DISCRETE LINEAR SYSTEMS

In some scientific contexts it is natural to regard time as discrete. This is the case in digital electronics, in parts of economics and finance theory, also in impulsively driven mechanical systems. Evidently, discrete variables should be used in modelling animal populations where successive generations do not overlap.

Let us consider discrete time systems. In a general case the system has the form


[image: image1.wmf]x

k

f

x

k

x

x

(

)

(

(

)),

(

)

.

+

=

=

1

0

0


If the function 
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 is linear with respect to 
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 then one has a linear system. Thus in the one dimensional case the linear discrete system can be written as
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 and 
[image: image6.wmf]b

 being given constants.

The graph of the linear function is a straight line. If the line does not go through the origin of coordinates then the function is called affine.

Let us work out the first few values:
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For 
[image: image8.wmf]x

k

(

)

 one has


[image: image9.wmf]x

k

a

x

a

a

a

b

a

x

a

a

b

k

k

k

k

k

(

)

(

.

.

.

)

,

=

+

+

+

+

+

=

+

-

-

×

-

-

0

1

2

0

1

1

1


provided 
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In the two or more dimensional case the discrete linear dynamical system can be written as
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where 
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Similarily to the previous case one can compute the iterations 
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 etc. to obtain 
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In the general case we have
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which can be simplified to
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provided 
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If the absolute values of the eigenvalues of 
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 are less than 1 (hence 
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Alternatively, if some eigenvalues have absolute value bigger than 1, then 
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 blows up, and for most 
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There are, ofcourse, exceptional values of 
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 For example, if 1 is not an eigenvalue of 
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 and
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for all 
[image: image41.wmf]k

.


Finally, if some eigenvalues have absolute value equal to 1 and the other eigenvalues have absolute value less than 1, we see a range of behaviour. The system might stay near 
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 or it might blow up.

Consider now the case 
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First, if 
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Second, if 
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 then we observe that 
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Thus we see that 
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