Tallinna Ulikool
Matemaatika-Loodusteaduskond

Informaatika osakond

Priit Valdmees

Ekstreemprogrammeerimine: Glevaade, praktikad ja
vordlus teiste
valedate arendusmeetoditega

Bakalaureusetdo
Juhendaja: Jaagup Kippar
AULOT: et e et e e e e e e e e ypeeeeeee e 2007
Juhendaja:c.oooviiiiiiii ypeerenes e, 2007
Oppetooli JUNAtAJA:cvoveeeeeeeeeeeeeeeeeee e yyenreenn e 2007

Tallinn 2007

Sisukord
SISSEJUHATUS
1 Sissejuhatus
1.1 Ajalugu
1.2 Péritolu
1.3 Hetkeseis....
1.4 Eesmargid ..
1.5 Viirtused....
1.5.1 Suhtlus
1.5.2 Lihtsus.

ekStreemprogrammeerimiSSeccueicessercssssrcssrsscssssssssssssssssssssssssssssssassses

1.5.3 TAGASISIACeooceeeeeeeeeiie ettt e e e et e et e e stte e e sbeeesbeeesseesnseeesnseeennseeenns

1.5.4 Julgus..

o505 TURPUUSTULS oo e e e e e e e e e et e naaaeeenanaeeenann 10

1.6 PGhimotted.

2 AT CNAUSPIOLSESS eueiersrricssrnecsssnesssasessassssssssssssssssssssssssssssassassssnas 12

2.1 Rollid..........
3 Tegevus.......

3.1 KOEEIIIMIE ..uveeieeeeiieieeeee ettt e ettt e e e e e et e aaa e e seeeeesasaaassesesesssssasnssseeeeeens 14

3.2 Testimine ...
3.3 Kuulamine .
3.4 Disainimine

4 Praktikad....

4.1 PaariSprogrammeEETIINIIE.ccueeerureeerireeeireeateeenteeesteeesseeensseeessseeessseesssseessseesssseessnnes 18

4.1.1 Kasud..
4.1.2 Kriitika

4.2 PlaanimiSIANGc.ueeeiuuieiiiieeeiieesitee ettt e et e esibeeesibeeesiteeesaaeeesbeessteesbteesabaeesbeeesabeeenanes 19

4.2.1 Redaktsioonide planeeriminecceeeecueeeeecuieeeeiiiieeesiieeeeesiseeeesssseeeessseseens 20

4.2.2 Iteratsioonide PlANEETIMINE.ccueeeeueeecieeeeiieeeieeesieeesteeesreeesareeeaeeesseeennnes 21

4.3 VAIKESEd redaKESIOONIA «.oovvenneeeeeeeeeeeeee et e e e e et eeeeeeeeeeeteeaeaeeeeeeeereanennaaeees 23

4.4 Metafoor

4.5 LLINENE ISAIIN c.eeevviiiieeee ettt e et ettt e e e e e e ee et aaa e seeeeeseasnanssseeesesssannss 24
4.6 KOIIEKLIIVIIE OIMIANA ... oeieeeieieeee et e e e e e e e et eeeaeeeeeeeeraeeaaeeeeeeeereanennaaeees 24

4.7 P1deV INLEETEETIIMINEeeeeiiieeiiieeiieeeieeeeieeesieeesieeesteeessbeeesseeesreeesneesnsneesnseeesnseeennses 24

4.8 Uhtne KOdeerimiSStANAATGeveeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e s e e e e eseeses e eeseeseeeeenes 25

4.9 MEESKONMNALOOeuuuueeeieieiiiieieeee e ee ettt eeeee et et eeetaa e e seeeettaaaareseeeeesssanaasseesesssrrannnss 25

4,10 SODIV LBIMPO ...ttt ettt ettt ettt ettt e st e e st e e sttt e e tbeeeabee s bt e e sbbeesabbeesabeeesabeeenans 25
4.11 DiSaini tATUSEAINIIIIE «...eeeuteeiieeiiieiieeieeet ettt ettt st e e et et e st e e bt e sate et e sateebeesaneens 25
4.12 Test-Juhitud arendUscc.eeeiiieiiiieeiieecie et et e e e eeaae e saaeeeseeeeaseeesnnes 26
T ESHIIMISPIOLSESS cvveeersaressnncssanncssansossanesssasesssasesssssesssssesssssesssssessssssssasssssasssssasssssasssssasssss 27
5.1 AUtOMAALEESTIA. ...ccuveieeiieiieeie ettt ettt st 27
5.1.1 Lihtsustab muudQtuste teGEMIST..........ccueeevueeeiureeiieeeiireesiaeeesseeesseeesreessseessseeennnes 27
5.1.2 LiNtSUSTAD INEEQTEETIIMISTeeeeeeeeeeeiee et eeeeeee s e e saeeeebaeeasaeesaaesnseeennseeennnes 27
5.1.3 DOKUMEIIALSTOON ...ttt ettt ettt st e st e et e e 28
5.1.4 Kasutajaliidese eristamine rakendUSeStccuuueeeeeueeeeeiiueeeeesiieeeeeeieeeeeniseeeens 28
5.1.5 AutomaatteStide PIiiTANGUAccccueeeeueeeiieeeiieeeiieeeieeesreeesreeesaaeeeaeeesaeeenens 29
5.1.6 Automaattestimise rAKeNAUSEdcccuueeeueeeeiieeiiiesieeeeieeesieeeseeeeieeeeaee e 29
0L 7 TORRIKQ ...ttt ettt ettt et ettt 29
5.2 IntegratSIOONILESTIA ...o..veeiriiiiiiiie ittt ettt st e s 30
5.2.1 IntegratSioONiteStide €ESMATK cccuveeecueeeieeeeeieeeieeesieeesteeesreeesareeeareesseeeeens 30
5.3 SUSLEEMILESTIAeeueieeeieeiieeiteeit et ettt ettt et e st e et esaaeebeesaneens 31
5.3.1 Terve SUHSteEMI [ESTIMINEccovueeeiieeeiieeeite et eie e st e et e et e st e st e e s e s nanes 31
5.4 SODIVUSIESTIA. ..c..eeeuiiiiiieiieeieeee ettt ettt ettt ettt e s e neesane e 32
Su4i] PTOTSESS.c...eeeeeeeeeeeeee ettt ettt e e e e e e ettt e e ettt e e e et e e e et e e e e e bt e e e e anraaeean 32
Vastuolulised aspektid.......ccceevrecsserccssercsssarcsssancssnscssssscssssssssssssssssssssssssssssssssssssssassssases 33
6.1 Ebastabiilsed NOUAEccc.coviiiiiiiiiiiieieeceeeee e 33
6.2 Kasutajate KONFIKEIAc.ooiiiiiiiiiiiee e 33
6.3 TeiSed ASPEKLIA ..ee.vvveeiiieeiie ettt ettt e e et e et e e estbaeetaeeeabeeensaeeensaeennneeas 33
6.4 MODACLAVUS ...ttt ettt ettt ettt et ettt e s bt e et e e sa bt s bt e sbteeabeesaaeebeesaneens 34
6.5 Vaidlus TAAMALUSco.eiiiiiiiiiiieeieeie ettt ettt ettt e sbte et e et e beesaaeeas 34
6.6 Ekstreemprogrammeerimise €VOIULSIOONeeevvieeriieeiiieeniieeiiee e 35
6.7 Uhendatud metoodiKad...............cevveevevieereeeceeieeeeeicee et 35
Erinevate villedate arendusmeetodite VOrdlus.........ceeeveeeveecseessencsnnssnnssnncsnecsencsanns 36
7.1 Rationali unifitseeritud arendUSPIOLSESSccvvurerrureerrireerirreerieeenreeesreeensreessneessreesseens 36
7.2 Erisus-Juhitud QrendUscooovieiiiiiiiiieeiieeeieeeee et 37
7.3 Adaptiivne tarkvaraarendusceovveeeiiieeiiieeniie ettt 37
7.4 Diinaamiline stisteemiarendusSmeEetodcocueeriiriiiriiiiieinieeieere ettt 37
7.5 CTYSLAl CLRATveieiieeeiiie ettt etee ettt e et e e e e e st e e s sbee e sbaeesseeensseeensseesnsaeennsneennseeas 38
70 SCIUIN...ceiiiiiienie ettt ettt ettt et et st e bt e e et e e saeesbeesbteesneesaneeneenaneens 39

7.7 KOKKUVOLE VOIAIUSEST .. .eeiiiiiiiieeeeeeeeetitieeee e e ee ettt e e e e e e eeesaaeeeeseeeeesssanneseseessssnnnns 39

Ekstreemprogrammeerimise teooria ja praktilise projekti vordlus......ccccccceccarcccnnees 42

8.1 DIAGIamMIMIdcceiuiieeiiieeiiie ettt ee et e et e et e e e teeeeaeeessbeeessbeeesaeeesaeeeaaeeesaeens 42
8.2 KaSULAJAlOOcceiieiiiieeiiieeiie ettt ettt e e e et e et e e abaeear e e etaeeeaaaeenraeens 42
8.3 REAAKISIOONIAc.ueeiiiieiiieiiieieente ettt et 42
8.4 TLErALSIOONIA ..c..eiiiiiiieieete ettt ettt et 43
8.5 DISAINIMIINE. ..c...eeiuiieiiieieeeite ettt ettt ettt sat e et esab e et esab e et e e sbb e e bt e sbbeeabeesaeeenneenaee 43
8.6 FUNKLSIONAAISUSeoniiiiiiiiiiiiieeeeee ettt ettt e 43
8.7 REKOAEEIIIMINEeeiiieiiiiiiieieeete ettt sttt et e s e 43
8.8 Kliendi KORAIOIEKcocueiriiiiiiiiiiiiieeeee e 44
8.9 Kokkulepitud standardidcocueerieiiiiiiiiieieeeeeeee e 44
8.10 PaariSprogrammeEeTiIiNE.cccveerueeerreeeiieeeiteeesteessreessaeeesseeessseeessseesssseessssesssseeenns 44
8.11 PideV INtEEIEETIMINE.eeruieiriiieiriiieeiite et ee et e et e e st e e st e e st e e sabeeebbeesbaeesbeeesabeeeas 44
8.12 KolleKtiivne 0mandcoceeriieiiiniiiiierieeiesie ettt 44

B I3 TESTITIIIE ..ottt ettt et sat e et esab e et e s bt e e bt e sbbeeabeesaaeenneenaee 45
8.14 KOKKUVOLE VOTAIUSESE....eeiiiiiiieiiiiiieeeiiiieee ettt ettt et e e e e e e e sibaeeeenes 45
KOKKUVOLE .cuvieeirnicrnnsecssicsnnsncsancsanssncssnsssessnssssssssssesssessssssessssssssssesssssssssssssssssasssesssssssssssssasssns 46
VHIEE@ eueeeeiniiiisnecsnninnsencsnensenssncssissnsssnsssnsssssecsssssssssessssssssssessssssssssesssessssssssssessssssessasssssssasssssns 47
SUINIMATY cevvieeerarecssanesssancsssssssssssssssssssssssssasesssnas 49

SISSEJUHATUS

Tarkvara roll on muutunud aastatega inimeste seas oluliselt. Nii viiga kui me seda ka ei tahaks
uskuda — me oleme téielikult sdltuvuses tarkvarast. Tarkvara puudumine muudaks kasutuks
koik arvutid ja riistvara meie iimber. Tarkvara on midagi, millega oleme juba harjunud ning
milleta jddks meie elu seisma. Kuna aga iihiskond on pidevalt arenemas, siis peab ka

tarkvaratoostus sellega kaasas kiiima — arendades jérjest uusi meetmeid ning lahendusi.

