{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 31 1 180 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 76 1 60 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Text Output" -1 2 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 0 0 1 3 0 3 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Warning" 2 7 1 {CSTYLE "" -1 -1 "" 0 1 0 0 255 1 0 0 0 0 0 0 1 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 253 0 236 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 60 1 248 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE " " 0 256 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 13 257 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 13 259 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 259 "" 0 "" {TEXT -1 31 "Local Stability Investig ation 2" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 257 "" 1 "" {TEXT -1 29 "Consider the nonlinear system" }}{PARA 258 "" 0 "" {OLE 1 4104 1 " [xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy:::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::fyyyyya:nYf::G: jy;::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n:;JZC:bKB::>vZIs `a[ynq;V:>b?B:<:=ja^GE=;:::::::::N;?R:yyyyyyA:yayA:<::::::JDJ:j::F@[Ka FFcmnnHEM:>:::::::oJ;Zy=J:B::::::F:;JLK:j:VBYmp>HYLkNG>::::::::NJ?>:wAQ:S:UJ:n;;jA>:[B::a: c:wAyA:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::j:b:klN\\=@iEM:b<=bFAVXGb:Z@h_<>K_jvDZeN\\=Hi=v;:D=Jyyy;d:yqyyy?V:>:;H:<:TNC>Z:fc[_hb_ds? h_?^?GhoGfnGgioGMJ:Z::::::::jysyA:CB:F:vYxY;J:JrhZ:^a? JvH:=j>r:sW:NZ:f<^;UTR:;Z;f:F;NZ:vCS= [LsfFaMR>@>Z::::::::kJ;@:;J;>Z:vYxY:>Z::::::jD_=a=[;;B::: ::::JF>:yay=J:B::::::nYyA<::::::::::::jysy:>:<:::::::::::::::::::vYxI: ;Z:::::::::]:qi:;fyB:>l;B:DZ<>ZJfcN?^??inOh[SCC:US:F[:>Z:N`Dvl;>H=B:nH=:G;eZ:VY;><:[V:=:;b:^dcgg_WhZnc_whZNdig g[oGsJi:NOM:_;Ku:=J:>I:_;ed;=J:FIO?N@NiBF:;Jv: N@iB;kl:jv:N@Ve>F:;jv:N@nk@F:FI:_;uT<=:k=[Z:VYZ:JBAJ:b:DZJVdscRYEUtJ:C:[q:F;;JSdjK_e;FZ:>Z:fAap>JSjjLj:jOVTJSj`Xj:jPg;F:fA:_;wf: =J:f?:_;cT;=:Q;JSJR\\j:jPjDjw;<:[V:B:D:c\\_;::f_;F:C:[Q:F;;JSVNOf:=J:< Z:>RM:d:iU;=:gKZ=:N@ijrHj:Z:jDjw?^y]:JBA:<X;j;:::::::::::::::::::::::::::::::::::::::5:" } {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 181 "For this system \+ you are going to plot the phase portrait of the nonlinear system close to its equilibrium point (0,0) and also the phase portrait of the lin earisation at this point." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 41 "First prove (0,0) is an equilibrium point " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DEtools):" }}{PARA 7 " " 1 "" {TEXT -1 35 "Warning, new definition for adjoint" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 25 "At the equilibrium point " }{OLE 1 3588 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::fyyyyya:nYf: :wyyyqy;:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::NDYmq^H;C:ELq^H_mvJ::::::::gjR<:T><: :;IrMhsSrIwW:A:;x:B:F:YLpfF>:::::::::J?NZ;vyyyyyY:vYxY:B:::::::c:;:=:j R>@Wlj^HMMufF;J:::::::N=?:xI:;Z::::::j:>:C<;:=j[vGUMrvC?MoJ::::::::JCN :yyyxI:;Z::::::j;B:s<;:wA?Z::C:J=j=B:K:M:OJ:V;;J@>:UJ:n;;Jyky;:::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::F:DZ :B::::::::::>B==_;;:::::::::::::::F: wyyAb:;`:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::JtaMSAA;B::: :::::vYxy;J<<:=J:vYxY;J:JwT:]b:r:kR:N:e:;j<>:Mb:>Z:^:NZ;F:E:=b :yyyyI:E:M::Gc;YJCvYxY:JZyYjyY JQJZAj?JMJ@fc[;>:[l@[C:>Z::::::::kJ;@:;J;>Z:vYxY:>Z ::::::jD_=a=[;;B:::::::JF>:yay=J:B::::::nYyA<:::::::::::: jysy:>:<:::::::::::::::::::vYxI:;Z:::::::::]B:Vy<>jx]:JBAZ:b:DJ:JSJ`Ej:>:G;eZ:VY;><:[V:=:;b:^dc gg_WhZnc_whZNdigg[oG=Nb;^C=Z:>IOo>JSJQEj:>:mMO?<X=j>>:_c<^e;F:;B:ukcG;N@nq=F:;jXjDjw;<:[V: B:D:c\\_;:FPC:Uk:^:>X;j>>:_;SI;=J:r:N;:[Z:VY[j=J:^q< Z:FZX=j;:::::::::::::::::::1:" }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "f:=2 *x+6*y-x^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fG,(%\"xG\"\"#%\"yG \"\"'*$)F&F'\"\"\"!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 " g:=-2*y+y^2-x;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gG,(%\"yG!\"#*$) F&\"\"#\"\"\"\"\"\"%\"xG!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "solve(\{f=0,g=0\},\{x,y\});" }}{PARA 12 "" 1 "" {XPPMATH 20 "6$< $/%\"xG\"\"!/%\"yGF&<$/F%*&-%'RootOfG6#,*!\"#\"\"\"%#_ZG\"\"#*$)F2F3\" \"\"!