{VERSION 2 3 "IBM INTEL NT" "2.3" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 256 "" 0 1 3 1 232 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 178 0 12 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 181 0 120 0 1 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 181 0 88 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 182 0 12 0 0 1 0 0 0 0 0 0 0 } {CSTYLE "" -1 261 "" 0 1 178 0 96 0 0 1 0 0 0 0 0 0 0 }{PSTYLE "Normal " -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output " 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 " " 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } 3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 " " 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 178 0 16 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 259 1 {CSTYLE "" -1 -1 "" 0 1 178 0 116 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 48 "Stability of equilibrium p oints investigation 2." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 9 "Consider " }}{PARA 256 "" 0 "" {OLE 1 4100 1 "[xm]Br= WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::fyyyyya:nYf::G:jy;:::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bKB::>fP^fsqkUpq; V:>r>Z:j:vCSmlJ::::::::::OJ;@jyyyyyy;jysy;Z:::::::^<>:F::]KRnC=MtFGgml >:;::::::JGN:ry:>:<::::::=J:^J>:F:AlqfG[maNFO=;::::::::_J;vyyuy:>:<::: :::AZ:^E>:nYN:j>J?>:QJ:^;;j@>:W:YJ:FIMCHrvDJ=qL;\\rUFZlV JGb:J;\\rSBXb>AVX?:P=xIyA;Z:vYxI:J:B:::::=Jyyy;d:yayY;A:;JZC:bK_J:fc[_ hb_ds?h_?^?GhoGfnGgioGM:ETV:::^xsNpkK:<::::::::yayY:^Z:j:>:yayQ:>:NjCJ @M:gi:D:;B:CZ:NZ;F:E:=b:yyyyI:E:M:JZyYjyYj\\Z>V;n>^;UTR:;Jb@[;;B:::::::JFNZ;J:N:;B:yayA:;B::::::f:=;jysy:>:<::::::wqy[:::::::::::::vYxI:;Z:::::::::::::::::::: yay=J:B::::::::jBjwEJ:uI<:[V:UDO;SKkEW_URTMf<l;F:>ZJSJKEj:>:k=JSj;Qj:jv>OJS>j=>E=:m=JSJhHj:>:k=JS jAQj:jvJB:C:[q:F;;JSdJZ^e;F:;B:uKfG;N@V m=F:V?k@N@Vi@F:;jPl;Z:b:^DP@ :Jn_Z:jP@j:^:>X;j>>:_KZFp>F:RM:_;[v;=:iKZ;_K:ol:;:::::::::: JZ=:N@>lAF:f`:>r:N;;B:Gc;N;yyyxy:J:>< " 0 "" {MPLTEXT 1 0 8 "re start:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }} {PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }} {PARA 7 "" 1 "" {TEXT -1 33 "Warning, new definition for trace" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "E1:=x+3*y-7;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "E2:=3* x+y-5;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "solve(\{E1=0,E2=0 \},\{x,y\});" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 30 "The equilibrium p oint is (1,2)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 258 "" 0 "" {TEXT -1 23 "To find the eigenvalues" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 25 "A:=matrix(2,2,[1,3,3,1]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG-%'MATRIXG6#7$7$\"\"\"\"\"$7$F+F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 3 "tr(" }{TEXT 257 4 "A)=2" }}{PARA 0 "" 0 " " {TEXT -1 4 "det(" }{TEXT 258 1 "A" }{TEXT -1 5 ")= -8" }}{PARA 0 "" 0 "" {TEXT -1 52 "thus the eigenvaluyes are real and of opposite sign. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "eigenvalues:=eigenvals( A);" }}{PARA 11 "" 0 "" {TEXT -1 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%,eigenvaluesG6$!\"#\"\"%" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 70 "T here are two real eigenvalues so there will be two real directrices. \+ " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 260 23 "To find the directrices" }}{PARA 0 "" 0 "" {TEXT -1 48 "To find th ese you need to find the eigenvectors." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "Eigensystem:=eigenvectors(A); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%,EigensystemG6$7%!\"#\"\"\"<#-%'VECTORG6#7$!\"\"F(7% \"\"%F(<#-F+6#7$F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 28 "The direc trices are given by" }}{PARA 257 "" 0 "" {OLE 1 5132 1 "[xm]Br=WfoRrB: ::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy:::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::fyyyyya:nYf::G:I:K:wAyA:::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bKB::>fP^fsqkUpq;V:> bCZ:j:vCSmlJ::::::::::OJ;@jyyyyyy;jysy;Z:::::::^<>:F::]KRnC=MtFGgml>:; ::::::JGN:ry:>:<::::::=J:^^;Z:j:VBYmp>HYLkNG>::::::::NJ@J?>:QJ:nYf;n;v;;JB:i:k: m:oJ:V=^=f=n=v=>^:B:=C:N>V>^^:Jyky;::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::j:b:B::::::::::>^;J<@Z=fZD^Z;FZ;VZ=j:Pj:@j:Dj: R:_rZkm:D[s[AvTAr:R;:NZ@h_<>kkR:?B\\]K:<::hl;H:P:Z;N:Fb :e:KfFJE;;R:Ar:=Jyyy;d:yayY;AZ:>:;`:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF; fbk;::JtaMSAA;B::::::::vYxy;J<<:=B:vYxY;J:j[l:ed :Mb:B:C:?R:=jZ:^:n_;>=E:]c:=:E:Qb:B:E:Sb:;U<;sJZyyKyYjej;`j?JMJ@fc[;PP:>^J;D_mlVH[KRJ:<:::::::>=? R:>:?J:=;jysy:>:<:::::: wqy[:::::::::::::vYxI:;Z::::::::::::::::::::yay=J:B::::::::jDjx ]:JBAj:J:DZJ^dcgg_WhZnc_whZNdigg[oGSMZ:FZ?F:J:@JC >IRXb:g>N:u;j:P::?B\\F:B:;::Q;f::=b:R:N@:B:;B:::::::::::::::Jv>o:F[:JS fu=>Y=B:OJS>rOJSfe@NX=:k=JSfmB>Y=:m=JS>jAVv=F:VG><r;>B=B:l:F;>B=:WLB G;B=:UD:[n>B:_KZwp;F:;ja>l:F;l;ZaTXDpql`U^:f?;JZ:fAkp>JSfm;fe?F:;jP< Jf?<l;Z:b:<::jP@j:^:>X;j>>:_KZAjZMj:B:_kYFr>F:nCF;F:fCF;Rsh;=J:vCF;<:[V:b:DZJ VDvG:UK:^:>X=j>>Z:N`D>rUB:qQ:Z:JBA:X;j>>:_[;FuB F:B:_kYFuBF:nCF;Rkc<=:YB:_kR>a DF:>DF;j@>B=B:^CF;B=:WB:_K:wp;F:;jaj>B:_kyw p;F:FDF;<:[V:b:DZJ:Y=jP>:C:[q:F;;B:_c<;v;Mg:=J:l;Z:b:<::jPF:C:[Q:F;;JSb;=H;=Z:^CF; B:_K:_v?F:;jaj>B:_ky_v?F:FD[n>B:_kr_v?F:;JbJBB:qQ:[:JBA:DZa:C :[q:F;;B:_c<;v;yg;=Z:V?Z:VY;:<:[V:B:DZ:::f?=JB:_K:?bCF:vCF;l;Z:b::C:[q:F;;B:_kHg`@F::];JSfMa U<=B:F@:_khggCF:B:;@b:[Z:VY[j=B:;JXE:;B:=b:?bBaTXaEWEUUtP " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 261 27 "To plot the direction field" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DEtools):" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 18 "Enter the equation" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "P:=diff(x(t),t)=x+3*y-7;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "Q:=diff(y(t),t)=3 *x+y-5;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "DEplot([P,Q],[x(t),y(t)],-2..2,x=-5..5,y=-5..5);" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 13 "" 1 "" {TEXT -1 0 "" }}} {EXCHG {PARA 259 "" 0 "" {TEXT -1 26 "To plot the phase portrait" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 82 " Fill in the initial conditions us ing the four on the directrices plus some others" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 196 "DEplot([P,Q],[x(t),y(t)],-2..2,[[x(0)=0,y(0) =3],[x(0)=2,y(0)=1],[x(0)=2,y(0)=3],[x(0)=0,y(0)=1],[x(0)=1,y(0)=-1],[ x(0)=1,y(0)=5],[x(0)=-4,y(0)=0],[x(0)=5,y(0)=0]],x=-5..7,y=-5..7,linec olor=black);" }}{PARA 13 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 222 "Look at the direction of the arrows.On one directrix \+ they are pointing towards the equilibrium point (1,2) while on the oth er directrix they are pointing away from it. Thus the equilibrium poin t is unstable and is called a" }{TEXT 256 7 " saddle" }{TEXT -1 1 "." }}}}{MARK "27 0 0" 106 }{VIEWOPTS 1 1 0 1 1 1803 }