Erinevaid metoodikaid on tekkinud palju ja nende hulgas orienteerumine ning selle dige
valimine muutub jérjest keerulisemaks. Lisaks valimisele vdib osutuda metoodika teoreetiline
pool eksitav. Tihtipeale on teoorias todtav metoodika osutunud reaalses ldhenemises

suhteliselt kasutuks, kuna teooria ning praktika on teineteisest lahku ldainud.

Tarkvaratehnika valdkonnas on hakanud viimastel aastatel populaarsust koguma erinevad

viledate (agile) arendusmeetodite esindajad.

Kuna viledaid arendusmeetodeid on mitmeid, siis sai teemaks valitud
ekstreemprogrammeerimine, tema pidevalt kasvavale populaarsusele arendajate seas, poneva

nime ning ka autori enda huvi pérast.

Eesmirgiks on luua pdgus iilevaade ekstreemprogrammeerimisest, selle praktikatest,
testimisest ning voOrdlus teiste viledate metoodikatega. Jouda jidreldusele, kas

ekstreemprogrammeerimine vadrib oma korget populaarsust tarkvaraarenduse maastikel.

To60 esimeses osas on antud {iildine iilevaade ekstreemprogrammeerimisest, selle pShimottest,
praktikatest ning testimisest. To0O teises osas on toodud esile ka teised viledate
arendusmeetodite tehnikad, antud iilevaade ning voOrreldud neid nii omavahel kui ka
ekstreemprogrammeerimisega, et selgitada head ja halvad kiiljed. Lisaks veel vordlus teooria
ning praktilise projekti vahel, selgitamaks, kas kirjas olev vastab reaalsele projektis

kasutatavale metoodikale.

1 Sissejuhatus ekstreemprogrammeerimisse

1.1 Ajalugu

Ekstreemprogrammeerimine (Extreme programming — XP) sai alguse Kent Becki, Ward
Cunninghami ja Ron Jeffriesi poolt ajal, mil nad tootasid Chrysler Comprehensive
Compensation System (C3) palgaarvestussiisteemi projekti kallal. Kent Beck médrati C3-e
projekti juhiks 1996. aasta mirtsis ning ta hakkas selles kasutatud arendusmetoodikat
viimistlema. Beck kirjutas kasutatud metoodikast raamatu ning 1999. aastal ilmus ,,Extreme
Programming Explaned” [Beck 1999]. Chrysler 16petas C3 projekti 2000. aasta veebruaris,
kuid metoodika jdi silma sel ajal tarkvara-arenduse maastikel. 2006. aasta seisuga on

ekstreemprogrammeerimise metoodika laialt kasutatav kogu maailmas [C2].

1.2 Paritolu

90. aastate tarkvaraarendust kujundasid pohiliselt kaks suuremat moju: sisemiselt, objekt-
orienteeritud programmeerimine vahetas vilja protseduurse programmeerimise; vilimiselt,
interneti areng ja veebilehekiilgede jérjest kasvav populaarsus hakkasid méingima firmade
arengus tdhtsat rolli. Kiirelt muutuvad nduded hakkasid tahtma liihemaid elutsiikleid ning tihti

jaadi viga kaugele traditsioonilistest tarkvaraarenduse metoodikatest.

Chrysler Comprehensive Compensation projekt algatati, kasutades palgaarvestussiisteemi kui
uurimusalust objekti ja Smalltalki programmeerimiskeelt, et selgitada parim viis, kuidas
kasutada objekt-tehnoloogiat. Kohale kutsuti Kent Beck, lootustandev Smalltalki praktikant,
et ta optimiseeriks siisteemi koodi. Aga Becki rolli suurendati, kui ta leidis moningaid
kiisitlevaid kohti arenduse protsessis. Ta kasutas vOoimalust ning lisas muudatusi, mida ta oli
eelnevalt kasutanud oma varasemas t60s koos Ward Cunninghamiga. Beck kutsus projekti ka

Ron Jeffriese, aitamaks arendada ja rafineerida uusi meetodeid.

Ekstreemprogrammeerimise pohimotteid ja praktikaid levitati laiale maailmale tol ajal 1dbi

arutelu Cunninghami WikiWikiWebis [C2].

Ekstreemprogrammeerimise mdistet on seletatud lahti mitmeid aastaid, kasutades XP
kodulehekiilge [XP 2] ning seal olevaid diagramme. Erinevad kaasaaitajad arutasid ja

laiendasid ideid ja tulemuseks olid moningad metoodika korvalsaadused.

Beck toimetas ka mitme ekstreemprogrammeerimise teemat késitleva raamatu kallal,
alustades enda ,Extreme Programming Explaned (/999), millega levitas oma ideid palju
suuremale ning ka vastuvotlikumale publikumile. Raamatus oli kisitletud erinevaid

ekstreemprogrammeerimise aspekte ning praktikaid.

1.3 Hetkeseis

Ekstreemprogrammeerimine tekitas péris palju drevust 90. aastate 10pus ja 2000. aasta
algusaegadel ning selle praegune kasutatavus erineb radikaalselt sellest, mis see alguses oli.
Viledate arendusmeetodite praktikad ei ole muutumatud olnud — ekstreemprogrammeerimine
areneb jitkuvalt, omandades aina enam rakendusi erinevate kogemuste teel. , Extreme
Programming Explaned” raamatu teises viljalaskes lisas Beck uusi viirtusi ning praktikaid,

eristamaks peamiseid ning jdreldatud praktikaid [XP 2].

1.4 Eesmargid

., Extreme Programming Explained” kirjeldab ekstreemprogrammeerimist kui [XP 2]:

o Piiiid tihendada inimlikkust ja tootlikkust
e Sotsiaalse muutuse mehhanism

e Teekond arenemise suunas

e Arenduse stiil

e Tarkvara arendamise viis

Ekstreemprogrammeerimise iiks eesmirke, lisaks kvaliteetse ning nduetekohase tarkvara
loomisele, on vihendada muudatuste maksumust. Traditsioonilistes
siisteemiarendusmeetodites fikseeritakse arendusprojekti nduded projekti alguses ning hiljem
neid muuta enam ei saa. Seega, hilisemad muudatuste tegemised projektis muutuvad
kulukaks. Ekstreemprogrammeerimine iritab vihendada muudatuste kulutusi, tutvustades
elementaarseid vidrtusi, pohimdtteid ning praktikaid. Ekstreemprogrammeerimise puhul on

siisteemi arendus paindlikum muudatuste suhtes [Beck 1999].

1.5 Vaartused

Ekstreemprogrammeerimises tunti algselt nelja véirtust. Uus, viies védrtus, lisati ,,Extreme

Programming Explained” raamatu teises viljalaskes. Need viis véirtust oleksid jargmised:

e Suhtlemine
e Lihtsus

e Tagasiside
e Julgus

e Tunnustus (viimasena lisatud)

1.5.1 Suhtlus

Arendusprotsessi efektiivsuse aluseks on suhtlus kdigi osapoolte vahel.

Tarkvarasiisteemide loomine nduab suhtlemist, et siisteemi loojad teaksid, mida tulevane
siisteem tegema peab. Tavapirasel tarkvaraarendusel kasutati selleks dokumentatsiooni.
Ekstreemprogrammeerimises seevastu aga dokumentatsiooni iildjuhul ei looda. Seda muidugi
ei tohiks sOna-sOnalt votta — ekstreemprogrammeerimises on dokumentatsiooniks erinevad
testid, normide kohaselt vormistatud ldhtekood ning erinevad kommentaarid.
Ekstreemprogrammeerimise tehnikat saab vaadelda kui tarkvara kiiret loomist ning
arendusmeeskonnavahelist teadmiste iihtlast jagamise metoodikat. Eesmérk on anda kdikidele

arendajatele iihine vaade siisteemist nii, nagu seda omavad tulevase siisteemi kasutajad.

Seega, ekstreemprogrammeerimine pooldab lihtsat disaini, tavalisi metafoore, koost6od
kasutajate ja programmeerijatega, tihedat verbaalset kommunikatsiooni ning tagasisidet [Beck

1999].

1.5.2 Lihtsus

Ekstreemprogrammeerimine julgustab kasutama lihtsamaid lahendusi, et hiljem oleks neid
kergem tdiustada. Erinevus sellise lihenemise ja tavakohase siisteemiarendusmeetodiga on
see, et keskendutakse disainile ja koodile, et see rahuldaks hetke ndudeid, mitte tulevasi.
Ekstreemprogrammeerimise pooldajad leiavad, et see on puudus, mis toob kaasa suuremaid
joupingutusi hiljem, kui vaja teha uusi muudatusi siisteemis. Koodi kirjutamine ja disainimine
hilisematele muutustele moeldes, tekitab riski, et raisatakse ressursse millegi peale, mida ei

lahe voib-olla kunagi tarvis.

Viidates suhtlemise mdistele, siis lihtsustamine disainis ning koodis endas peaks tdstma
suhtlemise kvaliteeti. Lihtne disain ning lihtne kood peaks olema arusaadav enamikele

programmeerijatele mingis kindlas meeskonnas [Beck 1999].

1.5.3 Tagasiside
Adekvaatne tagasiside aitab tarkvara tdiustada.
Ekstreemprogrammeerimise tagasiside viitab siisteemiarenduse erinevatele dimensioonidele:

o Tagasiside siisteemilt: Kasutades automaatteste voi perioodilisi integreerimisteste,
saavad programmeerijad otsest tagasisidet siisteemi olekust kohe pédrast muutuste sisse
viimist.

o Tagasiside kliendilt: Funktsionaalsuse testid (ehk sobivuse testid) on valmistatud
kliendi ja testijaga kooskdlas. Need annavad kindlat tagasisidet siisteemi kindlast
hetkeseisust. Ulevaade on planeeritud iga kahe voi kolme nidala tagant, seega saab

klient kergelt suunata arenduse kéiku.

o Tagasiside tiimilt: Kui klient pakub vélja uusi ndudeid plaanimismingu, siis
arendusmeeskond annab talle umbkaudse aja palju sellise ndude realiseerimine aega

voiks votta [Beck 1999].

Tagasiside on tihedalt seotud suhtluse ja lihtsustamisega. Vead siisteemis on kerged vilja
tulema, kui kirjutada automaatteste, mis toestavad, et kindel osa koodist ei toimi. Otsene
tagasiside siisteemilt annab programmeerijale teada, millist osa koodist tuleks timber kirjutada
voi tdiustada. Klient saab siisteemi testida perioodiliselt, vastavalt programmi

funktsionaalsuse nduetele.

1.5.4 Julgus

Méningased praktikad viljendavad julgust. Uks sellistest on kisk, et alati kirjutada koodi
vastavalt tdnastele nduetele, mitte homsetele. Selline tegevus hoiab dra koodi liiga suureks
kasvamise, mistottu on vaja palju suuremaid joupingutusi uute lisade lisamisel. Julgus lubab
arendajal tunda end vabamalt koodi timberloomisel. Teine néide julgusest on teadmine, et on
vaja kood nn ,,minema visata” — vana koodi asendamine tdiesti uuega: julgus eemaldada
ebavajalikku algkoodi, iikskdik kui palju vaeva selle valmistamiseks ka ei ldinud. Lisaks,
julgus tdhendab piisivust : programmeerija voib ithe probleemi juurde jddda terveks pdevaks,

ning lahendab selle alles jirgmine pdeval [Beck 1999].

