{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } {CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 5 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 20 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 "" 0 1 177 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 259 1 {CSTYLE "" -1 -1 "" 0 1 179 0 4 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 260 1 {CSTYLE "" -1 -1 "" 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 261 1 {CSTYLE "" -1 -1 "" 0 1 74 0 29 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 262 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 263 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE " " 0 264 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 32 "Matrix Algebra worked exam ple 4." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 14 "For the system" }} {PARA 256 "" 0 "" {OLE 1 4102 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N: F:nyyyyy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::fyyyyya:nYf::G:jy;:::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;::::: ::n:;JZC:bKB::>lPxZRQyfpq;V:>r>Z:j:vCSmlJ::::::::::OJ;@j yyyyyy;jysy;Z:::::::^<>:F::]KRnC=MtFGgml>:;::::::JGN:ry:>:<::::::=J:^J >:F:AlqfG[maNFO=;::::::::_J;vyyuy:>:<::::::AZ:^E>:nYN:>:C:wAG:IZ:>; N;;Jyk?J@>:UJ:n;v;;JBknN\\=@ikl>Z;N`=Hi@N:J=qLCHRvJCHrvDZe N:>:;b=D:@Jb:;:::::=B:wyyAb:;P:<:TNC>:UTRcETcT X[US;SK]UW=EWMuUWm>j\\@A:::cYH_WV;J:<::::::::yayY:^Z:j:>:yayQ:>:FiDjQM :Kr:F:MZ=^j;B:?jDJ:f:;j>D:Z:^:n_;>=E:]c:=Z:f:V [b>>jCn;n^@v;_jysy;B:KB:>ryysyAbCv[>V;n>^;UTR:;Jj=j@[;;B:::::::JFNZ;J:N:;B:yayA:;B::::::f:D_=a=[;;B :::::::JF>:yay=J:B::::::nYyA<::::::::::::jysy:>:<:::::::::::::::::::vY xI:;Z:::::::::]:qi:;fy>Z:JBAZ:b:DJ:J:::::::::::JSfj=nH=:G;eZ:VY;><:[V:=:;b:^dcgg_WhZnc_whZNdig g[oG=S:C:Uk:^:>x;j>>:_kb@J`F:o:F;N@>g=F:;Jv:N@Ff@F:;jvI:_;KX;=:m=[B:X=j>>:_c<] Lh@j:>Z:fAkp>JSjjLj:jO>UJSjfXj:jPF:V?: _;=h;=:Q;e:qAB:>l;Z:b:^DP@:Z;:US:=JZ:^@;p>JSjuPj:Z:>R ZDJq\\j:Z::b<]neYj:Z:J?B:Gc;N;yyyxy:J:>< " 0 "" {MPLTEXT 1 0 8 "Restart:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 19 "Enter the equat ions" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "E1:=4*x+2*y-2;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "E2:=-x+y+2;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 256 30 "To find the equilibrium points" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "solve(\{E1=0,E2=0\},\{x,y\}) ;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 31 "The equilibrium point is (1,-1)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 257 23 "To find the \+ eigenvalues" }{TEXT -1 154 " you first need to enter