{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Outpu t" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 32 "Global Stability Investiga tion 1" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 68 "You are going to look at the phase portrait of the nonlinear system \+ " }}{PARA 256 "" 0 "" {OLE 1 4112 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>: B>N:F:nyyyyy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::fyyyyya:nYf::G:jy;:::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;: ::::::n:;JZC:bKB::>jAAjfpnrnq;V:>b>B:<:=ja^GE=;::::::::: N;?R:yyyyyyA:yayA:<::::::JDJ:j::F@[KaFFcmnnHEM:>:::::::oJ;Zy=J:B:::::: F:;JnJ:j:VBYmp>HYLkNG>::::::::N>:M:OJ:V;;J@j@>:W:YJ:>\\:B:wAyA:::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::F:DZ:B::::::::::^F^Z;r:EbAN:DJE]L;TsNJ:xI;Z::::::Ki>q <;::::=B:wyyAb:;`:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::Jta MSAA;B::::::::vYxy;J<<:=J:vYxY;J:JyY:gI;^s:Mb:>Z:^: >:;xy_xyXJcLj?JMJ@fc[;>:[q@[;;B:::::::JFNZ;J:N:;B :yayA:;B::::::f:=;jysy:>:<::::::wyyyA<::: :::::::::jysy:>:<:::::::::::::::::::vYxI:;Z:::::::::]:qi:;fyB:>l;>Z:b: DJ:f< l;F:>ZJSJQEj: I:_;oX;=:k=[B:C:UK :^:>X=j>>:_cUM:_KQ?g;F:fA:_;UG;=J:f_:>Ue:qAB:>l;Z:b:^DP@ ::jP@j:^:>X;j>>:_;Ux:=Z:F`:>R[Z:VY;RyB:>l;Z:b:IM:_K^IjDUj:jm>IOZ:n^@J?:[Z:VY[j=B:;JXE:;B:= b:?bBaTXaEWEUUtP " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 29 "To find he equilibrium po ints" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "f:=y;" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 11 "g:=x*(1-x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "solve(\{f=0,g=0\},\{x,y\});" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 43 " The equilibrium points are (0,0) an (1,0)." }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 179 "Thus the phase portrait has an eq uilibrium point at (0,0) which is a nonlinear saddle at the point (0,0 ) and an equilibrium point at (1,0) which as yet you are unable to cla ssify." }}{PARA 0 "" 0 "" {TEXT -1 93 "Plot the phase portrait and exa mine it carefully. Does it show the features you would expect?" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "with(DEtools): " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "A: =diff(x(t),t)=y;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 24 "B:=diff(y(t),t)=x*(1-x);" }}{PARA 11 "" 1 " " {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 197 "DEplot( \{A,B\},\{x(t),y(t)\},t=-10..10,[[x(0)=0,y(0)=1],[x(0)=2.5,y(0)=0],[x( 0)=1,y(0)=0],[x(0)=1.5,y(0)=0],[x(0)=.5,y(0)=0],[x(0)=-0.75,y(0)=0],[x (0)=-.1,y(0)=.1]],x=-2..2.5,y=-2.5..2.5,stepsize=0.1);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 129 "To plot \+ the level curves of a conserved quantity for the system first you need to find an expression for the conserved quantity." }}{PARA 0 "" 0 " " {TEXT -1 61 "To do this you need to find a first integral for the sy stem. " }}{PARA 0 "" 0 "" {TEXT -1 78 "Remember to do this you first f ind a differential equation by dividing g by f." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "deq:=diff(y (x),x)=(-x*(1-x))/y(x);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 28 " Then use the dsolve command" }}{PARA 0 " " 0 "" {TEXT -1 1 "." }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "dsolve(deq,y(x),implicit);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 37 "Plot the level curves o f the function" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 12 "with(plots):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "Y:=y^2/2-x^2/2+x^3/3;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 95 "implicitplot(\{Y=0.5,Y =12.5,Y=-1/6,Y=9/4,Y=-1/12,Y=27/64,Y=1/3000,Y=0\},x=-2.5..2.5,y=-2.5.. 2.5);" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 69 "Compare this diagram with the phase portrait of the nonlinear system. " }}{PARA 0 "" 0 "" {TEXT -1 41 "Do they have the same equilibrium poi nts?" }}{PARA 0 "" 0 "" {TEXT -1 41 "Do they have the same geometric f eatures?" }}}{MARK "17 0 0" 25 }{VIEWOPTS 1 1 0 1 1 1803 }