1.5.5 Tunnustus

Tunnustuse viartus avaldub mitmel viisil: meeskonna litkkmed tunnustavad teineteist, kuna
programmeerijaid ei tohiks kunagi teha muudatusi, mis takistaks kompilatsiooni, mille tottu
automaattestid nurjuksid, voi muul moel venitaksid oma kaastootajate tooga. Liikmed
tunnustavad tood, piitides alati leida parimaid disainimislahendusi ning korget to6-kvaliteeti

[Beck 1999].

10

1.6 Pohimotted

Ekstreemprogrammeerimise peamised pohimotted baseeruvad eelnevalt kirjeldatud véartustel
ning on moeldud selleks, et siisteemiarendusel kerkiksid iiles erinevad valikud. PGhimotted on
moeldud olema palju konkreetsemad kui véértused ning samas ka lihtsamad selgitama

praktilisi olukordi.

Tagasiside on efektiivne, kui seda tehakse tihti. Tegevuse ja tema tagasiside vaheline aeg on
uurimiseks ning muudatuste tegemiseks oluline. Erinevalt traditsioonilistest
siisteemiarendusmeetoditest toimub ekstreemprogrammeerimises side kliendi vahel viikeste
iteratsioonide kaudu. Klienil on siis selge iilevaade arendatavast siisteemist. Klient saab anda

ka tagasisidet ning arendusprotsessi mojutada, kui vaja.

Automaattestid annavad suure panuse tagasiside pohimottele. Kui kirjutada koodi, siis
automaattest annab otsest tagasisidet sellest, kuidas siisteem reageerib muutustele. Nditeks,
kui muutused mojuvad siisteemi selles osas, mida too kindel programmeerija ei ole teinud,
siis el mérkaks ta viga. Voimalik, et sellised vead tuleksid vilja alles siis, kui siisteem on juba

tootmises.

,Eeldades lihtsust” tihendab, et igat probleemi kisitletakse kui ddrmiselt lihtsa lahendusega
asja. Traditsioonilises siisteemiarenduse meetodis planeeritakse hilisematele muudatustele

moeldes. Ekstreemprogrammeerimine sellist ideed ei kasuta.

Ekstreemprogrammeerimise pooldajad iitlevad, et korraga koiki suuri muudatusi teha pole hea

mote.

Ekstreemprogrammeerimine kasutab lisanduvaid muutusi: siisteemil vOib olla iga kolme
niddala tagant uus viljalase. Tehes palju viikeseid samme, saab klient rohkem kontrollida

arenduse protsessi ning arendatavat siisteemi.

Muutuste omaksvotu pohimdte seisneb selles, et ei tule olla muutuste vastu, vaid vastupidiselt
hoopis votta neid omaks. Nditeks, kui tuleb iteratsioonimiitingul vélja, et kliendi nduded on
rohkesti muutunud, siis programmeerija votab selle omaks ja planeerib uued nduded

jargmiseks iteratsiooniks [Informit].

11

2 Arendusprotsess

Ekstreemprogrammeerimise arendusprotsess (Joonis 1) koosneb iiksteisele jidrgnevatest
redaktsioonidest.

Iga redaktsiooni jdrel viiakse tarkvara iile iildisesse tookeskkonda. Esimene redaktsioon
kestab teistest kauem, kuna protsess nullist kuni esimese tookdlbuliku versioonini votab
rohkem aega. Uldjuhul 16peb projekt plaanitud ajal, olenemata, kas tellijal on veel soove.
Arendajate jaoks on ootel jairgmised projektid ning seega ei saa projektiga tegeleda seni, kuni
klient soovib. Klient voib esitada uued soovid tarkvara muutmiseks voi edasiarenduseks, kuid
seda voib lugeda juba uue projektina ning sellega tegeletakse siis, kui selle kord saabub. Iga
redaktsioon koosneb hulgast iteratsioonidest. Redaktsiooni pikkus on tavaliselt 1..3 kuud, iiks
iteratsioon kestab 1..3 néddalat. Esimene, teistest pikem redaktsioon kestab enamasti 2..6 kuud

[Beck 1999].

Kasutajalood Testistsenaariumid
‘ Jargmine
Nouded iteratsioon
\ ,
Redaktsiooni | Redaktsiooni lteratsioon . Tarkvarap YAaStuvoetavus Kiiendi Viljastamine
plaanimine plaan testid ndusolek kasutajatele

Joonis 1. Ekstreemprogrammeerimise lihtsustatud arendusprotsess [XP 2]

Iga redaktsioon algab selle planeerimisega, mille kdigus klient méédrab teostatavad
kasutajalood. Iga iteratsioon algab planeerimisega, kus valitakse hulk lugusid vilja selles

teostamiseks [XP 2].

2.1 Rollid

12

XP-metoodikas on olulised ka rollid, mida arendajad peavad tiditma. Kokku on miiratud

kaheksa rolli [Beck 2000].

1. Programmeerija (programmer), kes Kkirjutab testid ja realiseerib rakenduse, on

pohiline roll ekstreemprogrammeerimises.

2. Kasutaja (customer) kirjutab soovilugusid. Soovilugude vahendusel annab kasutaja

programmeerijale teada, mida on vaja teha.

3. Testija (tester) aitab kasutajal teha sobivusteste. Lisaks hoolitseb automaatsete testide

kaivitamise eest.

4. Jiljekiitt (fracker) jilgib arendustegevusega seotud numbrilisi viirtusi: mitu
ideaalpdeva on kulunud mingi iilesande realiseerimiseks; mitu iilesannet kédesolevas

nidalas on realiseeritud; mitu iilesannet on vaja veel realiseerida, et piisida graafikus jne.

5. Treener (coach) on vastutav kogu arendusprotsessi eest. Treener otsustab, kas
arendusmeeskond on graafikus (ning teeb diget asja) vOi mitte ja viib ellu muudatused

selleks, et meeskond jirjele saada.

6. Konsultant (consultant) tegeleb tehniliste erikiisimustega ja annab meeskonna

litkkmetele eelkdige tehnilist konsultatsiooni.

7. Suur juht (Big Boss) on meeskonna juht ja varustab meeskonda vajalike ressurssidega.
Peab omama projektist iildist pilti, olema kursis projekti seisuga. Uldjuhul

arendustegevusega ei tegele.

8. Vahemees (customer proxy) on kasutaja asemik, kui tegu on viga suuri inimestehulki

holmava tarkvaraga (tihtilugu tootejuht).

13

3 Tegevus

Ekstreemprogrammeerimine kirjeldab nelja peamist tegevust, mida tehakse tarkvaraarenduse

protsessi juures: kodeerimine, testimine, kuulamine, disainimine [Beck 1999].

3.1 Kodeerimine

Ekstreemprogrammeerimise pooldajad arvavad, et ainuke tdeline siisteemiarenduse protsessi

produkt on kood. Ilma koodita ei ole midagi.

Koodiks voivad olla joonistatud diagrammid, mis genereerivad koodi, veebipohiste

siisteemide skriptid vdi kompileerimist vajav kood.

Koodi saab kasutada ka selleks, et leida sobivamaid lahendusi. Naiiteks,
ekstreemprogrammeerimise puhul voib tulla ette, et ithe probleemi lahendamiseks on mitu
erinevat voimalust. Et vilja selgitada, milline lahendus oleks parim, selleks saab lihtsalt koik
variandid valmis kirjutada ning automaattestidega vilja selgitada parim. Siiski pole mdistlik
suuremate moodulite puhul koiki variatsioone valmistada, kuna seda voib lugeda liigseks

ajakuluks.

Koodiga saab ka anda edasi motteid seoses programmeerimisega. Kui programmeerija tegeleb
keerulise programmeerimise probleemiga ja tal on raske selle lahendust seletada
kaasprogrammeerijale, siis ta voib selle koodina vélja kirjutada ning ndidata demonstratsiooni
teel, mida ta motleb. Kood ise on alati selge ning seda ei saa mdista rohkem kui iihel viisil.
Teised programmeerijad saavad anda tagasisidet sellest koodist, kasutades oma mdtete

edastajana sammuti koodi [Beck 1999].

3.2 Testimine

14

Ei saa olla milleski kindel enne, kui pole seda testitud. Kuigi testimine pole kohustuslik, on
seda siiski vaja kliendile, kinnitamaks, et kdik toimib nii, nagu vaja. Palju tarkvara on lastud
kdiku ilma korraliku eelneva testimiseta, kuid tarkvara on ikkagi toiminud.
Ekstreemprogrammeerimine véidab, et ei saa olla kindel, et funktsioon to6tab enne kui seda

pole testitud. See tdstatab kiisimuse, et milles me siis kindlad olla ei saa:

e VOoib olla ebakindlust selles, et kood, mida kirjutati, ei tee seda mida see peaks. Et
seda ebakindlust testida, kasutatakse automaatteste, mis testivad koodi ennast.
Programmeerija kirjutab voimalikult palju teste, mis kodik proovivad koodi ,,murda”.

Kui koik testid labitakse edukalt, siis on kood valmis.

e VOoib olla ebakindlust selles, et motlesid vale asja. Selle ebakindluse testimiseks
kasutatakse ekstreemprogrammeerimises nn. sobivuse teste, mis baseeruvad kliendi

nduetel ja mis on saadud véljalaske planeerimise avastamise faasist. [XP 1]

3.3 Kuulamine

Programmeerijad ei pea teadma midagi arendatava siisteemi ettevotte toovaldkonnast.
Siisteemi funktsioon tuleb ettevotte poolt, kellele siisteemi luuakse. Selleks, et

programmeerija saaks teada siisteemi funktsionaalsusest, peab ta kuulama ettevotte esindajat.

Programmeerijad peavad kuulama klienti ja tema soove. Lisaks, nad peavad iiritama mdista
drilisi probleeme ja lahendusi ning andma kliendile tagasisidet probleemist, seletades, milles

viga seisneb.

Programmeerija ja kliendi vahelist suhtlust kirjeldatakse kui plaanimismingu [Beck 1999].

3.4 Disainimine

15

Lihtsustamise nurga alt vaadatuna vOiks Oelda, et siisteemiarendus ei vaja muud kui koodi,
testimist ning osapoolte drakuulamist. Kui need tingimused on tididetud, siis peaks tulemuseks
alati olema tootav siisteem. Tegelikult aga see nii paris ei toimi. Alati saab kaugele jouda ilma
disainimiseta, kuid mingi hetk muutub see ikkagi vajalikuks. Siisteem muutub liiga

keeruliseks ning siisteemiosade omavaheline sdltuvus ebaselgeks.

Seda saab viltida, luues teatud disainistruktuur, mis organiseerib siisteemi loogikat. Hea
disain hoiab dra paljud soltuvused siisteemis; see tdhendab, et muutes iiht osa siisteemist, ei

mojuta see teisi osasid [Beck 1999].

16

4 Praktikad

Ekstreemprogrammeerimises on 12 erinevat praktikat,

kategooriasse[Beck 1999]:

Tagasiside

e Paarisprogrammeerimine
e Plaanimisméng
e Test-juhitud arendus

e Meeskonnatoo

Katkematu protsess

o Pidev integreerimine
e Disaini tdiustamine

e Viikesed redaktsioonid

Jagatud arusaam

o Uhtne kodeerimisstandard
¢ Kollektiivne omand
e Lihtne disain

e Metafoor

Programmeerija heaolu

e Sobiv tempo

17

mis

on grupeeritud nelja

4.1 Paarisprogrammeerimine

Paarisprogrammeerimine vajab kahte arendajat, kes kombineeritult teevad t66d tihe arvuti
taga. Kumbki neist teeb mingit tegevust, mida teine ei tee: kui iiks kirjutab automaattesti, siis

teine motleb, millise klassi jaoks seda kasutada. Seega, iiks on ,,sditja” ja teine , kaardilugeja”.

