EQUILIBRIUM POINTS

Let the vector 
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 be the state of the dynamical system. The function 
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 tells us how the system moves, e.g.
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In special circumstances, however, the system does not move. The system can be stuck (we shall say fixed) in a special state. We call these states fixed (equilibrium) points of the dynamical system.

· Worked Example 1

Consider the system
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This may be rewritten as 
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In order to find equilibrium points we solve the equations
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from which one can find 
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The equilibrium points can be stable, unstable or semistable. Suppose a first order dynamical system has an equilibrium value 
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.

 This equilibrium value is said to be stable or attracting if there is a number 
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, unique to each system, such that, when
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An equilibrium value is unstable or repelling if there is a number 
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 such that, when
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for some, but not necessarily all, values of 
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 Note that 
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 is a measure of the distance between the two values 
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 and 
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 The definition states that an equilibrium value is stable if whenever 
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 then 
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The equilibrium point is called marginally stable or neutral provided the following: for all starting values near 
[image: image24.wmf]a

 the system stays near 
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 but does not converge to 
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.

Consider a dynamical system (called a general affine system)
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Theorem: The equilibrium value 
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 for this dynamical system is stable, if 
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 Also, if 
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 then the equilibrium value 
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 is unstable and 
[image: image33.wmf]x

k

(

)

 goes to infinity for any 
[image: image34.wmf]x

a

(

)

.

0

¹


The equilibrium value is called semistable if for some values of 
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 while for others 
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