{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "" -1 256 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 257 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text \+ Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 3 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE " " 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 232 0 3 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 "" 0 1 102 0 124 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 259 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 260 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE " " 0 261 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 262 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 265 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 265 "" 0 "" {TEXT -1 33 "Global stability worked \+ example 8" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 10 "Show that " }}{PARA 256 "" 0 "" {OLE 1 4118 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy:::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::fyyyyya :nYf::G:jy;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bK B::>nDIrpWjToq;V:>Z?B:<:=ja^GE=;:::::::::N;?R:yyyyyyA:yayA:<::::::JDJ: j::F@[KaFFcmnnHEM:>:::::::oJ;Zy=J:B::::::F:;J>K:j:VBYmp>HYLkNG>::::::: :N;N;;Jyk?J@j@>:W:YJ:>\\:B:] :_J:VAFX?bZSc>AVXDJE]L;T sNNZ@ha<>koN\\=@i=v;hjB@J;\\RSbAVX?b[Q[ojvHjA:Z:>:Ij=> :;:::::=B:wyyAb:;`:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::Jt aMSAA;B::::::::vYxy;J<<:=J:vYxY;J:JP=;wf:>e=j:F;HJPA:?jDJ:f:F[FEZ:F;NZ:vCS=[LsfFaMR>@>Z::::::::kJ;@:;J;>Z:v YxY:>Z::::::jD_=a=[;;B:::::::JF>:yay=J:B::::::nyyyYB::::: ::::::::yay=J:B:::::::::::::::::::jysy:>:<::::::::f<JSj_Aj:B:kMN=j>JSjPHj:jv>OJSJKUj:>:k=OZ:N@f_DN:l;>Z:B:DZJ:::;cICJ:f?=J<:C:[q:F;;JSFq;n_;F:;B:?MvF;N@oOnIj:jm>I[Z:VY;><:[V:b :DZJVdscRYEUDKF:;B:uC:kp>JSj\\\\j:jO>UJSJaij:jOjD jw;<:[V:B:D:c\\_;rU:jP>:C:[q:F;;JSJhQj:B:eC:;H:M:_;qT<=:gKZ=:N@>uFF:f@ fl;Z:b::a=:^;jPF:C:[Q:F;;JS^XIu;=Z:B:[m>ZDjqtj:Z:J?<:G;Ojyyiy I:>:[Z:VY[j=B:;JXE:;B:=b:?bBaTXaEWEUUtP:C:[q:VZ:B:;::::::::::::::: ::::::::::::::::::::::::::::::::1:" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 37 "is a Lyapunov function for the system" }}{PARA 257 "" 0 "" {OLE 1 4118 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: fyyyyya:nYf::G:jy;:::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n: ;JZC:bKB::>bKWrpWjToq;V:>r>B:<:=ja^GE=;:::::::::N;?R:yyyyyyA:yayA:<::: :::JDJ:j::F@[KaFFcmnnHEM:>:::::::oJ;Zy=J:B::::::F:;J>K:j:VBYmp>HYLkNG> ::::::::N;N;;Jyk?J@>:UJ:n;v; ;JB::: ::FZ:nyyYZDjysyQj;J:>R;B:bK_J:fc[_hb_ds?h_?^?GhoGfnGgioGM:ETV:::^xsNpk ?:;B::::::::vYxy;J<<:=J:vYxY;J:J^a:YG;NyD:;B:CZ:NZ ;F:E:=b:yyyyI:E:M:;> ryysyAnBv[>V;n>^;UTR:;Jjg:J;D_mlVH[KRJ:<:::::::>=?R:>:?J:@>Z::::::::kJ:vYxI:;Z::::::JywYB:::::::: :::::yay=J:B:::::::::::::::::::jysy:>:<::::::::FjxM:<:[V:;B:DZ<>Z JfcN?^??inOh[CHCB:f_;j>J:^dlag;Z::::::::::N@Ev :gm:JMjDB:qQ:[:JBAj:J:D:cTTUUSaEBWTSiEB_tUUURWmD^:f?