Iga natukese aja tagant vahetatakse rollid [PairProgramming].

4.1.1 Kasud

Paarisprogrammeerimine peaks tooma jirgmised kasud:

e Tousev distsipliin : Paarilised teevad rohkem 0digeid asju ning kasutavad vihem pause.

e Parem kood : Paarilised teevad vihem ,,halba” koodi.

e Mitme arendaja panus disaini : Kui paare vahetatakse tihti, siis on rohkem arendajaid
kaasatud arendamaks mingit kindlat osa.

e Kodrgendatud moraal : Paarisprogrammeerimine vOib olla palju nauditavam kui seda
tiksi tehes.

e Kollektiivne omand : Kui terves projektis kasutatakse paarisprogrammeerimist ning
paarid vahetuvad pidevalt, siis saavad koik aru kogu koodibaasist.

e Opetlik : Paarisprogrammeerimises saab alati iiks pool teisele midagi uut dpetada.

e Meeskonna sidusus : Paarisprogrammeerimise puhul saab meeskond omavahel
kiiremini tuttavaks, kui iiksi tootades.

e Vihem vahelesegamisi : Inimesed segavad harvemini paaris to6tavaid inimesi kui tiksi

tootavat inimest [Methods&Tools].

Uurimused viidavad, et kaks programmeerijat on iihest rohkem kui kaks korda

produktiivsemad [The Economist].

4.1.2 Kriitika

18

e Kogenud arendajad leiavad, et paarisprogrammeerimise puhul on tiilikas hakata
Opetama vihem kogenenumat programmeerijat .

e Paljud eelistavad iiksi tootamist ning arvavad, et paaris tootamine on kohmakas.

¢ Erinevused koodi stiilis voivad viia konfliktini.

e On raske vorrelda, kumb on tootlikum moodus.

4.2 Plaanimismang

Plaanimisméng on tagasiside praktika.

Ekstreemprogrammeerimise peamist plaanimisprotsessi nimetatakse plaanimisminguks.

Plaanimise protsess on jagatud kaheks :

Redaktsioonide planeerimine: See on vajalik vilja selgitamaks, milliseid nduded on lisatud
millistele reaktsioonidele ja millal need kéiku lastakse. Klient ja arendaja planeerivad seda
koos. Redaktsioonide planeerimine koosneb kolmest faasist :
e Avastamise etapp : Selles etapis annab klient kdik oma siisteeminduded. Nendest
kirjutatakse kasutajaloo kaardid.
e Piihendamise etapp : Pithendamise etapis klient ning arendaja piihenduvad
funktsionaalsuse leidmisele ning kuupéeva selgitamine jargmiseks véljalaskeks.
e Juhtimise etapp : Juhtimise etapis saab esialgset plaani muuta, uusi ndudeid lisada

ning vanu eemaldada vdi muuta.

Iteratsioonide planeerimine : See planeerib arendajate tegemisi ning iilesandeid. Selles osas
ildjuhul ei kaasata klienti ennast, kuigi vdidetavalt on kliendi kaasamine andnud hiid
tulemusi. Iteratsioonide planeerimine ise koosneb kolmest osast :
e Uurimise etapp : Selles etapis on kdiksugused nduded tdlgendatud timber erinevateks
ilesanneteks.
e Piihendamise etapp : Eelmises etapis olnud iilesanded antakse programmeerijatele

ning arvutatakse nende lahendamiseks kuluv umbkaudne aeg.

19

e Juhtimise etapp : Ulesanded lahendatakse ning 16pp-resultaati vorreldakse

kasutajalugudega [Joseph Bergin].

4.2.1 Redaktsioonide planeerimine

Avastamise etapp

See on iteratsiooniline nduete kogumise ning nduete ja tdd omavahelise moju arvestamise

protsess.

e Kiiendi nduete saamine : Ettevote esitab oma probleemi; koosolekul iiritatakse
miiratleda probleem ning selle nouded.

e Kasutajaloo kirjutamine : Kasutajalugu kirjutatakse kliendi poolt vastavalt ettevotte
vajadusele. Selles mainitakse, mida peab mingi kindel siisteemiosa tegema. On
oluline, et arendusmeeskond ei mojutaks kliendil selle kirjutamisel.

e Kasutajaloo poolitamine : Kui arendusmeeskond ei suuda kasutajalugu hinnata, siis
tuleb see poolitada ning uuesti kirjutada. Jéllegi ei tohi mdjutada kliendi noudeid.

e Kasutajaloo hindamine : Arendusmeeskond hindab kaudselt, kui kaua voib aega votta

kasutajaloo realiseerimine tooks [Adaption].

Kui klient ei suuda enam uusi ndudeid vilja moelda, siis minnakse edasi jargmisesse

etappi - pithendamine.

Piihendamise etapp

Selles etapis selgitatakse vilja hind, kasud ning ajakava. See sisaldab endas nelja komponenti:

e Sorteerimine hindamise jirgi : Klient sorteerib kasutajalugusid hindamise jargi.

e Sorteerimine riski jargi : Arendajad sorteerivad kasutajalugusid riski jargi.

e Kiiruse midramine : Arendajad selgitavad, kui kiiresti annaks seda projekti teha.

e Kisitlusala valimine : Valitakse kasutajalood jargmiseks redaktsiooniks. Vastavalt

kasutajaloole mairatakse ka redaktsiooni valmimisaeg.

20

Sorteerimine hindamise jiirgi

Klient sorteerib kasutajalood vastavalt ettevotte hindamisele. Nad jagavad
kasutajalood kolme kuhja :
o Kiiitilised : Kasutajalood, milleta siisteem ei saa toimida vdi kaotab oma
motte.
e Oluline védrtus : Mitte-kriitilised kasutajalood, millel on oluline vééartus.
e Head, et olemas on : Kasutajalood, mis ei oma olulist vdirtust — nditeks

tdiustus kasutatavuses voi esitamises.
Sorteerimine riski jirgi
Arendajad sorteerivad kasutajalugusid riski jirgi. Nad jagavad sammuti kdik
kasutajalood kolme kuhja : madal, keskmine ja korge risk. Seejirel hakatakse
kasutajalugusid hindama erinevates kategooriates[Adaption].
Juhtimise etapp
Juhtimise etapis saavad nii arendajad kui ettevotte esindajad juhtida protsessi kdiku. Erinevad

kasutajalood ning suhtelised eesmérgid vdivad muutuda hindamise kdigus. Niitid on vdoimalus

muuta plaani vastavalt nendele [Joseph Bergin].

4.2.2 lteratsioonide planeerimine

Iteratsioonide planeerimine jaguneb samamoodi kolmeks etapiks : Avastamise, pithendamise

ning juhtimise etapp.

Avastamise etapp

21

Avastamise etapp on enamjaolt erinevate iilesannete loomine ning nende realiseerimiseks

kuluva aja hindamine.

e Kasutajalugude kogumine : Jargmiseks viljalaskeks moeldud kasutajalugude
kirjutamine ja kokkukogumine.

e Ulesannete iihendamine/poolitamine : Kui programmeerija ei suuda hinnata
ilesannet, kuna see on liiga suur voi viike, siis peab ta iilesandeid {ihendama
vOl1 poolitama.

e Ulesannete hindamine : Ulesande realiseerimiseks kuluva aja hindamine.

Piihendamise etapp

Iteratsioonide planeerimise pithendamises etapis antakse programmeerijatele iilesandeid

vastavalt kasutajalugudele.

e Programmeerija ndustub iilesandega : Iga programmeerija valib iihe iilesande mille
eest ta suudab vastutada.

e Programmeerija hindab iilesannet : Kuna programmeerija on niiiid vastutav iilesande
eest, siis annab ta omapoolset edaspidist hinnangut selle konkreetse iilesande kohta.

e Koormusfaktori midramine : Koormusfaktor niitab ideaalset aega, kui kaua peaks
minema iihel programmeerijal iihe iteratsiooni peale.

e Tasakaalustamine : Kui meeskonnas on kdigile programmeerijatele jagatud iilesanded,
hakatakse vordlema iilesannete sooritamise ennustatavat aega ning koormusfaktorit.
Sellest ldhtuvalt tasakaalustatakse {ilesanded koikide programmeerijate vahel dra

[Joseph Bergin].

Juhtimise etapp

Juhtimise etapis toimub iilesannete lisamine siisteemi.

e Ulesande kaart : Programmeerija votab iihe iilesande millele ta eelnevalt on

plihendunud.

22

e Otsi partner : Programmeerija hakkab seda iilesannet realiseerima koos teise
programmeerijaga.

e Disaini iilesanne : Vajadusel v3ib programmeerija disainida iilesande funktsionaalse
poole.

e Kirjuta automaatteste : Enne, kui programmeerijad hakkavad funktsionaalselt poolt
kirjutama, teevad nad automaatteste.

e Koodi kirjutamine : Programmeerijad alustavad koodi kirjutamisega.

e Testimine : Automaattestid testivad koodi

4.3 Vaikesed redaktsioonid

Iga redaktsiooni 10pus antakse tarkvara iile 10ppkasutajatele ning see ldheb reaalsetes
tootingimustes kasutusse. Redaktsioonid peavad olema voimalikult lithikesed, et arendajad
saaksid vahetumat tagasisidet ning kasutajad saaksid kiiresti kdige olulisemaid osasid
siisteemist kasutama hakata. Kuigi redaktsioonid on lithikesed, peab iga redaktsiooni tulemus
olema ka driliselt mottekas ning looma kasutajatele reaalset vidrtust. Seetdttu votab tavaliselt
esimese redaktsiooni loomine rohkem aega kui jiargnevad. Liihikesed redaktsioonid teevad ka
plaanimise lihtsamaks, kuna muutuvate nduete tottu on raske pikalt ette niha tegelikke

vajadusi [XP 1].

4.4 Metafoor

Siisteemi ehitust kirjeldatakse lihtsa metafooriga, millest kdik aru saavad — nii arendajad kui
ka klient. Metafoor tdidab arhitektuuri-kirjelduse rolli, millega kannab edasi tarkvara iildist
toopohimotet. Metafoor annab tiimile ka iihtse sOnavara, mida kasutada omavaheliseks

suhtlemiseks. Parim metafoor on lihtne selgitus [Seeba 2002].

23

4.5 Libhtne disain

Tarkvara disain peab olema nii lihtne kui voimalik. Parim disain on minimaalne, mis ldbib
koik testid ning milles pole dubleerivat loogikat. Kunagi ei iiritata ette niha tulevasi ndudmisi
ning ennustada, mida voiks vaja minna homme. Kuna muutuste tegemine on sama kallis igas
projekti faasis, jouab tulevikus vajaminevaid asju ka hiljem lisada ning nendele ei pea
tarkvara disainides motlema. Nii ldhenedes ei tehta liigset to0d ning tarkvara saab valmis

kiiremini [XP 1].

4.6 Kollektiivhe omand

Koodi omamise all mdoistetakse seda, et ainult omanik voib tema omanduses olevat koodi
muuta. Néiteks voib igal failil, klassil voi arhitektuurilisel kihil olla individuaalne omanik.
See tidhendab, et kui keegi vajab oma t66 tegemiseks muutust koodis, mis ei kuulu talle, peab
ta paluma omanikul muutuse sisse viia. Sellise omandivormi eelis seisneb selles, et koik
programmeerijad ei pea tundma kogu koodi. Ekstreemprogrammeerimine eelistab
programmikoodi kollektiivset omandit. Iga programmeerija voib muuta kogu koodi, kui tal
parasjagu selleks vajadus tekib. See tagab, et kogu tiimil on olemas iilevaade kogu siisteemi

toimimisest ning iga programmeerijate paar saab tegutseda teiste jarel ootamata [XP 1].

