{VERSION 2 3 "IBM INTEL NT" "2.3" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } {CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Co urier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 3 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } 0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 " " 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } 0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT -1 39 "Stability of equilibria \+ investigation 5" }}{PARA 0 "" 0 "" {TEXT -1 19 "Consider the system" } }}{EXCHG {PARA 257 "" 0 "" {OLE 1 3592 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;: j::>:B>N:F:nyyyyy]::yyyyyy:::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::fyyyyya:nYf::wyyyqy;::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::NDYmq^H;C:ELq ^H_mvJ::::::::gjR<:T><::;XV_WC[v`wW:A:;B;B:F:YLpfF>::: ::::::J?NZ;vyyyyyY:vYxY:B:::::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:xI:;Z ::::::j:>:;]::=j[vGUMrvC?MoJ::::::::JCN:yyyxI:;Z::::::J;>Z:^E>:nY>;V:< Jyk:W:YJ:nYvY::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::F:D:<::JvilC>@=lZ>@[kRnBakRn@kk xJbAVX@JSHrvTJ;Z:;`:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqn xPqF;fbk;::JtaMSAA;B::>@[kZFB[KRF@=lRn@eKSfI>DFGWmyyiyY:JsD:=j>r:mS:N:sZ:>:EZ:F[:Gc;YJCvYxY:JZyyayYZLjALj?JMJ@fc[;PP:Z:^=l;>Z:b:;b:;B>UDO;SKkEW_URPJ?\\PcmqpYqgmqpYQbYpqYq rPJ?\\P:N;CJ;vCS=[LsZ::::::J<>Z:^oZ:vYxI:;Z::::::JywYB:::::::::::::yay=J:B:::::: :::::::::::::jysy:>:<::::::::ed`yyyB:::::Eb<;J;>hFv<>::::f_;B:MB:;B:_c l;F:x;j>>:_kb@J`F:X=j>B:_ c<]Lh@j:>Z:fasWTM:_kB?g;F:fA:_;wf:=J:f_sWTOJ::sZ:VY[j=J: ^qX;j;::::yay=::G :U^Z3<" }}}{EXCHG {PARA 258 "" 0 "" {TEXT -1 30 "To find the equilibri um point." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 30 "The equilibrium poin t is (0,0)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 256 23 "To find the eigenvalues" }{TEXT -1 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}{PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }}{PARA 7 "" 1 "" {TEXT -1 33 "W arning, new definition for trace" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "A:=matrix(2,2,[0,1,-1,0]);" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 7 "tr(A)=0" }}{PARA 0 "" 0 "" {TEXT -1 8 "det(A)=1" }} {PARA 0 "" 0 "" {TEXT -1 11 "discrim= -4" }}{PARA 0 "" 0 "" {TEXT -1 53 "Thus the eigenvalues are complex with real part zero." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "Eigenvalues:=eigenvals(A);" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 110 "It is unnecessary to find the eig envectors as they will be complex and therefore there will be no direc trices." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 257 27 "To find the phase portrait." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DEtools):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "P :=diff(x(t),t)=y;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "Q:=diff(y(t),t)=-x;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "DEplot([P,Q ],[x(t),y(t)],-2..2,x=-5..5,y=-5..5);" }}{PARA 13 "" 1 "" {TEXT -1 0 " " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "Adding the initial conditions gives" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 114 "DEplot([P,Q],[x( t),y(t)],-4..4,[[x(0)=0,y(0)=1],[x(0)=0,y(0)=2],[x(0)=0,y(0)=3],[x(0)= 0,y(0)=4]],x=-5..5,y=-5..5);" }}{PARA 13 "" 1 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 300 "The trajectories are concentric c ircles surrounding the equilibrium point. Such closed trajectories are characteristic of periodic solutions. No matter at which initial poin t the trajectory starts it will eventually return to the same point. T he equilibrium point is called a neutrally stable centre." }}}}{MARK " 9 0 0" 34 }{VIEWOPTS 1 1 0 1 1 1803 }