{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT 256 32 "Case Study - Economic I nvestment" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(D Etools):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 30 "Define the investment function" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "v:=x->arctan(x): " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 17 "Define the system" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "f:=r*v(x)-2*(x+y);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "g:=x;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 27 "Find the equilibrium poin ts" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "ep:=solve(\{f,g\},\{x,y\});" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 24 "Find the Jacobian matri x" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "u:=[f,g];" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "J:=jacobian(u,[x,y]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "J0:=subs(ep,evalm(J));" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 47 "Find the trace and determinant and discri minant" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "trJ0:=trace(J0);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "detJ0:=det(J0);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "discJ0:=simplify(trJ0^2-4*detJ0);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "solve(discJ0>0,r);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 43 "From these results we \+ have an attractor if " }{XPPEDIT 18 0 "r < 2;" "6#2%\"rG\"\"#" }{TEXT -1 19 " and a repeller if " }{XPPEDIT 18 0 "2 < r;" "6#2\"\"#%\"rG" } {TEXT -1 21 " which is a focus if " }{XPPEDIT 18 0 "r < 2+2*sqrt(2);" "6#2%\"rG,&\"\"#\"\"\"*&\"\"#F'-%%sqrtG6#\"\"#F'F'" }{TEXT -1 22 " and a node otherwise." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 43 "Find the eigenvalues of the Jacobian matrix" }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "evs: =eigenvals(J0);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "ev1:=evs [1];" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "ev2:=evs[2];" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "subs(r=2,ev1);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "subs(r=2,ev2);" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 41 "Thus eigenvalues a re purely imaginary at " }{XPPEDIT 18 0 "r = 2;" "6#/%\"rG\"\"#" } {TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 36 "Also derivative of real part =1/2>0." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 37 "To investigate A.S. of th e origin at " }{XPPEDIT 18 0 "r = 2;" "6#/%\"rG\"\"#" }{TEXT -1 26 " u se the Lyapunov function" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "V:=m*x^2+n*y^2;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 10 "Find dV/dt" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 55 "dV:=collect(diff(V,x)*f+diff(V,y)*g,[x,y],distributed);" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 7 "Cho ose " }{XPPEDIT 18 0 "m = 1;" "6#/%\"mG\"\"\"" }{TEXT -1 5 " and " } {XPPEDIT 18 0 "n = 2;" "6#/%\"nG\"\"#" }{TEXT -1 33 " to eliminate cro ss term and let " }{XPPEDIT 18 0 "r = 2;" "6#/%\"rG\"\"#" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "dV1:=subs(m=1,n=2,r=2,dV);" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 1 " " }}{PARA 0 "" 0 "" {TEXT -1 47 "This expression is neg ative except on the line " }{XPPEDIT 18 0 "x = 0;" "6#/%\"xG\"\"!" } {TEXT -1 27 " which is not a trajectory." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "plot(dV1,x=-2..2);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 70 "Thus all the conditions of the Hopf bifurcation theorem are satisfied ." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 53 "Now \+ obtain the phase portrait to show the bifurcation" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "f:=r*v(x(t) )-2*(x(t)+y(t)):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "g:=x(t): " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "r:=3:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "de1:=diff(x(t),t)=f:de2:=diff(y(t),t)=g: " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "ics:=[[0,2,0],[0,0.5,0] ]:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 93 "DEplot([de1,de2],[x(t ),y(t)],t=-10..10,ics,x=-2.5..2.5,y=-2..2,stepsize=0.1,linecolour=blue );" }}{PARA 257 "" 0 "" {TEXT -1 35 "Unstable Focus + Stable Limit Cyc le" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 92 "DEplot([de1,de2],[x(t),y(t)],t=20..30,ics,x=-2.5..2.5 ,y=-2..2,stepsize=0.1,linecolour=blue);" }}{PARA 258 "" 0 "" {TEXT -1 11 "Limit Cycle" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}} {MARK "43" 0 }{VIEWOPTS 1 1 0 1 1 1803 }