{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "" -1 256 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 257 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 2 0 122 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 124 71 196 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 261 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 263 "" 0 1 113 0 5 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 3 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning " 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } 1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE " " -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 22 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 259 1 {CSTYLE "" -1 -1 "" 0 1 4 0 50 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 260 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 261 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 262 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 263 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 264 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } 0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 34 " Global Stability Worked E xample 4" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 76 "Investigate the long term \+ behaviour of the pedator-prey system modelled by " }}{PARA 256 "" 0 " " {OLE 1 4171 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyy y::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::fyyyyya:nYf::G:jy;:::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bKB::>^dPkBOdJoq;V:>Z@Z:j:vCSmlJ::::::::::OJ;@jyyyyyy;jysy;Z::: ::::^<>:F::]KRnC=MtFGgml>:;::::::JGN:ry:>:<::::::=J:^N>:F:AlqfG[E:YLkN G>::::::::N;N;;Jyk?J@j@>:W:Y J:>\\:B:]:_J:V<^NAFX?b[Qc:KFFZjB\\[[lN\\=@iLVjsS:_sZme;?::NJJ>= =_c:KVG_rZk=?b[Q;DBDMCFi:>:;::=Jyyy;d:yayY;A:;JZC:bK_J:fc[_hb_ds?h_?^? GhoGfnGgioGM:ETV:::^xsNpkK:<::::::::yayY:^Z:j:>:yayQ:>:^dHB:YG;na>j:F; HjID:?jDJ:f:;j>D:;B:CZ:NZ;F:E:=b:yyyyI:E:M:b>R=WZ:n^@v;_jysy;B:K:;xyYxy;H=YB;Q:G;Sj`@@J:>VEZ:F;NZ:vCS=[LsfFaMR>@ >Z::::::::kJ;@:;J;>Z:vYxY:>Z::::::jD_=a=[;;B:::::::JF>:ya y=J:B::::::nYyA<::::::::::::jysy:>:<:::::::::::::::::::vYxI:;Z:::::::: :]:qi:;fy>Z:JBAJ:UDO;SKkEW_UR\\M<<:US:F[:>Z:N`Dfb;>H=B:<:[V:B:D:cTTUUSaEBWTSiEB_tUUURWmx;j>> :_kb@JFLj:>Z:n_:>FM:_;Ex;=:W;]J:VYZ:JBA:DZU\\?Ks@`:^:f?;:>X=j>>:_k< IJuF:Z:VY;><:[V:B:D:c<::B:f?=J:;b:RT::FX=j>>:_kb^C=Z:>IKG:M:_;KR;=:k=OZ:N@FhDN:>i s?OKo>JSFLkl:jv>OO:_;ku;?J:>Ij>JSjDlj:jvJBB:qAB:>l;>:DZaTXDpql`K^:f ?=Jl;Z:b:^DP@::C:US:;JZ:>@;H:M:_; WD;=:]C:;@N@v\\AF:>@^[:B:_;aB`jN@;PZk>JSFLgu:=B:;JR^:>` jRG;PZ?RF;N@v_DFZ:B:[C::_;Qs<=:<:O:Gc;N;yyyxy:J:>< " 0 "" {MPLTEXT 1 0 8 "restart:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}{PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }}{PARA 7 "" 1 "" {TEXT -1 33 "Warning, new definition for trace" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 20 "f:=-0.1*x+0.002*x*y;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "g:=-0.0025*x*y+0.2*y;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "solve(\{f=0,g=0\},\{x,y\});" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 45 "the equilibrium points are (0,0) and (80,50)." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 258 "" 0 "" {TEXT -1 56 "To cl assify the equilibrium points of the linearisations" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 30 "F irst find the Jacobian matrix" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "v:=[f,g];" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 21 "J:=jacobian(v,[x,y]);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 18 "At the point (0,0)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "J00:=subs(\{x=0,y=0\},evalm(J));" }}}{EXCHG {PARA 263 "" 0 "" {OLE 1 3595 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyy yy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::fyyyyya:nYf::wyyyqy;:::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::::g jR<:T><::;cdOFL_DNwW:A:;d::<::::::JDJ:j::F@[KaFFcmnnHEM:>:::::::oJ;^:vYxI>:<::::::=J:^B>: F:AlqfG[E:YLkNG>::::::::N:nYN::C:J=j=B:K:wAy A::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::j:b:B::::::::::>b:B:CR:HjR<:TNC>:UTRcETcTX[US;SK]UW=EWMuUWm>j\\@A:::cYH_WV>Z::::::::jysyA: CB:F:;jysy?:;:uS:^`r:e<;JAJ:f:;j>D:;B:C:?R:f:FZJZyYZyYj=JZAj?JMJ@fc[;> :[L?>:J;vCS=[LsfFaMR>@>Z::::::::kJ;vYxI:;J:<::::::EZ:NT>::::::::::::jy sy:>:<:::::::::::::::::::vYxI:;Z::::::::::::::::::::yay=J:B::::::::N;y yyxy:J:VZ:J::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::4:" }{OLE 1 4107 1 "[xm]Br=WfoRrB:::wk;nyyI; G:;:j::>:B>N:F:nyyyyy]::yyyyyy:::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::fyyyyya:nYf::G:jy;::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::JcvGYMt>^:fB WMtNHm=;:::::::n:;JZC:bKB::>rj^kBOdJoq;V:B;B:F:YLpfF>::: ::::::J?NZ;vyyyyyY:vYxY:B:::::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:xI:;Z ::::::j:>:C>;:=j[vGUMr:<::::::AZ:^E>:nYN: J:W:YJ:>\\:B:]:_J:nYvY:::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::F:DZ:B::::::::::>JAfL?B\\[c:KFF;b:gFD?b_MK;TrXDJ; uL;\\rRDJ;mL;HRlD:?rZce:GVITrPDJ;KRDZlj[@PqHpll@Ij=>:;:::::=B:wyyAb:;P:<:TNC>Z:fc[_hb_ds?h_?^?GhoGfnGgioGM:ETV:::^xsNpk?:;B:::::::: vYxy;J<<:=J:vYxY;J:jV@;qe:^y:Mb:>Z:^:NZ;F:E:=b:yyyy I:E:M:JZyYZyYjxZ:;m<>Z:F;NZ:vCS=[LsfFaMR>@>Z::::::::kJ;@:;J;>Z:vYxY:>Z::::: :j@>Z::::::::kJ:vYxI:;Z::::::Jyyyy[:::::::::::::vY xI:;Z::::::::::::::::::::yay=J:B::::::::jDB:qi:;fyB:>l;F:>ZcTTUUSaE BWTSiEB_tUUURWMBEJ<<:US:v;;JSdJ:AJTf:>:::::::::::^hlGf]gFQmD?ROOOG;;B: _;Uy:=Z:NCOO@>Z:N@^aCV:^f__H;POWGe:qAB:>l;>Z:B:D:::jN^:f?=JN:>`j>R;p>`l>r:>R[Z:VY;RyB:>l;Z:b::C:[q:F;;JSFm;^b=F:;B:?MyF;N@oV:oc;=J:vFwMBB:qQ:K:<:[V:b:DZ JVdscRYEUlKf_;>:C:[q:F;;JSJjYj:B:WC:;m>JSJV]j:JP>f::_;YV==:W;O:Gc;N; yyyxy:J:><Z:>::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::6:" }{TEXT -1 0 "" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 173 "The equilibrium point of the linearisation of the point \+ (0,0) is a saddle and by the linearisation theorem the point (0,0) sho ws similar behaviour and is a nonlinear saddle." }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 20 "At the point (80,50)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "J8050:=su bs(\{x=80,y=50\},evalm(J));" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}} {EXCHG {PARA 262 "" 0 "" {OLE 1 4107 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j: :>:B>N:F:nyyyyy]::yyyyyy:::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::fyyyyya:nYf::G:jy;::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm =;:::::::n:;JZC:bKB::>rj^kBOdJoq;V:>Z?B:<:=ja^GE=;:::::: :::N;?R:yyyyyyA:yayA:<::::::JDJ:j::F@[KaFFcmnnHEM:>:::::::oJ;Zy=J:B::: :::F:;JLK:j:VBYmp>h:vC?MoJ::::::::JCN:yyyxI:;Z::::::j;B:s<;:wA?Z:F;^:n Yn:v:J?