\"%*$)F2\"\"$F6F1F1,&F0F1F,F1F1/F(F," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 42 "The point (0,0) is an equilibrium point. " }}{PARA 0 "" 0 "" {TEXT -1 102 "Note that their is another equilibrium point which \+ could be found by solving the given cubic equation." }}{PARA 0 "" 0 " " {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 89 " Plot the phase plane of the nonlinear system in the region of the equilibrium point( 0,0)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "A:=diff(x(t),t)=2*x +6*y-x^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG/-%%diffG6$-%\"xG6# %\"tGF,,(F*\"\"#%\"yG\"\"'*$)F*F.\"\"\"!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "B:=diff(y(t),t)=-2*y+y^2-x;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"BG/-%%diffG6$-%\"yG6#%\"tGF,,(F*!\"#*$)F*\"\"#\"\" \"\"\"\"%\"xG!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 78 "DEplo t(\{A,B\},\{x(t),y(t)\},-10..50,[[0,.3,0]],x=-1.5..1,y=-0.5...1,stepsi ze=.1);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 73 "The phase plot shows t he equilibrium point to be unstable and a repeller." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 52 "N ow look at the phase portrait of the linearisation." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 86 "First find the equations of the linearisation a t (0,0) by finding the Jacobian matrix" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "f:=2*x+6*y+x^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>% \"fG,(%\"xG\"\"#%\"yG\"\"'*$)F&F'\"\"\"\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "g:=-2*y+y^2-x;" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%\"gG,(%\"yG!\"#*$)F&\"\"#\"\"\"\"\"\"%\"xG!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "v:=[f,g];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"vG7$,(%\"xG\"\"#%\"yG\"\"'*$)F'F(\"\"\"\"\"\",(F)!\"#*$)F)F(F-F .F'!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "J:=jacobian(v,[ x,y]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"JG-%'matrixG6#7$7$,&\"\" #\"\"\"%\"xGF+\"\"'7$!\"\",&!\"#F,%\"yGF+" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 49 "At the point (0,0) substituting for x and y gives" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "J1:=subs(\{x=0,y=0\},evalm(J));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#J1G-%'matrixG6#7$7$\"\"#\"\"'7$!\"\"!\"#" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 20 "The linearisation is" }}}{EXCHG {PARA 256 "" 0 "" {OLE 1 4104 1 "[xm]Br=WfoRrB:::wk;nyyI;G:;:j::>:B>N:F:nyyyyy]::yyyyyy: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: fyyyyya:nYf::G:jy;:::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::JcvGYMt>^:fBWMtNHm=;:::::::n: ;JZC:bKB::>nBVt`a[ynq;V:>b>B:<:=ja^GE=;:::::::::N;?R:yyyyyyA:yayA:<::: :::JDJ:j::F@[KaFFcmnnHEM:>:::::::oJ;Zy=J:B::::::F:;JlJ:j:VBYmp>HYLkNG> ::::::::Nj>J?>:QJ:^;f;;JAjA>:[ B:EMCHrtDJ=iL ;\\RUDk;Ua;N`=ph@N:J=qLCHrtRE?B\\bW;B:t^:B::::::::::F:wyyAb:; `:Z@O<;j`@Pt\\Pd`QrPPJPnrPqjLqnxPqF;fbk;::JtaMSAA;B::::::::vYxy;J<<:=J :vYxY;J:JgY:ED;NtD:;B:CZ:NZ;F:E:=b:yyyyI:E:M:;>ryiryAv@fn=V;n>^;UTR:;J Z=j<>Z:F;NZ:vCS=[LsfFaMR>@>Z::::::::kJ;@:;J;>Z:vYxY:>Z::::::jD_=a=[;;B:::::::JF>:yay=J:B::::::nYyA<::::::::::::jysy:>:<:::::::: :::::::::::vYxI:;Z:::::::::]:qi:;fyB:>l;B:DZ<>ZJfcN?^??inOh[cBC:US:F[: >Z:N`Dvc;NG=Z:n^:>JM:_kAIJlF:n>f<l;F:>Zx;j>>:_kg@JTF:RM:_;Ct:=J:fH:_;mb;=J:nHOo>JSVm=^@=:g=JSj fHj:jt:N@>a@F:nH><X=j>>:_cZ: fAap>JSj^Lj:>:Qkc;_kG_b;FZ:jX:N@NiRZDjiPj:JU>r::_kGOh?F:B:N;<:sg:B:=J;Dlc`qsLqlp`h_:f?;J " 0 "" {MPLTEXT 1 0 25 "A1:=diff(x(t),t)=2*x+6*y;" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#A1G/-%%diffG6$-%\"xG6#%\"tGF,,&F* \"\"#%\"yG\"\"'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "B1:=diff (y(t),t)=-x-2*y;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#B1G/-%%diffG6$- %\"yG6#%\"tGF,,&%\"xG!\"\"F*!\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 84 "DEplot(\{A1,B1\},\{x(t),y(t)\},-10..50,[[0,0,.8],[0,. 5,0]],x=-3..3,y=-2..2,stepsize=.1);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 106 "The phase po rtrait shows that the equilibrium point of the linearisation is a cent re and neutrally stable." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 153 " Thus in this example the li nearisation theorem breaks down and the geometric behaviour of the non linear system does not mimic that of its linearisation." }{MPLTEXT 1 0 0 "" }}}}{MARK "10 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 }