the matrix A.The \+ first two numbers define a 2 by 2 matrix. The four numbers in the squa re bracket are the elements of the matrix." }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 26 "A:=matrix(2,2,[4,2,-1,1]);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 32 "Then use the 'eig envals' command" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "eigenval ues=eigenvals(A);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 38 "there are tw o real eigenvalues 2 and 3" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 258 25 "To find the eigenvectors " }{TEXT -1 30 "use the 'eigenvectors' command" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "eigensystem=eigenvectors(A);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 173 "The first number 2 is an eigenvalue and the following 1 tells \+ you that it only occurs once, i.e. it is not repeated. The term [-1,1] is the eigenvector for the eigenvalue 2." }}{PARA 0 "" 0 "" {TEXT -1 85 "The number 3 is the second eigenvalue followed by a 1 which means \+ it is not repeated." }}{PARA 0 "" 0 "" {TEXT -1 51 "The term [-2,1] is the eigenvector for the value 3." }}{PARA 0 "" 0 "" {TEXT -1 26 "Thus the eigenvectors are " }}{PARA 257 "" 0 "" {OLE 1 4102 1 "[xm]Br=WfoR rB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::fyyyyya:nYf::G:jy;:::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bKB::>`WF[RQyfpq;V:>Z ?B:<:=ja^GE=;:::::::::N;?R:yyyyyyA:yayA:<::::::JDJ:j::F@[KaFFcmnnHEM:> :::::::oJ;Zy=J:B::::::F:;JBC:j:VBYmp>HYLkNG>::::::::NJ?>:wAQ:S:UJ:n;v;;JBCR:HjZK:;:::::FZ:nyyYZDjysyQj;B:;JZC:bK_ J:fc[_hb_ds?h_?^?GhoGfnGgioGM:ETV:::^xsNpk[::::::::jysyA:CB:F:;jysy?:; :Ybr:sV:NZ:f<JZyyKyYj]j[Lj?JMJ@fc[;>:[q@[;;B:::::::JFNZ;J:N:;B:yayA:;B::::::f:=;jysy:>:<::::::wqy[:::::::::::::vYxI:;Z::::::::::::::::::: :yay=J:B::::::::JBjx]:JBA:DZaTXUeRYEUHL:;:cF=KM:>::::::::VY;RyB:>l;Z:b:r;>B=B:LMZ:N@yC;;l:Ja>LMZ:N@]s:;l:j`Rye:=J:vC[F:MZ:N@ ykyDj:jb>LMZ:N@]kyDj:Jb>L[Z:VY;><:[V:b:DZJVDvGhJ:C:[q:F;;B:_cZ:f_::l;Z:b:<::jP@j:^:>X;j>>:_KZG^@F:B:_kYF^@F:nCF;RsC<=:YB:_kR^aBF:>Df\\:B:qQ:[:JBA:cTTPpsX=j>>Z:N@uNTAj:>Z:B:;p>ZDfu=Nc;F:F`:> RJSfMev;=:];JSfUmr;=:];YB:;JS>r^[og^?>;E:KOT?r:>FOZ:n>N;yyyxy:J :><:sg:>Z:FZx;>:AB: " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 " " {TEXT 259 32 "The equations of the directrices" }{TEXT -1 5 " are " }}{PARA 258 "" 0 "" {OLE 1 5126 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B> N:F:nyyyyy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::fyyyyya:nYf::G:I:K:wAyA::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm= ;:::::::n:;JZC:bKB::>`WF[RQyfpq;V:>bCZ:j:vCSmlJ::::::::: :OJ;@jyyyyyy;jysy;Z:::::::^<>:F::]KRnC=MtFGgml>:;::::::JGN:ry:>:<::::: :=J:^^;Z:j:VBYmp>HYLkNG>::::::::N=V;;J@j@>:W:YJ:>\\:B:]:_J:V<^:m:wAq:s:u:w:y:;C :Z::B:=r:=Jyyy ;d:yayY;AZ:>:;`:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::JtaMSAA<:::::: ::yayY:^Z:j:<:yayQ:>:NaGjdd:cr;F:MZ=Nk=J;D:;>ryYnyArEVZCV; n>^;UTR:;JJDj@[;;B:::::::JFNZ;J:N:;B:yayA:;B::::::f :D_=a=[;;B:::::::JF>:yay=J:B::::::nYyA<::::::::::::jysy:> :<:::::::::::::::::::vYxI:;Z:::::::::eB:@C:US:F[:>Z:N`Dfm;NX=B:AB:@j<@:B:=b>\\AFINZPF :K^:>Z:>IKG:M:_khIJvGZ:>:mMN;_KZEjkIj:>:QMN;_khTJsG:>I:_kH]JvG:FI:_K:Y jkIj:joJBB:qQ:pY:>Z:JBAJ:B:DJ:LMZ:N@]s:;l:j`RiW:=J:vC[F:MZ:N@ykUAj:jb>LMZ:N @]kUAj:Jb>L[Z:VY;><:[V:b:DJ:X=j>>Z:N`D>rU[Z:VY;:<:[V:B:DZ:::f_;F:C:[Q:F;;JS>r;Fr>F:;B:SB:_kRHjZMj:j`j>B:_KZ?ZAF:vCF;l;Z:B:>l;Z:b:<::jP@j:^:>X;j>>:_KZAjx]j:B:SB:_kRHjx]j:j`j >B:_KZ?]EFZ:jaj>B:_kY>]EF:FDF;B:_krYJZF:fCF;JiW:=J:vCF;jq:f?;JJSfe@fe?F:;jP<:[Z:VY;J:B:>l;Z:b:;B:::US:=JB:_K:_u@F:;jaj>B:_ky_u@F:FD[n>B:_kr_u@F :>D><l;Zj@FuBF:B:_kyGuBF:nCF;B:_ky_xDF:FDF;l;Z:b:X=j>>Z:N@uV:ec;=Z:B:;p>ZDfUQX;=J:F`:>RJSfMeY<=:];JSfU]e<=:];JSf e@f`@F:F@:_kH]jVQj:jR:N@ulbaj:jR:N@un`dj:<:];OZ:n>N;yyyxy:J:><X;j;:::::::::::::::::::::::::::: ::::::5:" }}}{EXCHG {PARA 13 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 19 "Consider t he system" }}{PARA 259 "" 0 "" {OLE 1 3594 1 "[xm]Br=WfoRrB:::wk;nyyI; G:;:j::>:B>N:F:nyyyyy]::yyyyyy:::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::fyyyyya:nYf::wyyyqy;::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::NDYmq^H;C :ELq^H_mvJ::::::::gjR<:T><::[xbOBpoIewW:A:;B;B:F:YLpfF >:::::::::J?NZ;vyyyyyY:vYxY:B:::::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:x I:;Z::::::j:>:C=;:=j[vGUMrvC?MoJ::::::::JCN:yyyxI:;Z::::::j;B:s<;:wA?Z ::C:J=j=B:K:M:OJ:V;;J@j@>:W:YJ:nYvY::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::F:DZ:B::::::::::>F<::::::::::= B:wyyAb:;`:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::JtaMSAA;B: :::::::vYxy;J<<:=J:vYxY;J:JuM:YG;nfr:aS::EJ:F[Z:^:n_;>=E:]c:=Z:f:V[b>>j>n;;JMTjAN;>r yysyAb>v[>V;n>^;UTR:;Jj=j@[;;B:::::::JFNZ;J:N:;B:ya yA:;B::::::f:=;jysy:>:<::::::wqy[:::::::: :::::vYxI:;Z::::::::::::::::::::yay=J:B::::::::jBjwEJ:uI;B:>l;B:DZ<>ZJ fcN?^??inOh[s=C:US:F[:>Z:N`Dfb;>H=B:JSJnHj:Jv:N@]v :kl:<:mMN;_;;v:=B:FI>\\:B:qAB:>l;>:DZaTXDpql`S^:f?;JUM:_kB?g;F:fAfX;j>>:_kbNkZDFLgf:=:<:OZ:n^@J?vyyuy=:;JBB:qQBv:>:sg:B:=b:?bBaTXaEWEUUtP:C :[q:VZ:B:;::::::::::5:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 29 "find a) the equilibrium point" }}{PARA 0 "" 0 "" {TEXT -1 93 " b) the e igenvalues\n c) the eigenvectors\n d) the equations of the di