>:wAQ:SJ:f;;JAjA>:[B::a:wAyA:::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::F:DZ:B::::::::::>N[:::TrPDJ;uL;\\RRDZlR:>Z:@^<>d:;`:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::JtaMSAA<:::: ::::yayY:^Z:j:<:yayQ:>:^fRJuM:;t:F:MZ=>n;>Z:NZ:f<>:E:Mb:B:CJ:Z:f:V[:Gc;YJCvYxY:>Z: >ryAryAvO>b>V;:[q@[;;B:::::::JFNZ;J:N:;B: yayA:;B::::::f:=;jysy:>:<::::::wqy[:::::: :::::::vYxI:;Z::::::::::::::::::::yay=J:B::::::::jDB:qi:;fyB:>l;F:>ZcTTUUSaEBWTSiEB_tUUURWM`^:f_;jAJSdJ:AJTf:eDVCUR>Z:::::::::::ceV=uREmo fL;H:OOOG;;B:_;Uy:=:OLO_;;B:_;Si:kCFeCF;PZ;MB:;JSJQaj:B:[KZg;N@vbH^:>AJZ ;OZ:N@VgNN:>`l>r:>R[Z:VY;RyB:>l;Z:b::C:[q:F;;JSFm;^b =F:=J:vF><Z:JBA:DZ<>ZJVdsc RYEUlKl; Z:b:^DP@:J`^:f_;>:C:[q:F;;JSJndj:B:SKjF;N@f]NF:;JQN;yyyxy:J:><< jw?:sg:>Z:F:?bBaTXaEWEUUtPX;j; " 0 "" {MPLTEXT 1 0 65 "deq:=diff(y(x),x)=((-.0025*x *y(x)+0.2*y(x))/(-.1*x+.002*x*y(x)));" }}{PARA 11 "" 1 "" {TEXT -1 0 " " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 45 "Use dsolve to find a solution of the equation" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "soln:=dsolve(deq,y(x));" }}{PARA 12 "" 0 "" {TEXT -1 0 "" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 144 "You now need to solve for _C1 as this is the value o f the first integral. LambertW is a special function which will disapp ear when you do this." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "cq :=solve(soln,_C1);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "cq1:=subs(y(x)=y,cq);" }}{PARA 11 "" 1 " " {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 85 "Since the log function only exists for positive valu es the LHS of the first integral " }{TEXT 256 5 "soln1" }{TEXT -1 106 " is not a conserved quantity. It is necessary to convert it to an exp ression containing exponential terms." }}{PARA 0 "" 0 "" {TEXT -1 6 "S ince " }{TEXT 260 3 "cq1" }{TEXT -1 45 " is a constant we can take ex ponentials and " }{TEXT 261 3 "exp" }{TEXT -1 1 "(" }{TEXT 262 3 "cq1 " }{TEXT -1 26 ") will also be a constant." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "cq2:=expand(simpl ify(exp(cq1)));" }{TEXT -1 0 "" }}}{EXCHG {PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 261 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 17 "Thus the function" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 257 "" 0 "" {OLE 1 4619 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]: :yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::fyyyyya:nYf::G:I:wAyA::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::::gjR<:T><::;ugUFL_DNwW:A:;f;:F::]KRnC=MtFGgml>:;::::::JGN:ry:>:<::::::=J:^R>:F:Al qfG[E:YLkNG>::::::::N;;j?>:O J:nY^;f;;JAjA>:[B::a:c:e:gJ:v<>]:jFJyky;:::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::=ZAVKAR:AFXAr=V[KFZ<>kjNZklJ?Dk; aq;x::ZkJ?RSAr=:GVE?B\\[;>@KFFN`LVjs?Z:N;:j:nyyYZDjysyQj;J:>R<:TNC>Z:f c[_hb_ds?h_?