PERIODIC POINTS AND FEIGENBAUM’S CONSTANT

Around 1975, Feigenbaum began to study period-doubling in the logistic map. First he developed a complicated generating function theory to predict 
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-cycle first appears. To check his theory numerically he programmed his hand-held computer to calculate the first several 
[image: image4.wmf]r

n

.

 He noticed a simple rule: the 
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 converged geometrically, with the distance between successive transitions shrinking a constant factor of about 4.669.

Perhaps a month later he decided to compute the 
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 in the trancendental case numerically. Again, it became apparent that 
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 converged geometrically, the convergence rate was the same 4.669.

In fact, the same convergence rate appears no matter what unimodal map is iterated. In this sense, the number
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is universal. It is a new mathematical constant, as basic to periodic-doubling as 
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 is to circles.
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