{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 113 0 5 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 2 0 122 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 124 71 196 0 0 1 0 0 0 0 0 0 0 }{CSTYLE " " -1 261 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 3 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Error" 7 8 1 {CSTYLE "" -1 -1 "" 0 1 255 0 255 1 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 22 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 259 1 {CSTYLE "" -1 -1 "" 0 1 4 0 50 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 260 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 34 " Global Stability Worked E xample 3" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 76 "Investigate the long term \+ behaviour of the pedator-prey system modelled by " }}{PARA 256 "" 0 " " {OLE 1 4148 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyy y::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::fyyyyya:nYf::G:jy;:::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bKB::>fRPfZ?xxnq;V:>Z@B:<:=ja^GE=;:::::::::N;?R:yyyyyyA:yayA:<: :::::JDJ:j::F@[KaFFcmnnHEM:>:::::::oJ;Zy=J:B::::::F:;JLK:j:VBYmp>HYLkN G>::::::::N;N;;Jyk?J@j@>:W:Y J:>\\:B:]:_J:V<^NAFX?b[Qc:KFFZjB\\[[lN\\=@iLVjsS:_sZme;?::NJJ>= =_c:KVG_rZk=?b[Q;DBDMCFi:>:;::=Jyyy;d:yayY;A:;JZC:bK_J:fc[_hb_ds?h_?^? GhoGfnGgioGM:ETV:::^xsNpkK:<::::::::yayY:^Z:j:>:yayQ:>:^dHB:YG;na>j:F; HjID:?jDJ:f:;j>D:;B:CZ:NZ;F:E:=b:yyyyI:E:M:b>R=WZ:n^@v;_jysy;B:K:;xyYxy;H=YB;Q:G;Sj`@@J:>VEZ:F;NZ:vCS=[LsfFaMR>@ >Z::::::::kJ;@:;J;>Z:vYxY:>Z::::::jD_=a=[;;B:::::::JF>:ya y=J:B::::::nYyA<::::::::::::jysy:>:<:::::::::::::::::::vYxI:;Z:::::::: :]:qi:;fy>Z:JBAJ:UDO;SKkEW_UR\\M<<:US:F[:>Z:N`Dfb;>H=B:<:[V:B:D:cTTUUSaEBWTSiEB_tUUURWmx;j>> :_kb@JFLj:>Z:n_:>FM:_;Ex;=:W;]J:VYZ:JBA:DZU\\?Ks@`:^:f?;:>X=j>>:_k< IJuF:Z:VY;><:[V:B:D:c<::B:f?=J:;b:RT::FX=j>>:_kb^C=Z:>IKG:M:_;KR;=:k=OZ:N@FhDN:>i s?OKo>JSFLkl:jv>OO:_;ku;?J:>Ij>JSjDlj:jvJBB:qAB:>l;>:DZaTXDpql`K^:f ?=Jl;Z:b:^DP@::C:US:;JZ:>@;H:M:_; WD;=:]C:;@N@v\\AF:>@^[:B:_;aB`jN@;PZk>JSFLgu:=B:;JR^:>` jRG;PZ?RF;N@v_DFZ:B:[C::_;Qs<=:<:O:Gc;N;yyyxy:J:>< " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}{PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }}{PARA 7 "" 1 "" {TEXT -1 33 "Warning, new definition for trace" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "f:=-0.1*x+0.002*x*y;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fG,&%\"xG$!\"\"F(*&F&\"\"\"%\"yGF*$\"\"#!\"$" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "g:=-0.0025*x*y+0.2*y;" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gG,&*&%\"xG\"\"\"%\"yGF($!#D!\"%F) $\"\"#!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "solve(\{f=0, g=0\},\{x,y\});" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$<$/%\"yG\"\"!/%\"xG F&<$/F%$\"#]F&/F($\"#!)F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 45 "the equilibrium points are ( 0,0) and (80,50)." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 258 "" 0 "" {TEXT -1 56 "To classify the equilibrium points of the lin earisations" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 30 "First find the Jacobian matrix" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "v:=[f,g];" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#>%\"vG7$,&%\"xG$!\"\"F)*&F'\"\"\"%\"yGF+$\"\"#!\"$,&F *$!#D!\"%F,$F.F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "J:=jaco bian(v,[x,y]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"JG-%'matrixG6#7$ 7$,&$!\"\"F,\"\"\"%\"yG$\"\"#!\"$,$%\"xGF/7$,$F.$!#D!\"%,&F3F6$F0F,F- " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 18 "At the point (0,0)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "J00:=subs(\{x=0,y=0\},evalm(J));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$J00G-%'matrixG6#7$7$$!\"\"F+\"\"!7$F,$\"\"#F+" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "R1 := linalg[trace](J00);" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#R1G$\"\"\"!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "R0 := linalg[det](J00);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#R0G$!\"#F&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 173 "The equilibrium point of the linearisation of the point (0,0) is \+ a saddle and by the linearisation theorem the point (0,0) shows simila r behaviour and is a nonlinear saddle." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 20 "At the point \+ (80,50)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 34 "J8050:=subs(\{x= 80,y=50\},evalm(J));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&J8050G-%'ma trixG6#7$7$\"\"!$\"$g\"!\"$7$$!%]7!\"%F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "R1 := linalg[trace](J8050);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#R1G\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "R0 := linalg[det](J8050);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#R0 G$\"'++?!\"(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 231 "Therefore the equilibrium point of the l inearisation at the point (80,50) is a centre and the linearisation th eorem fails so further analysis is necessary to determine the stabilit y of the equilibrium point of the nonlinear system." }}{PARA 0 "" 0 " " {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 74 "This further analysis c an be achieved by looking for a conserved quantity." }}{PARA 0 "" 0 " " {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 258 30 "To find a conserved q uantity " }}{PARA 0 "" 0 "" {TEXT -1 53 "First find a differential equ ation by dividing g by f" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 63 "deq:=diff(y(x),x)=((-.0025*x*y(x)+2 *y(x))/(-.1*x+.002*x*y(x)));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$deq G/-%%diffG6$-%\"yG6#%\"xGF,*&,&*&F,\"\"\"F)F0$!