^?GhoGfnGgioGMZ:fbk;::JtaMSAA;B::::::::vYxy;J<<:=B:vYxY;J: JIL;wf:;J;M:=j>r:=d:N:e:;j<>:Mb:>Z:^::E:Qb:;Z:f:^[<>f<>bLn;n^@v;_jysy;B:K:;xycwyDKDDj?JMJ@fc[;>:;E:EZ:F ;NZ:vCS=[LsfFaMR>@>Z::::::::kJ;@:;J;>Z:vYxY:>Z::::::jD_=a =[;;B:::::::JF>:yay=J:B::::::nYyA<::::::::::::jysy:>:<:::::::::::::::: :::vYxI:;Z:::::::::eZ:Vy<>jx]:JBAj:J:DZJ^dcgg_WhZnc_whZNdigg[oGEO==_c:KVG_rZkE:>ZcogZVbnf_QgbmZ::::::cWy=T:cWy= L:>Z:::::::::j\\IOo>JSjbHj:jvNOJSJLTj:>:k=JSJW\\j:jv:N@F[ DF:fFO?N@fuGF:fFfl;:;b::::]M>:_KtWfGF:=J:>IAmDjw?JB:>l;>:X=j>>:_KJAjNEj:>Z:^?;mDjw?>B:>l;Z :b:^D::FHjPF:C:[Q:F;;JS^Xqt;=J:yj:JQJBB :qQ:pI<:[V:B:DZ:nb_og]gfmC?C:UK:^:>X=j>>:_kVAJc@j:>Z:NFwm>JSNQSB;=J:vF wMBB:qQ:[:JBA:DZaTXDpql`N^:f?=JNwH;=Z:fAaPBB:qQJZ:JBA:D Zjq:f?;JX;j>>:_;Mi;=Z:>@[m>JSjDYj:Z:>HZDjy]j:JR:N@fmCF:F`:>HJSJ[hj:JRJ@ h:>H[=OB:X=j;:B> N:F:nyyyyy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::fyyyyya:nYf::wyyyqy;:::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ: :::::::gjR<:T><::;ugUFL_DNwW:A:;v:B:F:YLpfF>:::::::::J ?NZ;vyyyyyY:vYxY:B:::::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:xI:;Z::::::j :>:C=;:=j[vGUMr:<::::::AZ:^E>:nYN:<:^::G:IZ: >;;j>J?>:QJ:^;f;;Jyky;:::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::=ZA FX?bZSc>AVXDJE]L;TsNJ=F:ABN;fCmTSa]FSCD]Hr;R:[DZGcMB::::::::::FZ:nyyYZ DjysyQj;B:;JZC:bK_J:fc[_hb_ds?h_?^?GhoGfnGgioGM:ETV:::^xsNpkK:<::::::: :yayY:^Z:j:>:yayQ:>:^a?jwD:SY:F:MZ=nXN:eZ:>:EJ:F[ryAryAj>b: Q:G;Sj`@@J:>f:f:J;D_mlVH[KRJ:<:::::::>]:NZ;J:N:;B:yayA:;B:::: ::f:=;jysy:>:<::::::wqy[:::::::::::::vYxI :;Z::::::::::::::::::::yay=J:B::::::::jDB:qi:;fyB:>l;F:>ZcTTUUSaEBW TSiEB_tUUURWMPYS<>:US:F[:>Z:N`D>j;^C=J:IKG:M:_;]t:=:m MNgZ:^?;E:[Z:VY;RyB:>l;Z:b:IM:_KGAJ@Lj:>:IMvN;X;j;:::::::::::::::::: :::::::::::::::::::ZG^KB:<::6:" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 122 "If the equilibrium point (80,50) is a maximum or minimum of E(x,y) then it will be surrounded \+ by closed curves of E(x,y)." }}{PARA 0 "" 0 "" {TEXT -1 139 "Likewise the equilibrium point of the nonlinear system will be surrounded by c losed curves and must be a neutrally stable nonlinear centre." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 258 58 "To prove the point (80,50) is a stationary point of E(x,y)" }}{PARA 0 "" 0 "" {TEXT -1 52 ".It is necessary to prove that at the point (80,50) " }} {PARA 259 "" 0 "" {OLE 1 3643 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N: F:nyyyyy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::fyyyyya:nYf::wyyyqy;:::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::: :::::gjR<:T><::;ugUFL_DNwW:A:;B;B:F:YLpfF>:::::::::J?N Z;vyyyyyY:vYxY:B:::::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:xI:;Z::::::j:> :[]::=j[vGUMr:<::::::AZ:^E>:nYN:<:^::G:IZ:>; F;N;;j?>:S:UJ:n;v;;Jyky;:::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::j:b::CR:HjZ;NZ@ppLVj ?S:?:\\A?b[us:W:Z?;RXN:DJ>==[DZGcM>Z::::::j;JLxomJ:::FZ:nyyYZDjysyQj;J :>R<:TNC>:UTRcETcTX[US;SK]UW=EWMuUWm>B:ETV:::^xsNpkK:<::::::::yayY:^Z: j:>:yayQ:>:VaCJ@M:Kf:F:MZ=^b;B:AB:e:;j<>:Mb:>Z:^:B:;xyewy;CVMB:`:J:<:::::::>]:NZ;J:N:;B:yayA:;B::::: :f:=;jysy:>:<::::::wqy[:::::::::::::vYxI: ;Z::::::::::::::::::::yay=J:B::::::::>\\:B:JK^:f_;jl;Z>:_c< QU:il:JU?r:F[:JSFk=FJ=:g?JS>fu:F;N@QMpIj:>:g?JSFKgB;=:g?JS>F [c;=J:fAf:;b:;Jd``_WhZnc_whZNdigg[oG]M>:_kov\\ ;F:;j\\o:F;N@QMPMj:j\\:N@MNeMj:jv>Oe:qAB:>l;>:X?B:MJ:N@;MiXj:>:[KZ=J?