=JJSJxMj:>:k=JSjmYj:jv>OJSFl=>E=:m=JSJ^Lj:Jv:N@VuAF:FI>\\:B:qAB: >l;>:DZaTXDpql`I^:f?;JUM:_;_f:=J:f_:>UJSJtQj :<:U;JSFLKU:=:u;JSJIEj:jP:N@>b?F:f?f<;jw;<:[V:B:D:c\\_;:>>C:US:=J>:_;Mr;=Z:n@;H:JSFLgu:=B:;JUJ?JSjXTJ;>:];;P?JMT: OjyyiyI:>:[Z:VY[j=J:^qX=j;::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::1:" }}{PARA 0 "" 0 "" {TEXT -1 59 "and hence determine the stability of the equilibrium point." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 258 "" 0 "" {TEXT -1 8 "To show " }{OLE 1 3602 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:ny yyyy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::fyyyyya:nYf::wyyyqy;:::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::: :gjR<:T><::;TNAhWAfPwW:A:H:<:=ja^GE=;:::::::::N;?R:yyy yyyA:yayA:<::::::JDJ:j::F@[KaFFcmnnHEM:>:::::::oJ;Zy=J:B::::::F:;Jp>:; :=j[vGUMrvC?MoJ::::::::JCN:yyyxI:;Z::::::j;B:s<;:wA?Z::C:J=j=B:K:M:OJ: V;;J@Jyky;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::j:b::::j::;`:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::JtaMSAA;B::::::::vYx y;J<r:]P::EJ:F[Z:^:n_;>=E:]c:=:E:Qb:B:E:Sb:;d:;F;WJ:n^@v;_jysy;B:KJ:>ryAryAb>b:Q :G;Sj`@@J:>f:f:J;@[C:>Z::::::::kJ;@:;J;>Z:vYxY:>Z:::: ::jD_=a=[;;B:::::::JF>:yay=J:B::::::nYyA<::::::::::::jysy :>:<:::::::::::::::::::vYxI:;Z:::::::::eZ:Vy<>jx]:JBAj:J:DZJ^dcgg_WhZn c_whZNdigg[oGSL<>:US:F[:>Z:N`D>j;>\\:FZ:B:gLoO;;B:_;QX:?J:x;j>>:_kFAJQ@j:>Z:NFwm> JSNm;>r=FZ:jmnIO:G;OjyyiyI:>:[Z:VY[j=J:^q<X;j;:::::::::::::::: ::::::::::::::::5:" }{TEXT -1 22 "is a Lyapunov Function" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 13 "with(linalg):" }}{PARA 7 "" 1 "" {TEXT -1 32 "Warni ng, new definition for norm" }}{PARA 7 "" 1 "" {TEXT -1 33 "Warning, n ew definition for trace" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 " V:=5*x^2+6*x*y+5*y^2;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "f:=-10*x-6*y;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "g:=-6*x-10*y;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "Vx:=diff(V,x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "Vy:=diff(V,y);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 28 "If it is a Lyapunov Function" } }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 256 "" 0 "" {OLE 1 4122 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy:::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::fyyyyya :nYf::G:jy;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bK B::>vQarpWjToq;V:>r>Z:j:vCSmlJ::::::::::OJ;@jyyyyyy;jysy;Z:::::::^<>:F ::]KRnC=MtFGgml>:;::::::JGN:ry:>:<::::::=J:>L<:F:AlqfG[maNFO=;:::::::: _J;vyyuy:>:<::::::AZ:^E>:nYN:J:WJ:v;;JBAfO@J;ZrKSHRvTJ;NZ@X _=n;:TO::`A_kvTJ;jKEJ>==;b=D:@Jb:;:::::=B:wyyAbR;B:bK_J:fc[_hb_ds?h_?^?GhoGfnGgioGMZ:fbk;::JtaMSAQ:>Z::::::::jysy A:CB:F:;jysy?:;:St<^k>J;H:=j>r:=V:VZ:f<>:EJ:F[:;I:MB:@[C:>Z::::::::kJ;@:;J;>Z:vYxY:>Z:: ::::jD_=a=[;;B:::::::JF>:yay=J:B::::::nYyA<::::::::::::jy sy:>:<:::::::::::::::::::vYxI:;Z::::::::JBBEZ:V \\q>f:;jCjZUj<>:Mb:kCU?NVlP;?tIPJ[@;J:::::::::><;B:qi:;fy> Z:JBA:DZ<>ZJVdsgg\\wgfsBC:Uk:F;;JSdjo@jeF:nPwo>JSFk=fK=B:nP:_KjDJEIj:> :QkcG;N@QmaMj:>:gG::_k>gZ?F:nP:_KjN_BF:VNapDjw;<:[V:=J:>Z<>:cTTPpsx;F:MJ:N@QmD@j:>:gLoG;N@Mn_@j:JvNOM:_KjfmF=s;=:m=]:qAB:>l;>:DJ:DZJfcN?