{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 } {CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 5 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 0 0 253 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 186 0 240 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 261 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 3 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 34 "Global Stability Worked Ex ample 6." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 56 "Examine the long term behaviour of the nonlinear system " }}{PARA 256 "" 0 "" {OLE 1 4126 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyy yy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::fyyyyya:nYf::G:jy;:::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bKB::>dcV^ZOdJoq;V:>b>B:<:=ja^GE=;:::::::::N;?R:yyyyy yA:yayA:<::::::JDJ:j::F@[KaFFcmnnHEM:>:::::::oJ;Zy=J:B::::::F:;JnJ:j:V BYmp>HYLkNG>::::::::Nj>J?>:QJ: ^;f;;JAjA>:[B:AM;TrPDk;?ZZyM:B:::::JZHkgJ::::j::=J:vYxY;J:JyY:gI;^s:Mb:>Z:^:>:;xy_xyXJ cLj?JMJ@fc[;>:[q@[;;B:::::::JFNZ;J:N:;B:yayA:;B:::: ::f:=;jysy:>:<::::::wyyyA<::::::::::::jys y:>:<:::::::::::::::::::vYxI:;Z:::::::::]:qi:;fyB:>l;>Z:b:DJ:IKG:M:_;Wg:=B:;jv>OJSno =>E=:m=JSJQEj:Jv:N@Nu?F:>I>\\:B:qAB:>l;>:DZaTXDpql`M^:f?;JUM:_KQ?g;F:fA:_;UG;=J:f_:>Ue:qAB:>l;Z:b:^DP@::jP@j:^:>X; j>>:_;Ux:=Z:F`:>R[Z:VY;RyB:>l;Z:b:IM:_K^IjDUj:jm>IOZ:n^@J?:[Z:VY[j=B:;JXE:;B:=b:?bBaTXaEWE UUtP " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }} {PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }} {PARA 7 "" 1 "" {TEXT -1 33 "Warning, new definition for trace" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 5 "f:=y;" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 11 "g:=x*(1-x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "solve(\{f=0,g=0\},\{x,y\});" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 43 "The equilibrium p oints are (0,0) and (1,0)." }}{PARA 0 "" 0 "" {TEXT -1 272 "The next s tep is to find the Jacobian matrices of the linearisations and classif y the equilibrium points of the linearisations. Then, where possible, \+ use the Hartman Grobman linarisation theorem to determine the stabilit y of the equilibrium points of the nonlinear system." }}{PARA 0 "" 0 " " {TEXT -1 0 "" }}{PARA 257 "" 0 "" {TEXT -1 1 "T" }{TEXT 257 54 "o cl assify the equilibrium points of the linearisation" }{TEXT -1 1 "s" }} {PARA 0 "" 0 "" {TEXT -1 102 "To find the Jacobian matrix of the linea risations first represent the equations as vectors as follows" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "v:=[f,g];" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 31 "Then use the \"jacobian\" command" }}{PARA 0 "" 0 " " {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "J:=jacobi an(v,[x,y]);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 48 "At the point (0,0 ) substitute in the coordinates" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "J00:=subs(x=0,y=0,evalm(J));" }}{PARA 11 "" 1 "" {TEXT -1 0 " " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 96 "Place the arrow on the determ inant and click the RHS button on the mouse to obtain commands for " } {TEXT 261 5 "trace" }{TEXT -1 5 " and " }{TEXT 262 11 "determinant" } {TEXT -1 3 " of" }{MPLTEXT 1 0 1 " " }{TEXT -1 0 "" }{MPLTEXT 1 0 1 " \+ " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 3 "J00" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 6 "Since " }{OLE 1 4106 1 "[xm]Br=WfoR rB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::fyyyyya:nYf::G:jy;:::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bKB::>dcV^ZOdJoq;V:>Z ?B:<:=ja^GE=;:::::::::N;?R:yyyyyyA:yayA:<::::::JDJ:j::F@[KaFFcmnnHEM:> :::::::oJ;Zy=J:B::::::F:;JHYLkNG>::::::::N;N;;Jyk?J@j@>:W:YJ:>\\:B:]:_J:Vkj>Z:::::FZ:nyyYZDjysyQj; J:>R<:TNC>:UTRcETcTX[US;SK]UW=EWMuUWm>j\\@A:::cYH_WVB::::::::vYxy;J<<: =J:vYxY;J:jwI;qe:>^=j:F;HJBAZ:NZ:f<>:E:Mb:>Z:^:NZ;F:E:=b:yyyyI:E:M:;>ryAryAvKb:QZ:n>^;UTR: ;Jjf:J;D_mlVH[KRJ:<:::::::>=?R:>:?J:c=Z:J; vCJbNHVH>@>Z::::::::kJ:vYxI:;Z::::::JywYB:::::::::::::yay=J:B::::::::: ::::::::::jysy:>:<::::::::f<:::::::::::^hlGf]gFQmD?ROOOG;;B:_;Uy:=Z:NCOO@>Z:N @>iCV:^f__H;POWGM:_;UB==:Ol;>:x;J?B:_;yG;?:[CF ;PZG[:>:_;oC<=Z:>`:>RO:_;yH=?:[CF>RM:_;eS>=J:F`:>R[Z:VY;RyB:>l;Z:b::IMy:_kF_fEF:NF:_KG OeHF:vF><l;ZX;j>>:_c<;N@Xj:B:ukcG;N@^_I F:fA:_;?E>=:UC:apDjw;<:[V:B:D:c\\_;:F?jP@J:^:>X=j>>:_;cI<=Z:^?;E:O:G;O jyyyyyy:J:><Z:>::::::::: :::::::::::::::::::::::::::::::::::::::::::::5:" }{TEXT -1 220 "the eq uilibrium point of the linearisation at the point (0,0) is unstable an d a saddle. By the Hartman Grobman linearisation theorem the equilibri um point (0,0) of the nonlinear system is unstable and a nonlinear sad dle." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 48 "At the point (1,0) substitute in the coordinates" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "J10:=subs(x=1,y=0,evalm(J)); " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }{TEXT -1 0 "" }}} {EXCHG {PARA 258 "" 0 "" {TEXT -1 1 " " }{MPLTEXT 1 0 0 "" }{OLE 1 4110 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy:::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::fyyyyya :nYf::G:jy;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bK B::>xi`^ZOdJoq;V:>r>Z:j:vCSmlJ::::::::::OJ;@jyyyyyy;jysy;Z:::::::^<>:F ::]KRnC=MtFGgml>:;::::::JGN:ry:>:<::::::=J:^J>:F:AlqfG[maNFO=;:::::::: _J;vyyuy:>:<::::::AZ:^E>:nYN:J:W:YJ:>\\:B:] :_J:nYvY:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::F:DZ:B::::::::::>JAfL?B\\]c:KFFDJE]L;TsNNZ@ha<>kjNZ<`_:;`:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::JtaMSAA;B:::: ::::vYxy;J<<:=J:vYxY;J:jjE;qe:n[=j:F;Hj=A:?B:e:;j<>:Mb:>Z:^:NZ;F:E:=b: yyyyI:E:M:;>ryAryAvJ b:Q:G;Sj`@@J:>FEZ:F;NZ:vCS=[LsfFaMR>@>Z::::::::kJ;@:;B:?J:@>Z::::::::kJ:vYxI:;Z::::::JywYB:::::::::::::yay =J:B:::::::::::::::::::jysy:>:<::::::::f<>Z:N@f w=F:ROooF;N@fxEF:NCf@><:C:[q:F;;JSFm;^b=F::IMy:_kF_ cEF:NF:_KGO_HF:vF><l;ZJci;=Z :fAap>JSJxuj:jXjDjw;<:[V:B:D:c\\_;:^;jP>:C:[q:F;;JSJh]j:B:SKj:B>N:F:nyyyyy]::yyyyyy:::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::fyyyyya:nYf::G:jy;::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::JcvGYMt>^:fBWM tNHm=;:::::::n:;JZC:bKB::>xi`^ZOdJoq;V:>r>Z:j:vCSmlJ:::: ::::::OJ;@jyyyyyy;jysy;Z:::::::^<>:F::]KRnC=MtFGgml>:;::::::JGN:ry:>:< ::::::=J:^J>:F:AlqfG[maNFO=;::::::::_J;vyyuy:>:<::::::AZ:^E>:nYN:J< JyK=j=B:K:OJ:nYV;^;;j@>:W:YJ:>\\:B:]:_J:nYvY:::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::F:DZ:B::::::::::>JAfL?B\\]c:KFFDJE]L;TsNNZ@ha<>kjNZ <`_:;`:Z@O<;j`@Pt\\Pd`Qr PPJPnrPqjLqnxPqF;fbk;::JtaMSAA;B::::::::vYxy;J<<:=J:vYxY;J:jjE;qe:n[=j :F;Hj=A:?B:e:;j<>:Mb:>Z:^:NZ;F:E:=b:yyyyI:E:M:;>ryAryAvJb:Q:G;Sj`@@J:>FEZ:F;NZ:vCS=[LsfFaM R>@>Z::::::::kJ;@:;B:?J:@>Z::::::::k J:vYxI:;Z::::::JywYB:::::::::::::yay=J:B:::::::::::::::::::jysy:>:<::: :::::f<>Z:N@fw=F:ROooF;N@ fxEF:NCf@><:C:[q:F;; JSFm;^b=F::IMy:_kF_cEF:NF:_KGO_HF:vF><l;ZJci;=Z:fAap>JSJxuj:jXjDjw;<:[V:B:D:c\\_; :^;jP>:C:[q:F;;JSJh]j:B:SKj " 0 "" {MPLTEXT 1 0 18 "A:=dif f(x(t),t)=y;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "B:=diff(y(t),t)=x*(1-x);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 81 "subs(\{t=-t ,y=-y,diff(x(t),t)=-diff(x(t),t),diff(y(t),t)=diff(y(t),t),x=x\},\{A,B \});" }}{PARA 11 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 107 "It can be seen that these are identical with the origina l equations and the system is therefore reversible." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 64 "Thus the point \+ (1,0) is neutrally stable and a nonlinear centre." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 259 26 "To draw the phase portra it" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DEtools):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 197 "DEplot(\{A,B\},\{x(t),y(t) \},t=-10..10,[[x(0)=0,y(0)=1],[x(0)=2.5,y(0)=0],[x(0)=1,y(0)=0],[x(0)= 1.5,y(0)=0],[x(0)=.5,y(0)=0],[x(0)=-0.75,y(0)=0],[x(0)=-.1,y(0)=.1]],x =-2..2.5,y=-2.5..2.5,stepsize=0.1);" }}{PARA 13 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 176 "Look at the phase portrait. Yo u can see that the point (1,0) is a nonlinear centre and the point (0, 0) is a nonlinear saddle. Notice also that the x-axis is a line of sym metry." }}{PARA 0 "" 0 "" {TEXT -1 236 "It is interesting that one tra jectory which starts from the origin and returns to it divides the clo sed periodic trajectories from the non-periodic ones. Such a trajector y which starts and ends at a single equilibrium point is called a " } {TEXT 260 18 "homoclinic orbit. " }{TEXT -1 99 "This trajectory is not periodic since it takes an infinite time to return to the equilibrium point." }}}}{MARK "0 0 0" 33 }{VIEWOPTS 1 1 0 1 1 1803 }