ordered triple (Y, γ, δ) with Y and object of C, $\gamma : Y \to B, \delta : Y \to C$ morphisms in C with $f \circ \gamma = g \circ \delta$, there exists a unique morphism $\epsilon : Y \to P$ such that $\gamma = \alpha \circ \epsilon$ and $\delta = \beta \circ \epsilon$.
Let A, B, C be any objects of a category C and $f : A \to B$, $g : A \to C$ any morphisms in C.

g) The pushout of morphisms f and g is an ordered triple (P, α, β) such that P is an object of C, $\alpha : B \to P$, $\beta : C \to P$ are the morphisms in C such that $\alpha \circ f = \beta \circ g$ and for every ordered triple (Y, γ, δ) with Y and object of C, $\gamma : B \to Y$, $\delta : C \to Y$ morphisms in C with $\gamma \circ f = \delta \circ g$, there exists a unique morphism $\epsilon : P \to Y$ such that $\gamma = \epsilon \circ \alpha$ and $\delta = \epsilon \circ \beta$.
Let \((A, f, B), (C, g, D), (E, h, F)\) be any objects of \textbf{Seg}, \((\alpha, \beta) \in \text{Mor}((E, h, F), (A, f, B)), (\gamma, \delta) \in \text{Mor}((E, h, F), (C, g, D))\). An object \((Q, k, R)\) of the category \textbf{Seg}, together with morphisms \((\kappa, \lambda) \in \text{Mor}((A, f, B), (Q, k, R)), (\mu, \nu) \in \text{Mor}((C, g, D), (Q, k, R))\), is the pushout of morphisms \((\alpha, \beta)\) and \((\gamma, \delta)\), if

1) \((\kappa, \lambda) \circ (\alpha, \beta) = (\mu, \nu) \circ (\gamma, \delta)\);

2) for every \((S, l, T) \in \text{Ob}((\textbf{Seg})\), \((\sigma, \rho) \in \text{Mor}((A, f, B), (S, l, T)), (\omega, \phi) \in \text{Mor}((C, g, D), (S, l, T))\) with \((\sigma, \rho) \circ (\alpha, \beta) = (\omega, \phi) \circ (\gamma, \delta)\), there exists unique \((\psi, \xi) \in \text{Mor}((Q, k, R), (S, l, T))\) such that \((\psi, \xi) \circ (\kappa, \lambda) = (\sigma, \rho)\) and \((\psi, \xi) \circ (\mu, \nu) = (\omega, \phi)\).
Overview of the progress so far

<table>
<thead>
<tr>
<th></th>
<th>$S(B)$</th>
<th>Seg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial object</td>
<td>NASC</td>
<td>Always exists</td>
</tr>
<tr>
<td>Terminal object</td>
<td>NASC</td>
<td>Always exists</td>
</tr>
<tr>
<td>Zero object</td>
<td>NASC</td>
<td>Always exists</td>
</tr>
<tr>
<td>Equalizer</td>
<td>NASC</td>
<td>SC</td>
</tr>
<tr>
<td>Coequalizer</td>
<td>Always exists</td>
<td>Always exists</td>
</tr>
<tr>
<td>Pullback</td>
<td>NASC</td>
<td>SC</td>
</tr>
<tr>
<td>Pushout</td>
<td>Always exists</td>
<td>SC</td>
</tr>
<tr>
<td>Product</td>
<td>NASC</td>
<td>?</td>
</tr>
<tr>
<td>Coproduct</td>
<td>Always exists</td>
<td>SC</td>
</tr>
<tr>
<td>Limit</td>
<td>SC (for at most countable case)</td>
<td>?</td>
</tr>
<tr>
<td>Colimit</td>
<td>Always exists</td>
<td>?</td>
</tr>
</tbody>
</table>

NASC - necessary and sufficient conditions
SC - sufficient conditions
References

13. Abel, M. *Pushouts in the category* Seg *of Segal topological algebras.* Finished manuscript for the Proceedings of ICTAA 2021.