4.7 Pidev integreerimine

Tarkvara integreeritakse ja testitakse peale iga muutuse sisseviimist ning see peab toimuma
vihemalt iiks kord pidevas. Sellega on garanteeritud integreerimis-probleemide varajane
avastamine ja seeldbi integreerimisega seotud riskide kiirem maandamine. Peale iga
muudatuse integreerimist kdivitatakse uuesti koik seni loodud automaattestid. Integreeritud
tarkvara peab labima koik testid. Kui see ei Onnestu, siis tuleb muudatuse tegijail vead

korvaldada [MF].

24

4.8 Uhtne kodeerimisstandard

Koik programmeerijad jargivad iihtset koodi kirjutamise standardit. Standard holmab
muuseas viisi, kuidas kirjutatakse kommentaare, tihistatakse muutujaid, kirjutatakse
meetodeid jne. Kuna ekstreemprogrammeerimine kasutab koodi kollektiivset omandit, siis
pole mdeldav, et igaiiks kirjutab omas stiilis. Uhtne kodeerimisstandard muudab koodi kdigile

arusaadavaks ja muutuste tegemise lihtsamaks [XP Exchange].

4.9 Meeskonnat66

Loodava siisteemi tulevane kasutaja peab olema tiimiga samas ruumis ja pidevalt kittesaadav
koigile arendajatele. Tema iilesandeks on vastata kiisimustele, lahendada vaidlusi ning
médrata prioriteete. Reaalne kasutaja annab arendajatele viirtuslikku infot, mis aitab luua
tdpsemini tegelikele vajadustele vastava tarkvara. Selle praktika rakendamise teeb raskeks
see, et kliendil on siisteemi tulevast kasutajat vaja ka pohitoo tegemiseks. Kasutaja saatmine

pikaks ajaks arendustiimi juurde on seetdttu problemaatiline ja kulukas [XP 2].

4.10 Sobiv tempo

Programmeerijad peavad olema virsked ja puhanud igal hommikul ning vdimelised
lahendama probleeme loominguliselt. Kestev {iiletootamine seda ei soodusta. Pidevad
iletunnid on tavaliselt mérgiks muudest, tdsisematest probleemidest, mida ei saa lahendada
pelgalt iiletundidega. Kaks nidalat jirjest pole ekstreemprogrammeerimise projektis lubatud
iiletunde teha, kuna piisav puhkus on oluline eeldus arendajate toovoime sdilimiseks

[Mayford].

4.11 Disaini taiustamine

Disaini tdiustamine on programmi {imberstruktureerimine eemaldades kordusi, lihtsustades ja

lisades paindlikkust nii, et siisteemi funktsionaalsus siilib. See on ekstreemprogrammeerimise

25

viis tarkvara projekteerida ja see toimub pidevalt kogu projekti jooksul. Rekodeerimine voib
kiill tdhendada rohkemat t66d, kuid tagab disaini arusaadavuse ning teeb edasiarendamise

lihtsamaks [XP 2].

4.12 Test-juhitud arendus

Iga programmi omaduse jaoks on olemas automaattestid. Automaattest on programm, mis
testib teise programmi tood. Selle eelis kisitsi testimise ees seisneb selles, et automaatteste
saab samamoodi kiivitada korduvalt ning testimine toimub oluliselt kiiremini. Iga kasutajaloo
realiseerimine algab automaattestide kirjutamisest. Seejdrel alles kirjutatakse programm, mis
neid teste rahuldab. Ka kliendid kirjutavad teste kasutajalugude verifitseerimiseks
(acceptance tests) — need ei ole automaattestid, vaid pigem testistsenaariumid, mida jargides

saab tuvastada, kas loodud programm rahuldab kasutajaloo ndudmisi [C2].

26

5 Testimisprotsess

Testimine on végagi tihtis osa ekstreemprogrammeerimisest. Pidev rekodeerimine, suur hulk

iteratsioone ning redaktsioone pidevalt nduavad testimist, et siisteem kokku oleks terviklik.

5.1 Automaattestid

Automaattestide (Unit testing) eesmirk on isoleerida osa programmist ning nididata, et
individuaalsed tiikid programmist toimivad. Automaattestidega kirjutatakse ette karmid
nduded, mida komponent peab tditma. Selle tulemusel aga saab iilejddnud programm omale

lisaviaartusi [XP 2].

5.1.1 Lihtsustab muudatuste tegemist

Automaattestide kasutamine lubab programmeerijal hiljem koodi uuesti luua ning kannab
hoolt selle eest, et moodulid tdotaksid. Kasu seisneb selles, et testimine julgustab
programmeerijat muudatuste tegemisel ning on lihtne kontrollida, kas mingi osa koodist
toimib korralikult. Head automaattestid suudavad kisitleda kogu kontrollitavat moodulit voi

komponenti ning suunavad pohirdhu kordamistele [CodeP].

Pidevas automaattestimise keskkonnas ning lédbi jatkuvate muudatuste praktikas néitavad

automaattestid koodi plaanitud kasutust muudatuste suhtes.

5.1.2 Lihtsustab integreerimist

Automaattestimine aitab kaotada ebakindlust komponentides ning saab kasutada ka ,,alt-iiles”
(bottom-up) testimise stiilis ldhenemist, mida saab votta kui individuaalsete viikeste

programmiosade (moodulite) iihendamist omavahel suurema programmiosa saavutamiseks.

27

Testides programmiosasid kodigepealt ja seejdrel programmiosade iithendamisest tekkinud

tervikut, muutub integratsioontestimine lihtsamaks.

Palju on vaieldud ka manuaalse integratsioonitestimise teemal. Kuna viljatoodeldud
automaattestide hierarhia on saavutanud integratsioonitestide taseme, vOib tekitada see
valestimdistmise, sest integratsioontestimine hindab ka teisi eesmirke, mida saab tdestada
ainult ldbi inimfaktori. Moned vaidlevad jéllegi selle iile, et andes automaattestide siisteemile
piisavalt valikuid, muutub integratsioonitestimises inimfaktor mittevajalikuks. Realistlikult
vaadeldes oleneb tegelik ndue 10puks siiski projekti tunnustest ning selle mdeldud

kasutusvaldkonnast [Brett G.Palmer].

5.1.3 Dokumentatsioon

Automaattestid on nagu ,,elav dokumentatsioon”. Klient ja arendajad saavad mooduli

kasutamisvoimalustest ja rakenduse arendusliidesest Oppida vaadates automaatteste.

Automaattestide juhtumid véljendavad tunnuseid, mis on kriitilise tdhtsusega komponendi
valmissaamise edukuses. Need tunnused vdivad ndidata komponendi diget voi valet kasutust.
Kuigi paljud tarkvaraarenduse keskkonnad ei toetu arendatava produkti automaatsele

dokumenteerimisele, siis automaattestid ise dokumenteerivad kriitilistest tunnustest.

5.1.4 Kasutajaliidese eristamine rakendusest

Kuna moned klassid viitavad teistele, siis testides mingit klassi juhtub teinekord nii, et
testitakse valet asja. Ndide sellest, kui testitakse klasse, mis sdltuvad andmebaasidest:
testimiseks kirjutab testija tihtipeale koodi, mis suhtleb andmebaasi endaga. See on viga, kuna
klass ei tohiks kunagi véljuda iseenda piiridest. Arendaja peab hoopis tekitama iihtse liidese
andmebaasi limber ning lisama sellele oma ,,mock-objekti”’, mis on simulatsioon testitavast

objektist. Selline teguviis vihendab siisteemiosade omavahelist soltuvust [IBM].

28

5.1.5 Automaattestide piirangud

Automaattestid ei suuda leida koiki programmis olevaid vigu. See testib ainult kindlate
komponentide funktsionaalsust. Seega ei suuda leida integratsioonivigu, joudluse probleeme

vO1 muid iilesiisteemilisi kiisimusi.

Automaattest nditab ainult vigade olemasolu; see ei suuda ndidata vigade puudumist. Need

kaks piirangut kehtivad koigil tinapédeva tarkvaratestimistel [CF].

5.1.6 Automaattestimise rakendused

Ekstreemprogrammeerimine toetub automatiseeritud automaattestide vorgustikul. See
vorgustik voib olla loodud projekti arendusmeeskonna poolt vOi siis kolmandate isikute,

nditeks xUnit automaatestimise raamistiku, poolt.

Ekstreemprogrammeerimine kasutab tekitatud automaatteste testitud arenduseks. Arendaja
kirjutab automaattesti, mis paljastab kas mone programmi ndude voi defekti. Test kukub Iébi,
kui monda vajalikku osa ei ole veel lisatud programmi voi leiab koodist defektse koha.

Seejarel hakkab arendaja koodi muutma seni, kuni testid saadakse sooritatud.

Testitakse koiki klasse siisteemis. Arendaja viljastab automaattesti koodi samaaegselt selle
koodiga, mida ta testib. Ekstreemprogrammeerimise automaattestid lubavad k&iki
eelnimetatud eeliseid: lihtsam ja kindlam koodiarendus, lihtsustatud integreerimine ja tidpne

automaatselt genereeritud dokumentatsioon.

5.1.7 Tehnika

Tavapirase ja iildiselt aktsepteeritud toOstuspraktikana viiakse automaattestimist Idbi
automatiseeritud keskkonnas kasutades kolmanda osapoole poolt pakutud komponenti voi
vorgustikku. Kuigi on palju erinevaid standardeid, siis IEEE (Institute of Electrical and

Electronics Engineers, Inc.) ei kirjuta ette kumbagi Idhenemist — automaatset ega manuaalset.

29

Manuaalne Idhenemine automaattestimisele voib sisaldada endas samm-sammult
instruktsioone dokumendina. Sellegipoolest on automaattestimise eesmirk isoleerida
komponent ja valideerida selle digsus. Automaatsus on viga efektiivne sellist seisu saavutama
ning annab juurdepéisu kodikidele nendele kasudele, millest juttu on olnud. Kui aga ei plaanita
hoolikalt, siis ettevaatamatu manuaalne test voib toimida kui integratsioonitest [Andy

Glover].

Et toeliselt mdista isolatsiooni tdhtsust, kédivitatakse automaatsel ldhenemisel komponent voi
koodi osa testimisvOrgustikus viljaspool loomulikku keskkonda, ehk teisisdonu, viljaspool
rakendust, mille jaoks ta loodi. Testimine isolatsioonis nditab mittevajalikku koodi ja muude

komponentide vahelist sdltuvust.

Kasutades automaattestide raamistikku, kodeerib arendaja automaattestide kriteeriumid, mille
alusel saab komponentide Oigsust kontrollida. Testimisel vorgustik mérgib iiles koik
juhtumid, kui midagi kukkus 14bi mdne kriteeriumi. Paljud vorgustikud ka margistavad édra
ning tekitavad kokkuvotte testi mitteldbinud juhtumitest. Paljude ldbikukkumiste korral

peatab vorgustik edasise testimise [Andy Glover].