#D!\"%F)\"\"#\"\"\",&F, $!\"\"F8F/$F4!\"$!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 45 "Use dso lve to find a solution of the equation" }}{PARA 0 "" 0 "" {TEXT -1 0 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "soln:=dsolve(deq,y(x),i mplicit);" }}{PARA 12 "" 0 "" {TEXT -1 0 "" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%%solnG/,,%\"xG$\"+++++D!#7-%#lnG6#F'$!\"#\"\"!-%\"yGF -$\"+++++?F*-F,6#F1$!+++++5!#5%$_C1G\"\"\"F0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "soln1:=subs(y(x)=y,soln);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%&soln1G/,,%\"xG$\"+++++D!#7-%#lnG6#F'$!\"#\"\"!%\"yG$ \"+++++?F*-F,6#F1$!+++++5!#5%$_C1G\"\"\"F0" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 85 "Since the log function on ly exists for positive values the LHS of the first integral " }{TEXT 261 5 "soln1" }{TEXT -1 106 " is not a conserved quantity. It is neces sary to convert it to an expression containing exponential terms." }} {PARA 0 "" 0 "" {TEXT -1 102 "Since the RHS is a constant we can take \+ exponentials of both sides and the RHS will remain a constant." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "LHS:=exp(lhs(soln1));" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%$LHSG -%$expG6#,,%\"xG$\"+++++D!#7-%#lnG6#F)$!\"#\"\"!%\"yG$\"+++++?F,-F.6#F 3$!+++++5!#5%$_C1G\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "LHS1:=simplify(LHS);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%LHS1G*&-%$ expG6#,(%\"xG$\"+++++D!#7%\"yG$\"+++++?F-%$_C1G\"\"\"\"\"\"*&)F*\"\"#F 3)F.#\"\"\"\"#5F3!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "L HS2:=1/LHS1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%LHS2G*&*&)%\"xG\"\" #\"\"\")%\"yG#\"\"\"\"#5F*F*-%$expG6#,(F($\"+++++D!#7F,$\"+++++?F6%$_C 1GF.!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 18 "This simplifies to" }}{PARA 257 "" 0 "" {OLE 1 4632 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B> N:F:nyyyyy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::fyyyyya:nYf::G:I:wAyA::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ: :::::::gjR<:T><::;VHOER[iIwW:A:;d;B:F:YLpfF>:::::::::J ?NZ;vyyyyyY:vYxY:B:::::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:xI:;Z::::::j :>:C@;:=j[vGUMrvC?MoJ::::::::JCN:yyyxI:;Z::::::j;B:s<;:wA?Z:F;^:;JyK=j =B:KJ:N;;jCj?>:S:UJ:n;v;;JB=b:KFF?bZWc:KfFN[LVjsWZI::RFN;Pp;x:J=qL;\\RR:[K>==_c>AV X;J?:::?>>kjJSDJ>QMCHRv:;`:Z@O<;B:UTRcETcTX[US;S K]UW=EWMuUWm>B:ETV:::^xsNpkK:<::::::::yayY:^Z:j:jysy?:;:SG>Vi:EJ:F[b<>^In[:JMTjAN;:[l@[;;B:::::::JFNZ;J:N:;B:yayA:;B::::::f: =;jysy:>:<::::::wyyyA<::::::::::::jysy:>:<:::::::::::::::::::vYxI:;Z:: :::::::eZ:Vy<>jx]:JBAj:J:DZJ^dcgg_WhZnc_whZNdigg[oGSBBCJ:f_;j>AvJIKG:M:_;?e :=J:OJSjRLj:>:EMN;_;KB<=:E=JSJhqj:j[^Ye:qQJxI<:[V:J:DZJ^DJa:jB_:f? =JJSJZij:>:kMkfX=j>>: _;]R:=B:;B:[KrF;N@fq;F:B:[=b`:>HU:_;[Y`jRG[E:[Mrj>JSj;Aj:JQaTXDpql`M^:;jPF:C:[Q:F;;JSd:YI; =Z:f_:nIM:_;GH<=:U;[Z:VY;><:[V:b:DZJ:Y=;J:==_c::;J?