^??inOh[K>:_KdDjZEj:>Z:n^:>j:F[:JSjYXj:JMjDjw?JB:>l;Z:b:^D::>@C:UK;^:>X=j >>:_KjDjc`j:JR>r:N;<X?B:AZ:>::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::3:" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "L HS:=Vx*f+Vy*g;" }}{PARA 12 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 89 "To determine if his expression is always negative it is necessary to complete the square." }}{PARA 0 "" 0 "" {TEXT -1 63 " First load the \"with(student)\" package then proceed as follows." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(student):" }}{PARA 7 " " 1 "" {TEXT -1 29 "Warning, new definition for D" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 28 "LHS1:=completesquare(LHS,x);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 10 "Therefore " }{OLE 1 3594 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :fyyyyya:nYf::wyyyqy;::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::::gjR<:T><::;yoChWAfPwW:A:;t:B:F:YLpfF>:::::::::J?NZ;vyyyyyY:vYxY:B: ::::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:xI:;Z::::::j:>:C<;:=j[vGUMrvC?M oJ::::::::JCN:yyyxI:;Z::::::j;B:s<;:wA?Z::C:J=j=B:K:M:OJ:V;;J@Jyky;::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::j:b:AFM_rZKd>AvN?B\\]c:Gvb?B\\[[:f>_;;:: :::::::::::::F:wyyAbR<:TNC>:UTRcETcTX[US;SK]UW=EWMuUWm>j\\ @A:::cYH_WV>Z::::::::jysyA:CB:F:;jysy?:;:;h;vn;JaA:=j>r:IA?jDJ:f:;j>D: ^:f:J;D_mlVH[KR<:;B:::::::JFNZ; J:N:;B:yayA:;B::::::f:D_=a=[;;B:::::::JF>:yay=J:B::::::nY yA<::::::::::::jysy:>:<:::::::::::::::::::vYxI:;Z:::::::::eZ:Vy<>jx]:J BAj:J:DZJ^dcgg_WhZnc_whZNdigg[oGMK@;PBB:qAB:>l;Z< b:C:UK:^:>X=j>>:_c<>y=F:;B:AocO;:sg :B:=J;Dlc`qsLqlp`h_:f?=J: B>N:F:nyyyyy]::yyyyyy::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::fyyyyya:nYf::G:jy;:::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;: ::::::n:;JZC:bKB::>vQarpWjToq;V:>Z?B:<:=ja^GE=;::::::::: N;?R:yyyyyyA:yayA:<::::::JDJ:j::F@[KaFFcmnnHEM:>:::::::oJ;Zy=J:B:::::: F:;JHYLkNG>::::::::N;N;;Jyk?J@j@>:WJ:v;;JBAfOAR:U MCHRvDk;aQ;TrORGFi=v;:B:;j=v:;J:::::j::yayQ:>:^oJJIE: kt:F:MZ=^o;J;f<>:E:Mb:>Z:^:NZ;F:E:=b:yyyyI:E:M:JZyYTyYjuJDDj?JMJ@fc[;>:;m@[;;B:::::::JFNZ;J:N:;B:yayA:;B::::::f:=;jysy:>:<::::::wyyyA<::::::::::::jysy:>:<:::::::::::::::::::vYxI:;Z :::::::::eZ:Vy<>jx]:JBAj:J:DZJ^dcgg_WhZnc_whZNdigg[oG;ftC:US:F[:>Z:N`D >n;>\\:FZ:>Z:>:::::::::::nDOq>JSj_Aj:JvNOM:_;Us:=:mMO;_;?g;=J:>IN;<X=j>>:_kVAJQ@j:>Z:NFwm>JSNQK y:=:IMy><l;ZX;j>>:_c<;OWMj:>Z:fa:VTM:_; ED<=:Qkc;_;[x<=:Q;e:qAB:>l;Z:b:^DP@Zi;[N:C:[q:F;;JSJhQj:B:eC:;H:M: _;qT<=:gKZ=:N@NuFFZ:jTjDjw?^y]:JBAJ:B:D:js::;>f?