5.2 Integratsioonitestid

Integratsioonitestimine (monikord nimetatud ka Integratsioon ja Testimine, I&T) on see
tarkvara testimise faas, kus individuaalsed tarkvaramoodulid kombineeritakse ja testitakse kui
thist suurt gruppi. Integratsioonitestimine jargneb peale automaattestimist ning enne siisteemi

testimist.
Integratsioonitestimine votab oma sisendiks moodulid, mida on eelnevalt automaattestitud,
grupeerib nad suuremaks kogumiks, realiseerib nendele testid vastavalt integratsioonitestimise

kavale ning viljastab viljundi integreeritud siisteemina, mis on valmis siisteemtestimiseks

[Matt Albrecht].

5.2.1 Integratsioonitestide eesmark

30

Integratsioonitestide eesmidrk on veenduda siisteemi funktsionaalsuses, toimimises ning
usaldusviirsuse vajadustest {iildistes disainiosades. Neid disainiosasid vdi komponentide
gruppe kéivitatakse ldbi nende endi kasutajaliidese Black box testidega. Black box on
testimine, mille puhul ei teata, mis toimub programmi sees - testid kirjutatakse puhtalt nduete
jirgi: millise sisendi korral peab olema viljund. Oigete parameetrite ning andmesisenditega
simuleeritakse todtavaid vigaseid juhtumeid. Koik need testimised on vajalikud, et veenduda

koikide komponentide omavahelises grupisiseses toimimises [Methods&Tools 2].

5.3 Slisteemitestid

Siisteemiteste tehakse valmis ehk integreeritud siisteemidel, et hinnata siisteemi vdoimalusi
tema algsetest ettekirjutustest. Testid enamjaolt jadvad Black box testimise kisitlusalasse ning

ei vaja arusaama programmi sisemisest disainist, koodist ega loogikast.

Reeglina votab siisteemitest sisendiks koik integreeritud tarkvarakomponendid, mis on
labinud integratsioonitestid. Siisteemitestimine iiritab leida defekte moodulites ja siisteemis

kui tervikus [Rex Black].

5.3.1 Terve slisteemi testimine

Siisteemitestimine tehakse kogu siisteemile vastavalt funktsionaalsete nduete spetsifikatsiooni
(Functional Requierment Specificatio, FRS) ja siisteeminduete spetsifikatsiooni (System
Requierment Specificatio, SRS) ettekirjutustele. Lisaks on siisteemitestimine uurimuslik
testimise faas, kus keskendutakse mitte ainult disaini, vaid ka siisteemi kditumise ning

kokkusobivusele kliendi kirjeldustega [Rex Black].

Siisteemitestimist voib lugeda viimaseks 10hkuvaks testimise faasiks enne sobivusetesti.

31

5.4 Sobivustestid

Sobivusteste viiakse 1dbi koos kasutajate voi sponsoritega, kasutades black box testimist.

Tulemusest selgub antud siisteemi sobivus.

Sobivustestid on iildiselt komplekt erinevaid teste, mida hakatakse kasutama valminud
siisteemis. Iga test testib mingit kindlat siisteemi osa ning véljastab tulemuse. Tulemus v&ib
olla kas edukas voi ldbikukkunud. Testimiskeskkond on tehtud véimalikult sarnane sellega,
mis voiks olla kasutajal. Need testid peavad kasutama sisendiks test-andmeid vi siis tegevuse

kirjeldust, mille abil teste ldbi viia [XP 2].

5.4.1 Protsess

Siisteemi testitakse kliendilt saadud andmetega ning selle vastuseid vorreldakse oodatud
tulemustega. Test on sooritatud, kui igal alal on vastuseks see, mida oodati. Kui vastus pole
see, mida oodati, siis siisteem voetakse vastu voi liikkatakse tagasi vastavalt kokkulepitud

tingimustele arendaja ja kliendi vahel.

Eesmirk on kindlustada, et siisteem toimiks vastavalt kliendi nouetele. Sobivustestide otstarve

on kontrollida, et siisteem ldbiks testi edukalt - siis on siisteem 10plikult valmis [XP 2].

32

6 Vastuolulised aspektid

Kodige suurem vastuolu tekitav aspekt ekstreemprogrammeerimise juures on protsessi
muutuste juhtimise aspekt. Traditsioonilise tarkvaaraarenduse protsessid vajavad muudatuste
taotluse analiilisi ning muudatuste tegemise lubamist vastava juhatuse poolt.
Ekstreemprogrammeerimises seevastu aga kiisib kohapeal olev klient mitteametlikult

muudatuste tegemist — tihti vaid suuliselt arendusmeeskonda teavitades.

6.1 Ebastabiilsed nouded

Ekstreemprogrammeerimise pooldajad vididavad, et kui klient nduab mitteametlikult
muudatuste tegemist, siis kogu protsess muutub paindlikumaks ning hoiab kokku iildkulutusi.
Need muudatused koik hinnatakse mingis kindlas punktisiisteemis, ning klient meeskonna
liikmena peab ise nimetama ka vastavas mahus funktsionaalsusi, millest ta selles konkreetses
projekti skoobis loobub. Ekstreemprogrammeerimise vastased aga leiavad, et see tdhendab
ainult pidevat timbertegemist ning projekti kisitlusala viljub nendest piiridest, mis algselt oli

kokku lepitud ning rahastatud [Matt Stephens].

6.2 Kasutajate konfliktid

Kuna koik saavad koodis muudatusi teha, siis vOib esineda probleeme eesmérkide
arusaamises. Ekstreemprogrammeerimises oodatud metoodika on monevorra soltuv
programmeerija voimest eeldada kliendi iihtset seisukohta, et saaks keskenduda rohkem koodi
kirjutamisele kui dokumentatsioonile. See kehtib ka siis, kui kaasatud on mitmed

programmeerimisega tegelevad organisatsioonid [Matt Stephens].

6.3 Teised aspektid

Teised ekstreemprogrammeerimise vastuolulised aspektid oleksid [Matt Stephens] :

33

e Nouded on pigem viljendatud automatiseeritud vastuvotutestidena kui spetsiifiliste
dokumentidena.

e Nouded on kirjeldatud lisanduvalt, mitte kdik korraga.

e Tarkvaraarendajad peavad tootama paaridena.

e Disainimist ei tehta suuresti ette dra. Enamus disainist tehakse jooksvalt lisadena,
alustades koige lihtsamast todtavast osast ning lisades keerulisemaid, kui testid seda
nduavad. Kriitikud kardavad, et selline tegevus nduab hoopis rohkem muudatusi kui
disainimine vastavalt nduete muutumisele.

» Kiliendi esindaja on seotud projektiga. Sellest rollist voib saada projekti labikukkumise

koht ning paljud on véitnud, et see on viga stressitekitav positsioon.

6.4 Moodetavus

Ekstreemprogrammeerimise vastased vdidavad, et ekstreemprogrammeerimine toimib vaid 12
vO1 vihemarvulistes tiimides, kuigi on véidetud, et ekstreemprogrammeerimine on olnud ka

edukas iile 100 litkmelistes tiimides [Matt Stephens].

6.5 Vaidlus raamatus

2003. aastal avaldasid Matt Stephens ja Doug Rosenberg raamatu ,,Programming Refactored:
The Case Against XP”, mis pani kahtluse alla ekstreemprogrammeerimise pohimotted, ning
pakkusid vilja viise, kuidas seda paremaks muuta. See kdivitas aga ulatusliku vaidluse
erinevates artiklites, interneti uudisegruppides ning jututubades. Raamatu peamine argument
oli see, et ekstreemprogrammeerimise praktikad on iseseisvad, kuid osad organisatsioonid ei
ole vOimelised omaks votma koiki praktikaid; seega kogu protsess kukub ldbi. Raamat
sarnastab ekstreemprogrammeerimise ,,kollektiivset omandit” ja sotsialismi. Koike seda siis

negatiivsel viisil [Steve Yegge].

34

6.6 Ekstreemprogrammeerimise evolutsioon

Peale ,Extreme Programming Refactored” ilmumist 2003. aastal on kindlad
ekstreemprogrammeerimise aspektid muutunud: Niiteks, ekstreemprogrammeerimises
kohandatakse muudatusi praktikate jirgi tdpselt nii kaua, kuni vajalikud eesmirgid on
saavutatud. Ekstreemprogrammeerimises kasutatakse ka protsesside jaoks iildiseid tingimusi.
Mboned viidavad, et need muudatused lilkkavad imber eelnevat kriitikat, teised jdllegi

arvavad, et need moned tédiustused ei ole veel piisavad [Steve Yegge].

6.7 Uhendatud metoodikad

Paljud on iiritanud {ihendada ekstreemprogrammeerimist mone vanema metoodikaga, et luua
iihte iildist metoodikat. Moned neist oleksid voimelised isegi asendama

ekstreemprogrammeerimist, nditeks: kaskaad- e. koskmudel [Matt Stephens].

JPMorgan Chase ja Co nimeline ettevote lritas ithendada ekstreemprogrammeerimist teiste
programmeerimise metoodikate, nagu CMMI (Capability Maturity Model Integration) ja Six
Sigma. Nad leidsid, et need kolm siisteemi sobisid omavahel histi ning muutsid

siisteemiarendust natuke paremaks.

Ekstreemprogrammeerimine ei ole ainult vastuolusid tekitav metoodika, kuna tidnu temale

tekib pidevalt ka vaidlusi ning kriitikat teistele tarkvaraarenduse meetoditele [Steve Yegge].

35

7 Erinevate valedate arendusmeetodite vordlus

Lisaks ekstreemprogrammeerimisele on veel ka teisigi viledaid arendusmeetodeid.
Kéesolevas peatiikis loob autor kiire iilevaate ning vordleb neid omavahel, kui ka

ekstreemprogrammeerimise endaga.

Katsealusteks meetoditeks said autori arvates, lisaks ekstreemprogrammeerimisele, kuus
tildlevinumat viledat arendusmetoodikat: rationali unifitseeritud arendusprotsess, erisus-
juhitud arendusprotsess, adaptiivne tarkvaraarendus, diinaamiline siisteemiarendusmeetod,

crystal clear ning scrum.

7.1 Rationali unifitseeritud arendusprotsess

Rationali unifitseeritud arendusprotsess (Rational Unified Process, RUP) on iteratiivne
tarkvara arendusprotsessi raamistik, mis loodi Rational Corporationi poolt, kes alates 2002
aastast kuulub IBM alla. Iteratiivne arendus sellepirast, et siis on parem tegeleda erinevate
probleemidega sammhaaval ja liikuda edasi viikeste iteratsioonide kaupa. Eesmirgiks on
vihendada varakult projekti riske. Mudelite loomisel kasutatakse UML modelleerimiskeelt.
Rationali unifitseeritud arendusprotsessis kasutatakse, sarnaselt
ekstreemprogrammeerimisega, erinevaid praktikaid, mis arendusprotsessis on iisna suure

osakaaluga ning viga detailselt dra médédratud [RUP].
Viimasel ajal on rationali unifitseeritud arendusprotsess just rohku pannud viikestele

projektidele ning viledatele protsessidele. Kaasatud on erinevate viledate metoodikate

praktikad ning juhtno6rid nende kasutamiseks.

36

7.2 Erisus-juhitud arendus

Erisus-juhitud arendus (feature driven development, FDD) on sarnaselt rationali unifitseeritud
arendusprotsessile iteratiivne ja eelkdige suunatud tulemustele. Erisuse all mdeldakse loodava
siisteemi omadust — mida siisteem tegema peab. See peaks olema kliendile teada ning selle
kasutegur ka eelnevalt viljaselgitatud. See voimaldab arendajatel jouda kiiresti tulemustele
kvaliteeti oluliselt kaotamata. Keskendutakse pigem inimestele ning dokumentatsioon on

jéetud tahaplaanile. Mdeldud rohkem viikestele tiimidele aga sobib ka suurematele [FDD].