@JCr::J;KS:Ob: GVI_rZAE:vYxI>:;B:::::JHXyZ@JHXyZ>Z:>Z::::C:US:;JX;j;l;F:;B:;b:^DP@:JTLTJSJqtj:Jv:N@]YB:>l;>:X?B:MJ:N@aR:mr:=:[KrF;N@fr=F: B::d:YS;=:[;JSj`Qj:jR>HJSvq?VZ=F:;JR:N@vo=F:B::d:mR;=:[;JSjUQj:jR>HJS^ PwF<=:[;SZ:N@NcCV:JSJsij:JR`jRGHF;N@]QMDj:> :[C::_;_h:=:<:ZDJXLj:JR:J:<::::1:" }}{PARA 257 "" 0 "" {TEXT -1 0 "" } }{PARA 0 "" 0 "" {TEXT -1 17 "Thus the function" }}{PARA 257 "" 0 "" {OLE 1 4636 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: fyyyyya:nYf::G:I:wAyA::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::::gjR<:T><::;VHOER[iIwW:A:;f;B:F:YLpfF>:::::::::J?NZ;vyyyyyY:vYxY:B:: :::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:xI:;Z::::::j:>:S@;:=j[vGUMrvC?Mo J::::::::JCN:yyyxI:;Z::::::j;B:s<;:wA?Z:F;^:nYn:v:>:QJ:N;;JyK@j@>:W :YJ:>\\:B:]:_J:V<^=b:KFF?bZWc:KfFN[LVjsWZI::RFN;Pp ;x:J=qL;\\RR:[K>==_c>AVX;B:O::F:wyyAb:;`:Z@O<;B:UTRcETcTX[US; SK]UW=EWMuUWm>B:ETV:::^xsNpkK:<::::::::yayY:^Z:j:<:yayQ:>:n]NJIEJ:Nj>j :F;HjZD:?jDJ:f:;j>D:;B:CZ:NZ;F:E:=b:yyyyI:E:M:W:Gc;YJCvYxY:JZyYTyiL^\\^;UTR:;Jj@[;;B:::::::JFNZ;J:N:;B:yayA:;B::::::f:=;jysy:>:<::::::wqy[:::::::::::::vYxI:;Z::::::::::::::::::::yay=J:B: :::::::jDB:qi:;fyB:>l;F:>ZcTTUUSaEBWTSiEB_tUUURWMd^:f_;j>>kjJSDJ>QMCHRv<:;RTWEBIEUYeR=EU>Z::::::cWy=T:cWy=L:>Z:::::: :::j\\IKG:M:_;]t:=:mMN;_;Cc;=J:>I:_;oC<=:m=JSj>dj:jl>OJSJ jqj:jljDjw?^yM:<:[V:J:D:::jL^:f?=JJSJFAk:>:kMk f<:[V:;Z:b::::cZ:^?;mDjw?>B:>l;Z:b:^D::f>jP F:C:[Q:F;;JS^Xqt;=Z:n_:>AM:_;]U<=:W;JSjUij:JQ:N@nkIF:n?><:C:[q:F;;JSFq;Nd;F:;B:?MvF;N@oO@Lj:>:IE:kMBB:qQ:[:J BA:DZaTXDpql`I^:f?=JNwH;=Z:fAkPBB:qQJZ:JBA:DZjq:f?;J l;Z:b:^DP@BB:c@:_;uV<=:]C:[=N@fbEF:>@^[:>:_;]y `jN@>HF;N@^]IF:>`:>HU:_;Kx=C:[CFPMrHN[:B:G;OjyyiyI:>:[Z:VY[j=B:;JX E:;B:=J;Dlc`qsLqlp`h_:f?;J:B>N:F:nyyyyy] ::yyyyyy:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::fyyyyya:nYf::wyyyqy;::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::::gjR<:T><::;VHOER[iIwW:A:;v:B:F:YLpfF>:::::::::J?NZ;vyyyyyY :vYxY:B:::::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:xI:;Z::::::j:>:C=;:=j[v GUMrvC?MoJ::::::::JCN:yyyxI:;Z::::::j;B:s<;:wA?Z::C:J=j=B:KJ:F;N;;j?>: S:UJ:nYvY::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::j:b:d:p^H[::::::::::j::;` :Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::JtaMSAA;B::::::::vYxy;J<<:=J: vYxY;J:JXP:qe:^w;j:F;HJuK;f<D:;B:C:?R:=jZ:^:n_;> =E:]c:=Z:f:V[b<>r>n;;JMTjAN;;JZyYZyY:MZ^;UTR:;Jj @[;;B:::::::JFNZ;J:N:;B:yayA:;B::::::f:=;jysy:>:<::::::wqy[:::::::::::::vYxI:;Z::::::::::: :::::::::yay=J:B::::::::jDB:qi:;fyB:>l;F:>ZcTTUUSaEBWTSiEB_tUUURWMP YS<>:US:F[:>Z:N`D>j;^C=J:IKG:M:_;]t:=:mMNgZ:^?;E:[Z:VY;RyB:>l;Z:b:IM:_KGAJ@Lj:>:IMvN;X;j;:::::::::::::::::::::::::::::::: :::::5:" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 122 "If the equilibrium point (80,50) is a maximum or mi nimum of E(x,y) then it will be surrounded by closed curves of E(x,y) ." }}{PARA 0 "" 0 "" {TEXT -1 139 "Likewise the equilibrium point of t he nonlinear system will be surrounded by closed curves and must be a \+ neutrally stable nonlinear centre." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT 259 58 "To prove the point (80,50) is a stationa ry point of E(x,y)" }}{PARA 0 "" 0 "" {TEXT -1 52 ".It is necessary to prove that at the point (80,50) " }}{PARA 259 "" 0 "" {OLE 1 3620 1 " [xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy:::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::fyyyyya:nYf::wy yyqy;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::::gjR<:T><::;T RaER[iIwW:A:;B;:F::]K RnC=MtFGgml>:;::::::JGN:ry:>:<::::::=J:>H<:F:AlqfG[maNFO=;::::::::_J;v yyuy:>:<::::::AZ:^E>:nYN:<:^::G:IZ:>;F;N;;j?>:S:UJ:n;v;;Jyky;::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::j:b::CR:HjZ;NZ@ppLVj?S:?:\\A?b[us:W:Z?;RXN:DJ>==[DZGc M>Z::::::j;JLxomJ:::FZ:nyyYZDjysyQj;J:>R<:TNC>:UTRcETcTX[US;SK]UW=EWMu UWm>B:ETV:::^xsNpkK:<::::::::yayY:^Z:j:>:yayQ:>:VaCJ@M:Kf:F:MZ=^b;B:AB :e:;j<>:Mb:>Z:^:B:;xyewy;CVMB: `:J:<:::::::>=?R:>:?J:p@>Z::::::::kJ: vYxI:;Z::::::JywYB:::::::::::::yay=J:B:::::::::::::::::::jysy:>:<::::: :::[B:<:N>C:US:f:D:Z:Vy<>jx M:<:[V:b:DZJVdsgg\\wgfsBC:Uk:F;;JSdjo@jeF:nP;H:MB:N@Mv:=n:JU;N@;e:qf:= J:fAkH:M:_ko^w=F:;JU;N@MNELj:JU;N@;MRTj:>:u;e:qAB:>l;F:;J:DJ:^dcSSaEBW TSiEB_tUUURWmr^:f??JXM:_k>Gb;F:>IKG:M:_ko^o>F:f B:_k>ot>F:FIKoDjw;<:[V:;Z:b::::SK>:_KjneAF:;JR>r:N;;B:G;O jyyiyI:>:[Z:VY[j=J:^q " 0 "" {MPLTEXT 1 0 40 "E:=x^.2*y^.1*exp(-.002*y)* exp(-.0025*x);" }}{PARA 11 "" 0 "" {TEXT -1 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"EG**)%\"xG$\"\"#!\"\"\"\"\")%\"yG$\"\"\"F*F+-%$expG 6#,$F-$!\"#!\"$F/-F16#,$F'$!#D!\"%F/" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "P:=diff(E,x);" }}{PARA 12 "" 0 "" {TEXT -1 0 "" }} {PARA 12 "" 1 "" {XPPMATH 20 "6#>%\"PG,&*&*()%\"yG$\"\"\"!\"\"\"\"\"-% $expG6#,$F)$!\"#!\"$F+-F/6#,$%\"xG$!#D!\"%F+F-*$)F8$\"\")F,F-!\"\"$\" \"#F,**)F8FAF-F(F-F.F-F5F-F9" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "Q:=diff(E,y);" }}{PARA 12 "" 0 "" {TEXT -1 0 "" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%\"QG,&*&*()%\"xG$\"\"#!\"\"\"\"\"-%$expG6#,$%\"yG$ !\"#!\"$\"\"\"-F/6#,$F)$!#D!\"%F6F-*$)F2$\"\"*F,F-!\"\"$F6F,**F(F-)F2F BF-F.F-F7F-F3" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 47 "To evaluate the \+ derivatives at the pont (80,50)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "R:=subs(\{x=80,y=50\},\{P,Q\});" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%\"RG<$,$*&-%$expG6#$!$+\"!\"$\"\"\"-F)6#$!%+?!\"%F.$!\"#!#7,$F '$F-F6" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "S:=simplify(R);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"SG<$$!+Tkj\"[\"!#@$!