rectrices\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 263 "" 0 "" {TEXT -1 29 "To find the equilibrium point" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 25 "First enter the equations" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "E1:=2*x; " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "E2:=2*y;" }}{PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 40 "The eq uilibrium point is obviously (0,0)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 264 "" 0 "" {TEXT -1 23 "To find the eigenvalues" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "A:=matrix(2 ,2,[2,0,0,2]);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 26 "eigenvalues:=eigenvals(A);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 32 "Thus the eigenvalue is 2 twice. " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 260 24 "To find the eigenvect ors" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "eigensystem:=eigenve ctors(A);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 133 "Taken at face value this implies that there are only two independent eigenvectors.That this is incorrect may be shown as follo ws. Let" }}{PARA 260 "" 0 "" {TEXT -1 1 " " }{OLE 1 3594 1 "[xm]Br=Wfo RrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy:::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::fyyyyya:nYf::wyyyqy;::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::NDYmq^H;C:ELq^H_mvJ::::::::gjR<:T><::[xbOBpoIewW: A:;B;B:F:YLpfF>:::::::::J?NZ;vyyyyyY:vYxY:B:::::::c:;:=:jR>@Wlj^HMMufF ;J:::::::N=?:xI:;Z::::::j:>:C>;:=j[vGUMrvC?MoJ::::::::JCN:yyyxI:;Z:::: ::j;B:s<;:wA?Z:F;^:nYn:v:J?>:wAQ:S:UJ:n;v;;Jyky;::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::j:b:ZDNZPXe :::::FZ:nyyYZDjysyQj;B:;JZ?Z:Z@O<;j`@ Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::JtaMSAQ:B::::::::vYxy;J<<:=J:vYxY;J:Ja H:mR;^`:Mb:>Z:^:NZ;F:E:=b:yyyyI:E:M::Gc;YJCvYxY:JZyyKyYZEj[Lj?JMJ@fc[;>:[q@[;;B:::::::JFNZ;J:N:;B:yayA:;B::::::f:=;jysy:>:<::::::wqy[:::::::::::::vYxI:;Z:::::::::::::::::::: yay=J:B::::::::jDjx]:JBAj:J:DZJ^dcgg_WhZnc_whZNdigg[oGeJ<>:US:F [:>Z:N`Dfm;nV=J::qQJxI<:[V:;Z:b::::uM <>:Uk:^:>x;j>>:_kxAjv@j:>Z:F`:>HM:_kXLjt@j:<:<:C:[q:F;;JSdJZAJZFZ:B:SLB=j>B:_kYLJZF:nc:>LMZ:N@]s:;l:j`Rmb:=J:vC[F:MZ:N@ykFDj:jb>LMZ:N@]kFDj:Jb>LOB::[Z: VY[j=B:;JXE:;B:=b:?bBaTXaEWEUUtP:B>N:F:nyyyyy]::yyyyyy:::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::fyyyyya :nYf::G:I:K:wAyA:::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZ C:bKB::>hd^[RQyfpq;V:>bCZ:j:vCSmlJ::::::::::OJ;@jyyyyyy;jysy;Z:::::::^ <>:F::]KRnC=MtFGgml>:;::::::JGN:ry:>:<::::::=J:^b;Z:j:VBYmp>HYLkNG>::: :::::N:S:wAW:YJ :>\\:B:]:_J:V<^:q:s:u:w:y:;C:klNZ@h_<^jfS:?JRF::_;J:NZPXeAvR Ar==j?