Uhe sellise erisuse arendus peaks maksimaalselt votma aega kaks nidalat, keskmiselt aga

paarist tunnist mone pédevani.

Erisus-juhitud arendus on aga vaid analiiiisi kirjeldamiseks, iilejidnud osa jaoks tuleb

kasutada lisaks monda muud metoodikat.

7.3 Adaptiivne tarkvaraarendus

Adaptiivne tarkvaraarendus (adaptive software development, ASD) votab tarkvara loomist kui
midagi, mida ei saa ennustada, kus planeerimine on vdimatu voi siis vdga keeruline. Hiljem

on aga tehtud vigadest hea dppida ning seejdrel proovida neid vilistada.

Adaptiivne tarkvaraarendus seab ka tdhtsale kohale pideva dppimise. Seda iseloomustab pidev
muutumine ning tmberhindamine. Téhtsaks loetakse ka viga tihedat koostood koigi
osapoolte vahel, kuna kohanduva ldhenemise puhul on efektiivne tagasiside eriti oluline

[ASD].

7.4 Diinaamiline stisteemiarendusmeetod

Diinaamiline siisteemiarendusmeetod (Dynamic Systems Development Method, DSDM) on

inkrementaalne ja viledatest metoodikatest iiks pohjalikem.

37

Diinaamiline siisteemiarendusmeetod iitleb [DSDM], et igal projektil on kolm peamist
nditajat: rahakulu, ajakulu ning funktsionaalsus. Pohimote seisneb selles, et projektile

fikseeritakse sellele vajaminev aeg ning ressursid ning lastakse funktsionaalsusel kohanduda.

Protsessijuhtimise, reaalajasiisteemide ja iilikriitiliste tarkvarade puhul on diinaamilise
suisteemiarendusmeetodi rakendamine raskem, kuna diinaamilise siisteemiarendusmeetodi
puhul on oluline iteratiivne arendus ning kasutajate kaasamine projekti. Samas on ka

raskendatud pohjaliku spetsifikatsiooni loomine ning selle pdhjal tarkvara valideerimine.

Tiimid on iildjuhul viikesed (2..6 inimest), et viltida juhtimis- ja kommunikatsiooni

probleeme.

Diinaamilist siisteemiarendusmeetodit haldab DSDM konsortsium mille liikmetel on litsents
selle metoodika kasutamiseks ning selle eest maksavad nad aastamaksu. Konsortsium samas
ka koolitab, pakub kasutajatuge ning arendab metoodikat. Ténu sellele on diinaamiline

arendusmeetod arenenud ning laialt levinud [DSDM].

7.5 Crystal Clear

Crystal clear tdhtsustab eelkdige inimesi ja nendevahelist suhtlust. Sarnaselt erisus-juhitud
arendusega, ei ole metoodikad mdeldud 16plikena. Arendusmeeskonnad peaksid votma seda

kui vundamendina ning sellest ldhtuvalt looma endale sobivaim ldhenemine[CC].

Eelistatakse inimestega suhtlemist ndost-nidkku ning iiritatakse viltida paberdokumentide

kasutamist. Samas crystal clear rGhutab ka tiimilitkmete vahelist ldhedast suhtlust.

Projektid liigitatakse meeskonna suuruse ja tarkvara kriitilisuse jargi. Selle jirgi saab igale
projektile vaadata sobiva ldhenemise. Meeskonna suurus on oluline metoodika valimisel.
Uldjuhul on meeskonnad viga viikesed (4..6 inimest) ning iiritatakse tegeleda vihekriitiliste

projektidega, kus on olulisel kohal kiirus ja efektiivsus [CC].

38

7.6 Scrum

Scrum on iiks véledatest arendusmetoodikatest, mis kdige enam iiritab protsessi juhtida ja
kontrollida. Tarkvaraarenduseks mingit kindlat tehnikat ei midrata, pigem jdetakse see

arendajate teha. Tihti kasutatakse selles ekstreemprogrammeerimise meetodeid [Scrum].

Scrumi iseloomustavad tihedad koosolekud, kus meeskonna liikmed selgitavad, et mida nad
eelmine pédev teha joudsid ning mis neil edasi paevakorras on. Koosolekutel riédgitakse ka

koikidest probleemidest ja takistustest, mis siiani on tekkinud.

Arendusprotsess jaguneb 2..6 nddala pikkusteks iteratsioonideks. Iga iteratsiooni kéigus
disainitakse, kodeeritakse ja testitakse tarkvara. Iga iteratsiooni eel koostatakse nimekiri

nduete kohta. Neid hakkavad teostama 5..8-litkkmelised meeskonnad [Scrum].

7.7 Kokkuvote vordlusest

Vordlusesse kaasatud metoodikad erinevad iiksteisest mitmeti Arenduses holmavad suure osa
nii rationali unifitseeritud arendusprotsess ja diinaamiline siisteemiarendusmeetod. Seda siis

alates lihtsamatest analiilisidest kuni hoolduseni vélja.

Scrum ja erisus-juhitud arendus aga, vastupidiselt eelnevatele metoodikatele, ei haara nii suurt
ala arendusprotsessist. Scrum kirjeldab iteratsioonide ja protsesside suunamist ning erisus-

juhitud arendus tegeleb pigem nduete kirjapaneku ja programmeerimisega.

Metoodikate omavahelist erinevust saab voOrrelda ka nende detailsuse poolest.
Ekstreemprogrammeerimine ja rationali unifitseeritud arendusprotsess on {iisna kindlalt
piiritlenud, et milliseid praktikaid peaks nendes meetodites kasutama. Vastanditeks on
adaptiivne tarkvaraarendus ja crystal clear, millel antakse suhteliselt vabad kded metoodika

valimiseks.

Erinevates olukordades on aga metoodikad {ildjuhul suhteliselt piiritletud. Enamus
kiesolevatest viledatest arendusmeetoditest on eelkdige mdeldud suhteliselt viikeste tiimide

jaoks, eriti ekstreemprogrammeerimine ja crystal clear, kes selle isna karmilt paika pannud.

39

Rationali unifitseeritud arendusprotsess aga tiimi suurusele piiranguid ei sea ning laseb

arendusmeeskonna juhil seda ise valida.

Oluline on ka loodava tarkvara kriitilisus, seda eelkdige diinaamilise siisteemiarendusmeetodi
ja crystal cleari puhul, sest molemad meetodid annavad mdista, et kriitiliste projektide korral

on nende metoodika kasutamine raskendatud.

Viledad metoodikad eelistavad iteratiivset arendusprotsessi kus iteratsiooni pikkustele pole
kindlat piiri seatud. Erisus-juhitud arenduse ja ekstreemprogrammeerimise puhul on
iteratsioonid vidga lithikesed (pdevadest kuni nédalateni) ning crystal clear ja rationali
unifitseeritud arendusprotsess kasutavad pikemaid iteratsioone (kuudes). Liithemate
iteratsioonidega suudetakse erinevaid riske kiiremini eristada ning kiirendatakse kasutajate
vahelist tagasisidet. Parem tagasiside tuleb ka kliendi kaasamisel projekti. Seda ndutakse eriti
ekstreemprogrammeerimise ja diinaamilise siisteemiarendusmeetodi puhul, kus kliendid on

kaasatud tiimi litkmeteks.

Iga metoodika puhul on kiillaltki sarnaseks osutunud nduete kogumine ja nende rahuldamine.

Need jaotatakse tiikkkideks mis hakkavad kirjeldavad siisteemi tulevasi omadusi.

Viledaid metoodikaid eristatakse ka tiimide iilesehituse jirgi. Uldjuhul on tiimid kindlalt
paika miiratud ning ei muutu. Erandiks voib lugeda erisus-juhitud arendust, kus tiime
pidevalt muudetakse. Erisus-juhitud arenduses muudetakse tiime iga uue erisuse arendamisel
ning tihti kuuluvad arendajad mitmesse tiimi korraga. Uheks erandiks on ka
ekstreemprogrammeerimise juures kasutatav paarisprogrammeerimise praktika, kus pidevalt
vahetatakse partnereid. Selline tiimide muutmine soodustab erineva informatsiooni levimist

litkmete vahel.

Erisus-juhitud arendus nduab igale koodiosale eraldi omanikku, seevastu aga
ekstreemprogrammeerimine eelistab kollektiivset omandit. Kollektiivse omandi puhul saavad
konkreetset koodi muuta mitmed inimesed, mis kiirendab arendusprotsessi sest keegi ei pea
teiste jirel ootama. See aga paneb teatud piirid koodi suurusele, sest suuremaid koodihulki ei

joua kodik omastada.

40

Visuaalset modelleerimist tarkvara projekteerimisel eelistavad rationali unifitseeritud
arendusprotsess ja erisus-juhitud arendus. Sama ei arva aga ekstreemprogrammeerimine ja
crystal clear, kuna nende arvates kulub liigseid ressursse mudelite loomiseks, ning see pole

eesmark.

Ekstreemprogrammeerimine erineb teistest metoodikatest oma praktikate poolest, eelkdige

paarisprogrammeerimise, test-juhitud arenduse ning koodi korduvkasutamisega.

Vorreldes teiste viledate meetoditega on diinaamilisel arendusmeetodil oma keskne
mittetulunduslik konsortsium, kes tegeleb uuendustega ning pakub kasutajatuge. Seega saab

metoodikat kasutada vaid litsentsi alusel.

Kokkuvatteks, meetodi valimisel tuleks arvestada sellega, et igale projektile ei ole otstarbekas
kasutusele votta tihte ja sama metoodikat. Samas tuleks arvestada ka projekti suurusest ning
keerukusest. Ekstreemprogrammeerimine tundub olevat iisnagi mdistlik valik, kui arendajad
soovivad luua uut tarkvara detailsete praktikate siisteemis. Ekstreemprogrammeerimine jitab
kasutamata erinevad visuaalsed modelleerimised ning saab hakkama ka kriitiliste

projektidega.

41

8 Ekstreemprogrammeerimise teooria ja praktilise projekti

vordlus

Tihtilugu ei vasta teooria praktikale. ~ Autor {iritab siinkohal vorrelda
ekstreemprogrammeerimise teooriat ning selle reaalset kasutamist. Vordlus pShineb erinevate

kirjatiikkide, aruteludele ning ldhedaste-tuttavate poolt saadud andmete analiiiisist.

8.1 Diagrammid

Kuna reeglina ekstreemprogrammeerimises diagramme ei kasutata, siis on leitud, et on palju
efektiivsem, kui klient oma kasutajalugusid ette joonistab. Eriti hea on see kasutajaliidese
kiisimustes. Diagrammile lisatakse kommentaaridena selgitused. Tihtis on ka kasutajalood
korrektselt nimetada, et ei tekiks hiljem Oige kasutajaloo leidmisega segadusi. Parim viis

oleks neid nummerdada kasvavalt.

8.2 Kasutajalood

Ténu kasutajalugudele ning kliendi ja arendaja tihedale koostddle tekib arendajal parem
arusaam tarkvarale esitatavatest nduetest ning suureneb kliendi rahulolu eelkdige just
rakenduse véljandgemise suhtes. Lisaks paraneb kliendi iildine suhtumine arendajatesse.
Klient hakkab rohkem modistma arendatava rakenduse mahtu ning sunnib end rohkem ja

tdpsemalt rakenduse ndudeid sOnastama.

8.3 Redaktsioonid

Liihikesed redaktsioonid on efektiivsed ning neid tuleks kasutada. Samas on neid ka
suhteliselt lihtne projekti sisse viia. See, et nad efektiivsed ja head on, ei tihenda, et neid

tuleks viga tihti teha. Redaktsioonid planeeritakse vastavalt vajadustele.

