{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 236 63 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Outp ut" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 3 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE " " -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 98 22 108 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 64 "To examine the phase diagr am close to the equilibrium point(0,0)" }}{PARA 0 "" 0 "" {TEXT -1 0 " " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}{PARA 7 "" 1 "" {TEXT -1 32 "Warning, new definition for norm" }}{PARA 7 "" 1 "" {TEXT -1 33 "Warning, new definition for trace" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DEtools):" }}{PARA 7 "" 1 "" {TEXT -1 35 "Warning, new definition for adjoint" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 40 "A:=diff(x(t),t)=.2*x-.004*x^2-.003*x*y; " }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "B:=diff(y(t),t)=. 1*y-.001*y^2-.003*x*y;" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 112 "DEplot(\{A,B\} ,\{x(t),y(t)\},-50..50,[[0,1,1],[0,-1,1],[0,0.1,-0.1],[0,-0.1,-0.1]],x =-0.1..1,y=-0.1..1,stepsize=.1);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 68 "To examine th e phase diagram of the linearisation at the point (0,0)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 39 "First find t he linearisation as follows" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "f:=.2*x-.004*x^2-.003*x*y; \+ " }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "g:=.1*y-.001*y^2-.003*x*y;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "v:=[f,g];" }} {PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "J:=jacobian(v,[x,y]);" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "J00:=subs(x=0,y=0,evalm(J)); " }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 30 "The linearisation is given by " }}{PARA 256 "" 0 "" {OLE 1 4104 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::fyyyyya:nYf::G :jy;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bKB::>jZp c^Yrvnq;V:>r>Z:j:vCSmlJ::::::::::OJ;@jyyyyyy;jysy;Z:::::::^<>:F::]KRnC =MtFGgml>:;::::::JGN:ry:>:<::::::=J:^F>:F:AlqfG[maNFO=;::::::::_J;vyyu y:>:<::::::AZ:^E>:nYN:<:^::G:IZ:>;;j>J?>:QJ:^;;j@>:W:YJ:>\\:B:]:_J:nYv Y::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::F:DZ:B::::::::::>FAfW;Z:R:[DZGcMB::::::::::FZ:nyyYZDjysyQj;J:>R<:TNC>:UTRcET cTX[US;SK]UW=EWMuUWm>j\\@A:::cYH_WV>Z::::::::jysyA:CB:F:;jysy?:;:MX;fb >JdHZ:F:MZ=No;J;f<D:Z:^:n_;>=E:]c:=Z:f :V[v=>b?n;;JMTjAN;>ryiryU;Ew:Q:G;Sj`@@J:>r:f:J;D_mlVH[KRJ:<:::::::>=?R:>:?J:@>Z: :::::::kJ:vYxI:;Z::::::JywYB:::::::::::::yay=J:B:::::::::::::::::::jys y:>:<::::::::Fjx]:JBAZ:b:DJ:x;j>>:_kg@JPHj: >Z:n_:>F]J:VYZ:JBA:DZUDOP>@`:^:f?;:>X=j>>:_kAIJlF:Jjw?JB:>l;Z:b :^DBB::jPF:C:[Q:F;;JSVm=>^=FZ:B:W;e:qAB:>l;F:;J:D:::jB^:f?;JRM:_;;D;=J:fH:_kG_@=:gMOG;N@>y=F:nH><X;j>>:_cZ:fAap>JSVMCT:=B:fAfZ:>@;@N@Ni=F:B:;@bROZ:n^@J?vyyuy =B:>:[Z:VY[j=>:;JXE:X;j;:::::::::::::::: ::::::::::::::::::::::::::::::::::::::::3:" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 46 "To plot the phase diagram of the linearis ation" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "A1:=diff(x(t),t)=0.2*x;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "B1:=diff(y(t),t)=0.1 *y;" }}{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 114 "DEplot(\{A1,B1\},\{x(t),y(t)\},-50..50,[[0,1,1],[0,- 1,1],[0,0.1,-0.1],[0,-0.1,-0.1]],x=-0.1..1,y=-0.1..1,stepsize=.1);" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 142 "Compare the two diagrams. Do the linearisation and the n onlinear system both show the same geometric behaviour close to the eq uilibrium point?" }}}}{MARK "4 0 0" 39 }{VIEWOPTS 1 1 0 1 1 1803 }