BIFURCATION DIAGRAMS AND CHAOS

Let us consider a dynamical system 
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 We assume that we have a family of functions 
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 where 
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 is a parameter. In particular, we can think of  
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 as a function of two numbers: 
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A bifurcation is a sudden change in the number or nature of the fixed and periodic points of the system. Fixed points may appear or disappear, change their stability or even break apart into periodic points.

Bifurcation diagrams
For a dynamical system involving a parameter 
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 find all fixed points 
[image: image8.wmf]a

 as functions of 
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 Plot these functions on the 
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 axis. Find ranges of  
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 for which each of these fixed points is attracting and draw vertical arrows towards them. In those same ranges, draw arrows away from repelling fixed points, and appropriate arrows for semistable fixed points. Also draw arrows either up or down for values of 
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 for which these are no fixed points.

· Worked Example 3
Consider the dynamical system


[image: image13.wmf]x

k

b

x

k

x

k

(

)

(

)

(

)

(

)

+

=

+

-

1

1

3


where 
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 is some fixed constant. The fixed points are solutions to the equation
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Notice that, for all 
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 values, 
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 are fixed points only when 
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 Thus, if 
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 we have one fixed point, while if 
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Since
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one has that
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Thus 
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 Likewise 
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To find the stability of 
[image: image29.wmf]a

b

=

±

 we compute


[image: image30.wmf]f

b

b

b

b

'

(

)

.

±

=

+

-

=

-

1

3

1

2


It follows that both fixed points 
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 are attracting when 
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The bifurcation diagram is presented in the figure.
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The critical value is called in this case a pitchfork bifurcation. The other important types of bifurcations are transcritical bifurcations (the fixed points lying on two intersecting curves) and saddle node bifurcations. In the latter case at the bifurcation value 
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 the fixed points form a U-shaped curve.

Chaos

Sometimes it happens that all the fixed points and cycles are repelling.

Suppose that a dynamical system

(i) is transitive on its attractor 
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,


(ii) has sensitive dependence of initial values,

(iii) has repelling cycles that are close to the attractor 
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 Then this dynamical system exhibits chaos.

Intuitively, a dynamical system exhibits chaos if in one sense there is unpredictability (sensitive dependence on initial values says we can not make precise predictions), but in another sense there is predictability (transitivity says we will be at a point, we just don't know when).

A set of points 
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 is called an attracting set or simply attractor for a dynamical system 
[image: image38.wmf]x

k

f

x

k

(

)

(

)

+

=

1

b

g

 if there is a number 
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 such that if 
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For instance, when 
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 the dynamical system
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has 
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 as an attracting fixed point. Thus the set 
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The dynamical system is said to be transitive if, when 
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 is close to some point in an attractor, then for every point 
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 in the attractor there is a subsequence 
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For instance, the dynamical system


[image: image53.wmf]x

k

x

k

x

k

(

)

.

(

)

(

)

+

=

-

1

1

25

3


having the attractor 
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 is not transitive. 

The dynamical system 
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 fulfills the requirements (i)-(iii) and thus exhibits chaos.
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