42

Redaktsioonide funktsionaalsus planeeritakse viga iildiselt. Selleks tehakse vastav koosolek,
kuhu on kutsutud mdlema poole esindajaid. Koosolek ise kestab kaua ning selle jooksul

lepitakse kokku redaktsiooni viljalaske kuupdevad ning selles sisalduv funktsionaalsus.

8.4 Iteratsioonid

Iga redaktsiooni juures iiritatakse iteratsioone vihem teha kui ekstreemprogrammeerimine
seda ette ndeb. Pigem iiritatakse igas iteratsioonis vOimalikult palju dra teha. Tavaliselt on
iteratsioonid {iileplaneeritud ehk teisisonu, koiki iteratsiooni planeeritud kasutajalugusid ei
suudeta realiseerida. Klient kirjutab soovilood ning reastab need tdhtsuse jdrjekorras ning
arendaja realiseerib neid vastavalt sellele. Kui koiki ei suudeta iihte iteratsiooni panna siis
lahevad esimesest vilja jadnud funktsionaalsused edasi jirgmisesse iteratsiooni. Iteratsioonide
kasutamine on aidanud viltida ajahdtta jddmisest tingitud negatiivseid korvalefekte —

suhtlemise vihenemist juhtide ja klientidega

8.5 Disainimine

Rakenduste disainimist tritatakse voOimalikult lihtsalt 1dbi viia, kuna kallimate
disainimisvahendite ost ning vajalike inimeste koolitamine v&ib olla kulukas ning aegandudev

- seda viahemalt viikeste firmade puhul

8.6 Funktsionaalsus

Funktsionaalsuse poolest piiiitakse olla voimalikult minimaalne — tehakse vaid seda mida

klient on oma kasutajalugudes maininud.

8.7 Rekodeerimine

Rekodeerimist ei tehta niipalju kui ekstreemprogrammeerimine ette néeb. Pigem tehakse seda

siis, kui on aega voi kui seda on ilmtingimata tarvis koodi puhastamiseks.

43

8.8 Kliendi kohalolek

Kliendi kohalolek on hea, et arendajad saaksid parema iilevaate loodavast tarkvarast. Samas
oleks hea kui klient ise teaks vdimalikult vihe tarkvara arendamisest vOi selles kastutatavas

tehnilisest keelest, kuna sellest voib tekkida erinevaid lahkhelisid.

8.9 Kokkulepitud standardid

Kasutatakse kokkulepitud standardit, et iga programmeerija tiimis kirjutaks koodi sarnaselt
teistele. Kuigi ekstreemprogrammeerimine tahab, et kdik kirjutaksid koodi kui iiks, siis jadb
ikkagi teatav individuaalsus koodikirjutamises igale programmeerijale kiilge, mis ei pruugi

halb olla, seni kuni kood on lihtsalt loetav ja arusaadav.

8.10 Paarisprogrammeerimine

Paarisprogrammeerimist iildiselt ei taheta kasutada, sest programmeerijad on siiski inimesed,

kes ei taha oodata teiste jirgi.

8.11 Pidev integreerimine

Pidev integreerimine on tihti kasutatav ning lihtne juurutada. Selle kasutamine annab sama
efekti mida ekstreemprogrammeerimine lubab. See muidugi eeldab, et késil on testidel
tuginev arendustegevus. Pidev integreerimine on kasulik, sest et selline tegevus hilisemas
arengujdrgus vOib osutuda keerulisemaks ning nduab rohkem ressursse. Hea oleks

integreerimiseks kasutada eraldi arvutit, mille taga muud arendustddd ei tehta.

8.12 Kollektiivhe omand

Kollektiivse omandina kasutatav kood on kiill hea, kuid keeruline juurutada. Tore oleks, kui
programmeerijad oleks vOimelised igat kohta parandama ning tdiustama. Tegelikult aga nii
lihtne see pole — asjad ldhevad kaduma, vanad ja valed koodiosad ilmuvad uude koodi jne.

Kuid aja jooksul tekib see vilumus, mida oleks vaja.

44

8.13 Testimine

Testimist sisse viia on ilmselt raskem kui seda arvatakse. Kuid ka efekt on kdige suurem.
Keeruline on kirjutada testi enne tarkvara. Testidel tuginev arendamine suurendab
rakendusele kuluvat aega umbes 40 %, samas annab see teadud kindlustunde, et tarkvara

toimib.

8.14 Kokkuvote vordlusest

Sellest vordlusest saame jareldada, et ekstreemprogrammeerimisele omaseid praktikaid
tildjuhul kasutatakse, aga mitte tdielikult. Arendajad kasutavad keerulisemate ja
aegandudvatena praktikate puhul selliseid lahendusi, mis on eelnevates projektides kasutusel
olnud ning histi teada. Minnakse lihtsama vastupanu teed ning jidetakse vahele aegandudvad

protseduurid.

45

Kokkuvote

Kéesoleva bakalaureusetod eesmirkideks oli anda iilevaade ekstreemprogrammeerimisest,
selles kasutatavatest praktikatest, testimisest ning vOrrelda seda teiste véledate
arendusmeetodite esindajatega. Ulevaates sai vilja toodud ekstreemprogrammeerimise tekke-
ja arengulugu ning arendusprotsess. Lisaks oli juttu ka ekstreemprogrammeerimise

vastuolulistest aspektidest ning vordlus teooria ning selle kasutamisest reaalsetes tingimustes.
Antud t60st selgub, et sobivad ekstreemprogrammeerimise projektid on sellised :

e Mis kaasavad uut tehnoloogiat, kus nduded muutuvad pidevalt voi arendustdos tuleb
enne senindgematuid rakendusprobleeme.

e Uurimusprojektid, kus tulemus ei ole mitte tarkvara produkt ise, vaid mingi tildisem
teadus.

e Viikesed projektid, mida on lihtsam hallata.

Vordlustest saime teada, et kuigi ekstreemprogrammeerimine on tdiesti arvestatav viledate
arendusmeetodite seas, ning selle kasutamisel on isegi teatav eelis teiste ees, siis arendajad
vildivad ikkagi kasutamast kOiki meetodile omaseid praktikaid. Iseasi, kas me saame

meetodit digeks lugeda, kui selles ei kasutata koiki olulisi praktikaid.

Kiesolev t60 on hea algus antud teemat késitleva eestikeelse materjali loomisel, kuna

ekstreemprogrammeerimisest eestikeelset materjali on leida véga vihe.

46

Viited

[Adaption] Adaption Software — The Planning Game,

http://www.adaptionsoft.com/xp_practices_planning_game.html (21.10.2006)

[Andy Glover] Test Categorization Tehcniques With Testing,
http://dev2dev.bea.com/pub/a/2006/09/testng-categorization.html (14.12.2006)
[ASD] Adaptive SD, http://www.adaptivesd.com/ (04.05.2007)

[Beck 1999] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-
Wesley, 1999.

[Beck 2000] Kent Beck, Martin Fowler, Planning Extreme Programming, Addison- Wesley,
2000

[Brett G.Palmer] Brett G. Palmer, Testing Strategies,
http://www.ujug.org/stuff/TestingStrategies.pdf (02.12.2006)

[C2] Cunningham & Cunningham, Inc,
http://c2.com/xp/HistoryOfExtremeProgramming.html (03.12.2006)

[CC] Crystal Clear : A Human-Powered Methodology for Small Teams, Alistair Cockburn,
2004

[CF] ColdFusion Unit Testing Framework,
http://coldfusion.sys-con.com/read/46361.htm (01.11.2006)

[CodeP] Code Project, http://www.codeproject.com/gen/design/onunittesting.asp
(13.12.2006)
[DSDM] DSDM Consortium, http://www.dsdm.org/ (05.05.2007)

[FDD] Feature Drivern Development,
http://www.featuredrivendevelopment.com/ (12.02.2007)
[IBM] IBM, http://www-128.ibm.com/developerworks/library/j-mocktest.html (11.11.2006)

[Informit] Informit: The Principles of Extreme Programming,

http://www.informit.com/articles/article.asp?p=26261&rl=1 (12.11.2006)

[Joseph Bergin] Learning the Planning Game An Extreme Exercise,

http://csis.pace.edu/~bergin/xp/planninggame.html (10.11.2006)

[The Economist] The Economist, http://www.economist.com (10.11.2006)

[PairProgramming] Pair Programming, an Extreme Programming practice,
http://www.pairprogramming.com/ (05.12.2006)
[Rex Black] Rex Black, Managing the Testing Process, Wiley Publishing, 2002

47

[RUP] IBM Rational Software, http://www-306.ibm.com/software/rational/ (02.05.2007)
[Mayford] Mayford Technologies, http://www.mayford.ca/xp/40hourweek.shtml (11.11.2006)

[Matt Albrecht] Integration Unit Test,
http://groboutils.sourceforge.net/testing-junit/art_iut.html (09.12.2006)

[Matt Stephens] Matt Stephens, The Case Against Extreme Programming,

http://www.softwarereality.com/lifecycle/xp/case_against_xp.jsp (03.11.2006)

[MF] Martin Fowler, Continuous Integration,
http://www.martinfowler.com/articles/continuousIntegration.html (07.12.2006)

[Methods&Tools] Methods and Tools,
http://www.methodsandtools.com/archive/archive.php?id=10 (17.11.2006)

[Methods&Tools 2] Methods and Tools,
http://www.methodsandtools.com/archive/archive.php?id=13 (09.12.2006)

[Scrum] Agile Thoughts — What is scrum, http://agilethinking.net/blog/what-is-scrum/
(15.03.2007)
[Seeba 2002] Asko Seeba, Viledad protsessid ja XP (Extreme Programming),

http://www.cs.ut.ee/~asko/tarkvaratehnika/valedad_protsessid_ja_xp/

(20.11.2006)

[Steve Yegge] Steve Yegge, Good Agile, Bad Agile,
http://steve-yegge.blogspot.com/2006/09/good-agile-bad-agile 27.html
(12.12.2006)

[XP 1] Extreme Programming Resource, http://www.xprogramming.com/ (01.12.2006)

[XP 2] Extreme Programming: A gentle introduction, http://www.extremeprogramming.org/
(25.11.2006)
[XP Exchange] XP Exchange,

http://www.xpexchange.net/english/intro/collectiveCodeOwnership.html

(12.10.2006)

48

Summary

Extreme programming: overview, practices and comparison to other agile development
methods

Priit Valdmees

Extreme Programming has been advocated recently as an appropriate programming method
of the high-speed, volatile world of Internet and Web software development. It has evolved
since 1999 when Kent Beck wrote a book about his recently used methods in Chrysler. It

consists of many specific values, practices, principles and activities.

The goal of this thesis was to introduce extreme programming and to find out if it is over
valued or not.

This paper gives a brief overview of the method, its practices, testing, comparison with other
agile development methods and differences between the theoretical and practical side of

extreme programming.

The author found that even though there are many other agile development methods around,
extreme programming is still one of the best because it has a detailed practice system and
using it doesn’t cost anything. With extreme programming developers don’t produce any
documentation and visual modeling. It can handle critical projects and it reduces costs of

projects and helps develop them faster.

Also, when comparing practical projects with extreme programming theory the author found
that developers don't use all the practices. They mostly only use those that are easy to include
in the project and which distinguish them from other methods. The others practices are

replaced with those that are more common or familiar to programmers.

Extreme programming is one of the best methods in agile development and it's a good method

to use when the project requirements are changing rapidly.

49