@J;\\rRF\\:b<=b>A>:_C:]Z:>ZDNZPXEb:GVIAr:=Jyyy;d:yayY;AZ:>:;`:Z@ O<;B:UTRcETcTX[US;SK]UW=EWMuUWm>j\\@A:::cYH_WVB::::::::vYxy;J<r:at:NZ:f<D:>:;xyAwyXk[Lj?B:G;Sj`@@J:>X EZ:F;NZ:vCS=[LsfFaMR>@>Z::::::::kJ;@:;J;>Z:vYxY:>Z::::::jZ:J;vC JbNHVH>@>Z::::::::kJ:vYxI:;Z::::::JywYB:::::::::::::yay=J:B::::::::::: ::::::::jysy:>:<::::::::f\\:B:qi:;fyB:>l;B:cTTUUSaEBWTSiEB_tUUURW Mp^Z:jP@:MB:;B:_cZ;N<:RF>:O R:_::D]KJ:@gH>Cc:>Z:ndZ>@;B:gpZ >Z>Z::::::::::::::::N`:>RM:d:Qe;=J:r::_khIjxAj:JR:N@Nb?F:B::djH_lG F:>@:_;[w==J:>@:_kh_lGF:>@:_;[w==:[;JSfMPk:<:[;JSfUPk:JRjD<:qQJxI<:[V: B:DJ:^D::fIC:U;C:[Y:F;;JSfy;^`DF::];JS fASd>=:<:[Z:VY;><:[V:b:DZJVdscRYEU`K:C:[q:F;;JSdjH?u;F:;B:UC:kp>JS fUGd;=:U;[Z:VY;RyB:>l;Z:b:r;>B=B:l:F ;>B=:WLBG;B=:UD:[n>B:_KZWdBF:vC[F:MZ:N@ykc\\j:jb>LMZ:N@]k c\\j:Jb>LMZ:N@;pw]j:J`j>B:_kYVyBF:nCF;B:_kY ^tDF:FDF;<:[V:b:DZJ:Y=jP>:C:[q:F;;B:_c<;h:Gx<=J:UB:qQ:Z:JBA:X;j>>:_[;>ZGF:B:_kY>ZGF:nCF;ZGF: fCF;RYE>>:YB:_kRvgJF:>DF;RiR>=J:^CF;=: WB:_KZ?xLF:;B:Y=:[<[Z:VY;><:[V: b:DZJVDvG:UK:^:>X=j>>Z:N`D>rX;j>>:_ [;^]OF:;B:SB:_kRHJHPk:j`j>B:_KZwgPF:vCF;<:[V:=J:DZjq:f?;JZ:^Gkp>JS fUwt;=:S=eZ:VYJ:<:[V:>:;b:;JdRS:_<^GC:Uk:^:>X;j>>:_kHGnCF::A=JSfUQW>=:A=OZ:n>N;yyyxy:J:><:sg:>Z:FZ:B>N:F:nyyyyy]:: yyyyyy:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::fyyyyya:nYf::wyyyqy;::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::::gjR<:T><::[eDSBpoIewW:A:;B;B:F:YLpfF>:::::::::J?NZ;vyyyyyY:v YxY:B:::::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:xI:;Z::::::j:>:C>;:=j[vGU MrvC?MoJ::::::::JCN:yyyxI:;Z::::::j;B:s<;:wA?Z:F;^:nYn:v:;B:K:OJ:nYV;^ ;f;;JAjA>:wAyA:::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::=Zd:Xb[og]gffk=v:;J::::: j::;P:<:TNC>:UTRcETcTX[US;SK]UW=EWMuUWm>j\\@A:::cYH_W V;Z::::::::jysyA:CB:F:;jysy?:;:Wt:F]?JTD:=j>r:oR:N:eZ:>:EJ:F[n>r:WJ:n^@v;_jysy;B:K: ;xyAwy;h:AD;Q:G;Sj`@@J:>XEZ:F;NZ:vCS=[LsfFaMR>@>Z::::::::kJ;@:;J;>Z:vY xY:>Z::::::jD_=a=[;;B:::::::JF>:yay=J:B::::::nYyA<::::::: :::::jysy:>:<:::::::::::::::::::vYxI:;Z:::::::::eB:JS fu=^T=:A=eJ:VY;syB:>l;>:X=j>>:_c<;X:;l:B=:UD:[n>B:_KZG]l:F;<:sg:>Z:FZX;j;:::::::::3:" }}{PARA 0 "" 0 "" {TEXT -1 50 "is an eigenvect or for any values of the constants." }}{PARA 0 "" 0 "" {TEXT -1 78 "As each eigenvector is a directrix there is an infinite number of direct rices." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 162 "Notice that the matri x is diagonal. Whenever the matrix is diagonal there will be an infini te number of eigenvectors and hence an infinite number of directrices. " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "27 0 0" 13 }{VIEWOPTS 1 1 0 1 1 1803 }