+iYXAAF(" }} }{EXCHG {PARA 12 "" 1 "" {TEXT -1 30 "therefore at the point (80,50)" }}{PARA 260 "" 0 "" {OLE 1 3620 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B> N:F:nyyyyy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::fyyyyya:nYf::wyyyqy;:::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ: :::::::gjR<:T><::;TRaER[iIwW:A:;B;:F::]KRnC=MtFGgml>:;::::::JGN:ry:>:<::::: :=J:^F>:F:AlqfG[maNFO=;::::::::_J;vyyuy:>:<::::::AZ:^E>:nYN:<:^::G:IZ: >;F;N;;j?>:S:UJ:n;v;;Jyky;:::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::j:b:Z;NZ@ppL Vj?S:?:\\A?b[us:W:Z?;RXN:DJ>==[DZGcM>Z::::::::::j:k:EJ:F[Z:^: n_;>=E:]c:=Z:f:V[^>>fBn;n^@v;_jysy;B:KZ:>ryipyA^Bft=V;n>^;UTR :;JjG[:B:oi:NZ:vCS=[LsfFaMR>`:J:<:::::::>=?R:>:?J:p @>Z::::::::kJ:vYxI:;Z::::::JywYB:::::::::::::yay=J:B:::: :::::::::::::::jysy:>:<::::::::[B:<:N>C:US:f:D:Z:Vy<>jxM:<:[V:b:DZJVdsgg\\wgfsBC:Uk:F;;JSdjo@jeF: nP;H:MB:N@Mv:=n:JU;N@;e:qf:=J:fAkH:M:_ko^w=F:;JU;N@MNELj:JU;N@;MRTj:>: u;e:qAB:>l;F:;J:DJ:^dcSSaEBWTSiEB_tUUURWmN^:f??JXM:_k>Gb;F:>IKG:M:_ko^o>F:fB:_k>ot>F:FIKoDjw;<:[V:;Z:b::::eN>:_KjneAF:>@;H:OJ::sg:B:=J;Dlc`qsLqlp`h_:f? ?J " 0 " " {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 84 "The type of stationary point is determined by the eigenvalues of the Hessian matr ix." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 54 "To find the hessian matrix use the \"hessian\" command ." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "H:=hessian(E,[x,y]);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%\"HG -%'matrixG6#7$7$,(*&*()%\"yG$\"\"\"!\"\"\"\"\"-%$expG6#,$F.$!\"#!\"$F0 -F46#,$%\"xG$!#D!\"%F0F2*$)F=$\"#=F1F2!\"\"$!#;F8*&*(F-F2F3F2F:F2F2*$) F=$\"\")F1F2FE$!$+\"!\"&**)F=$\"\"#F1F2F-F2F3F2F:F2$\"$D'!\"),**&*&F3F 2F:F2F2*&)F=$\"\")F1F2)F.$\"\"*F1F2FE$FTF8*&*(FRF2F3F2F:F2F2*$)F.$\"\" *F1F2FE$F?FPFH$F@F@FQ$\"#]!\"(7$FX,(*&*(FRF2F3F2F:F2F2*$)F.$\"#>F1F2FE $!\"*F8F]oFdoFQ$\"\"%!\"'" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 20 "At t he point (80,50)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "H1:=sub s(\{x=80,y=50\},evalm(H));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#H1G-% 'matrixG6#7$7$,$*&-%$expG6#$!$+\"!\"$\"\"\"-F-6#$!%+?!\"%F2$!+cu556!#8 \"\"!7$F;,$F+$!+Xv$4U\"F:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 26 "Find the eigenvalues of H1" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "E igenvals:=eigenvals(H1);" }}{PARA 8 "" 1 "" {TEXT -1 61 "Error, attemp ting to assign to `Eigenvals` which is protected" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 1 " " }{TEXT 260 26 "To draw the phase portrait" } {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DE tools):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 95 "DEplot(\{A,B\},\{x(t),y( t)\},-50..5,[[0,100,30],[0,80,100],[0,80,40],[0,10,50]],x=0..150,y=0.. 100);" }}}}{MARK "35 11 0" 139 }{VIEWOPTS 1 1 0 1 1 1803 }