=J \+ " 0 "" {MPLTEXT 1 0 23 "solve(\{f=0,g=0\},\{x,y\});" }}{PARA 11 "" 1 " " {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 30 "The equilibrium point is (0,0)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 179 "To classify the equilibrium point of the linearisation f irst prove the equilibrium point is a stationary value of the Lyapunov function and then find the type of stationary point." }}}{EXCHG {PARA 261 "" 0 "" {TEXT -1 36 "To prove (0,0) is a stationary point" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "subs(\{x=0,y=0\},Vx);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "subs(\{x=0,y=0\},Vy);" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 4 "Thus" }}}{EXCHG {PARA 262 "" 0 "" {OLE 1 3590 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: fyyyyya:nYf::wyyyqy;:::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::::gjR<:T><::;fQGhWAfPwW:A:;B;B:F:YLpfF>:::::::::J?NZ;vyyyyyY:vYxY:B:: :::::c:;:=:jR>@Wlj^HMMufF;J:::::::N=?:xI:;Z::::::j:>:C=;:=j[vGUMrvC?Mo J::::::::JCN:yyyxI:;Z::::::j;B:s<;:wA?Z::C:J=j=B:KJ:F;N;;j?>:S:UJ:n;v; ;Jyky;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::j:b:Z;NZ@ppLVjPS:?:\\A?b[us:W:ZP ;RXN:DJ>==[DZGcM>Z::::::::::j:k:EJ:F[Z:^:n_;>=E:]c:=Z:f:V[^>>jBn;n^@v;_jysy;B:KZ:>ryipyAbBft=V;n>^;UTR:;JjG[:B:oi:NZ:vCS=[ LsfFaMR>`:J:<:::::::>=?R:>:?J:p@>Z::: :::::kJ:vYxI:;Z::::::JywYB:::::::::::::yay=J:B:::::::::::::::::::jysy: >:<::::::::[B:<:N>C:US:f:D: Z:Vy<>jxM:<:[V:b:DZJVdsgg\\wgfsBC:Uk:F;;JSdjo@jeF:nPwo>JSFk=fK=B:nP:_K jDjREj:>:ukcG;N@QM;Lj:JU;N@MNVLj:JU;N@;MhTj:>:u;e:qAB:>l;F:;J:DJ:^dcSS aEBWTSiEB_tUUURWM@x;F:MJ:N@QmD@j:>:gLoG;N@Mn_@j:JvNOM:_ko>r >F:nD:_k>ox>F:FIOoDjw;<:[V:;Z:b::::sL>:_KjNkAF:>@;H:OZ:n> N;yyyxy:J:><X=j;::::5:" } {TEXT -1 1 " " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "and (0,0) is a s tationary point of " }{TEXT 258 1 "V" }{TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 259 42 "To determine the type \+ of stationary point." }}{PARA 0 "" 0 "" {TEXT -1 63 "First find the He ssian matrix and then look at its eigenvalues." }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 20 "H:=hessian(V,[x,y]);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 " eigenvals: =eigenvalues(H);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 74 "Since the eigenvalues are both positive the statio nary point is a minimum." }}{PARA 0 "" 0 "" {TEXT -1 60 "Thus the equi librium point (0,0) is stable and an attractor." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 111 "This can be confirmed by finding the Jacobian matrix of the linearisation and using the Linear isation theorem. " }}{PARA 0 "" 0 "" {TEXT -1 25 "Try this method your self." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 68 " A look at the phase portrait should also confirm the above analysis." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "A:=diff(x(t),t)=-10*x-6*y;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "B:=diff(y(t),t)=-6*x-10*y; " }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DEtools):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 131 "DEplot(\{A,B\},[x(t),y(t)],-50..50,[[x(0)=0,y(0)=1],[x(0)=0,y (0)=-1],[x(0)=-1,y(0)=0],[x(0)=1,y(0)=0]],x=-1..1,y=-1..1,stepsize=0.1 );" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "13 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 }