>Z:n>N;yyyxy:J:><X=j;:::::::::::::4:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "E:=x^0.2*y^.1*exp(-.002*y)*exp(-.0025*x);" }}{PARA 11 "" 0 "" {TEXT -1 0 "" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "P:=diff(E,x);" }}{PARA 12 "" 0 "" {TEXT -1 0 "" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "Q:=diff(E,y);" }}{PARA 12 "" 0 "" {TEXT -1 0 "" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 47 "To evaluate the derivatives at the pont (80,50)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "R:=subs(\{x=80,y=50\},\{P,Q\});" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 " S:=simplify(R);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 12 " " 1 "" {TEXT -1 30 "therefore at the point (80,50)" }}{PARA 260 "" 0 " " {OLE 1 3643 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyy y::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::fyyyyya:nYf::wyyyqy;:::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::::gjR<:T><::tmA]Nc:::::::oJ;Zy=J:B::::::F:;JlJ:j:VBYmp>h:vC? MoJ::::::::JCN:yyyxI:;Z::::::j;B:s<;:wA?Z::C:J=j=B:K:M:OJ:V;;J@j@>:W:Y J:nYvY:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::F:DZ:B::::::::::>FAVK@J;ZrK;TrXHJA:RK :`A?Z<>kjJb;B::::::::::FZ:nyyYZDjysyQj;J:>R<:TNC>:UTRcETcTX[US;SK ]UW=EWMuUWm>B:ETV:::^xsNpkK:<::::::::yayY:^Z:j:>:yayQ:>:VaCJ@M:Kf:F:MZ =^b;B:AB:e:;j<>:Mb:>Z:^:B:;xyewy;CVMB:@[C:>Z::::::::kJ;@:;J;>Z:vYxY:>Z::::::jD_=a=[;;B:::: :::JF>:yay=J:B::::::nYyA<::::::::::::jysy:>:<:::::::::::::::::::vYxI:; Z::::::::JBBEZ:V\\s?f:F[< ;B:qi:;fy>Z:JBA:DZaTXUeRYEUHL<:_k>Ij:G:nP:_ KjDjGEj:>:uKf=j>JSVGSy:=J:nP:_k>o\\>F:nP:_Kj>`@F:;jXjDjw;<:[V:=J:>Z<>: cTTPpsx;F:MJ:N@QmE@j:>:ED:[q>JSFK=T:=:kMN=j>J SVGSG;=:EFwt;=:[KZ=J ?>Z:n>N;yyyxy:J:><X=j;:::::: :::::::4:" }}{PARA 0 "" 0 "" {TEXT -1 55 "Thus the point (80,50) is a \+ stationary point for E(x,y)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 84 "The type of stationary poi nt is determined by the eigenvalues of the Hessian matrix." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 54 "To find the hessian matrix use the \"hess ian\" command ." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "H:=hessi an(E,[x,y]);" }}{PARA 12 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 20 "At the point (80,50)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "H1:=subs(\{x=80,y=50\},evalm(H));" }}{PARA 11 "" 1 " " {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 26 "Find the eigenv alues of H1" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "Eigenvalues: =eigenvals(H1);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 130 "Since these are both negative the equilibrium poi nt is a maximum and the point (80,50) is a nonlinear centre and neutra lly stsble." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 1 " " }{TEXT 259 26 "To draw the phase portrait" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DEtools):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "A:=diff(x(t),t)=-.1*x+.00 2*x*y;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "B:=diff(y(t),t)=-.0025*x*y+.2*y;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 127 "DEplot(\{A ,B\},\{x(t),y(t)\},-50..5,[[x(0)=100,y(0)=30],[x(0)=80,y(0)=100],[x(0) =80,y(0)=40],[x(0)=10,y(0)=50]],x=0..150,y=0..100);" }}{PARA 13 "" 1 " " {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}} {MARK "0 0 0" 34 }{VIEWOPTS 1 1 0 1 1 1803 }