NONLINEAR SYSTEMS

INTRODUCTION

In an autonomous nonlinear system the differential equations contain nonlinear terms such as 
[image: image1.wmf].

sin

,

ln

,

,

2

x

x

e

x

x

 These dynamical systems have many applications including
the simple pendulum model given by           
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the predator prey model given by                 
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the competing species model given by         
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When a plane autonomous system is linear of the form 
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 with determinant A
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0, there is only one equilibrium point which is at (0,0) and a precise geometrical description of solutions is possible, both near the equilibrium point and globally once the eigen values and eigen vectors of A have been found.
However, a nonlinear autonomous system may have many equilibrium points. Given an initial point we do not know which equilibrium point (if any) the solution curve will approach. We cannot even be sure that a solution curve through a point  initially close to an equilibrium point 
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 will remain close to that equilibrium point. It may well be driven to a second equilibrium point 
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Consider the competition model        
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          and its plane diagram showing several solution curves.
The equilibrium points are (0,0),(0,100),(50,0) and (20,40). Click on each equilibrium point to see a phase diagram of the region close to the equilibrium point. Can you decide which equilibrium points are stable and which are unstable?
     Hint Are the vector arrows pointing towards or away from the equilibrium point?
     Ans.  You should find that the equilibrium points (0,0) and (20,40) are unstable and the points (0,100)and (50,0) are stable.  
     How  can we use this knowledge to help us understand the long term behaviour of the model?
     If  we look at the curve labelled A. Starting with small values of x and y, initially, as the curve moves away from the unstable equilibrium (0,0) towards the equilibrium (20,40) the values of x and y increase until y reaches a maximum value. The curve now comes under the influence of the unstable equilibrium point (20,40) and is repelled by it and driven towards the stable equilibrium point (50,0). Thus, x continues to increase whilst y decreases so that as 
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 but y dies out.
     The biological interpretation is that the two populations are competing for a limited resource which initially is sufficient for both populations to increase. Eventually there is not enough resource to sustain both populations so y begins to decrease and becomes extinct leaving all the resources for x which then increases until its carrying capacity  of  50 is reached.               
     Now look at the curves labelled B, C, and D and see if you can describe what is happening on each of these curves and interpret the trends.
     In this model the initial conditions are crucial. Can you see why the starting point is so important?
This example suggests that a natural first step towards understanding a nonlinear system would be to classify the equilibrium points. In this unit you will learn 

· How a nonlinear system can be approximated to a linear system near an  equilibrium point by a  process called linearisation.  
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 that under certain conditions solutions of the nonlinear system close to an equilibrium point    have the same geometric features as the solutions of its linearisation. 
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 that there are certain cases when no conclusions can be drawn and further analysis is necessary.

TWO DIMENSIONAL SYSTEMS

This unit consists of seven chapters 
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 prerequisites
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 introduction
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 the technique of linearisation

[image: image21.wmf]·

 local stability and the classification of equilibrium points 
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 global stability
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 summary and sample test papers
LINEARISATION
In this section you will learn to
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 understand the technique of linearisation
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 linearise a nonlinear system using a change of variable
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 linearise a nonlinear system using Taylor’s series.
LINEARISATION

The technique of linearisation involves approximating a complicated system of equations with a simpler linear system We hope to gain insight into the behaviour of the nonlinear system through an analysis of the behaviour of its linearisation. We hope that the nonlinear system will behave locally like its linearisation, at least in a qualitative sense. 
In general, the linearisation of a system of equations about an equilibrium point can be achieved by changing variables so that the equilibrium point is transformed to the origin. Points in the original system close to the equilibrium point will correspond to points close to the origin in the new system. Thus we are only concerned with values of the new variables close to zero and under certain conditions the nonlinear terms can be neglected. The equations that result are linear and are the linearisation of the original system. 
In the examples that you will meet the nonlinear terms will be polynomial and are small enough to be neglected. 
Consider the nonlinear system    
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with equilibrium point (p,q).
The transformation  u=x-p, v=y-q transforms  the equilibrium point  (p,q) to the origin 
Differentiating gives 
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Substituting x=u+p and y=v+q into the original equations gives
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where 
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(u,v) and 
[image: image34.wmf]1

G

(u,v) consist only of nonlinear terms.
Then the linear system     
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is said to be the linearisation of the nonlinear system provided that
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These last conditions ensure that the nonlinear terms 
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(u,v) are negligible in comparison to u and v as the equilibrium point is approached. 
In the examples that you will meet the nonlinear terms 
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(u,v) will be polynomials with all terms of degree two or higher.
Let 
[image: image42.wmf].........

)

,

(

+

+

+

=

2

2

1

cv

buv

au

v

u

F


Then  
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Therefore if 
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 consists of nonlinear polynomial terms it can be neglected for small values of u and v.
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 click here for a worked example
Consider the nonlinear system 
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   Find the equilibrium points by putting 
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    2 x + y = 0

    y + x
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 = 0

The solutions of these equations are x = 0 or 2    y = 0 or 4
Therefore the equilibrium points are (0,0) and (2,4).

[image: image56.wmf]·

For the equilibrium point (0,0) no transformation is necessary as it is already at the origin and the equations remain as   
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Since the nonlinear terms are polynomials they can be neglected 
Hence the linearisation equations are  
[image: image59.wmf]y

x

x

+

-

=

2

.

&


                                                             
[image: image60.wmf]y

y

-

=

&



[image: image61.wmf]·

For the equilibrium point (2,4) use the substitution x = u + 2, y = v + 4 to move the equilibrium point to the origin.
The equations become  
[image: image62.wmf]v

u

v

u

u

+

-

=

+

+

+

-

=

2

4

)

2

(

2

&


                                      
[image: image63.wmf]2

2

4

)

2

(

)

4

(

u

v

u

u

v

v

+

-

=

+

+

+

-

=

&


Neglecting the nonlinear terms since they are polynomial gives the linearisation
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[image: image66.wmf]                                                            
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 click here for examples for you to work
For each of the following systems a) find the equilibrium points 
b)
state the transformation necessary to move the          equilibrium point to the origin
c)
find the linearisation of the system
1)  
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b) Ans. 1)   a)  (0,0)     (
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1,0)

b) For (0,0) no substitution is required

For  (1,0) substitute x = u +1,  y = v
      For (-1,0) substitute x = u –1,  y = v
c)    At (0,0) linearisation is    
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        At (
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2) a)  (1,1),  (1,-1),  (2,2),  (2,-2)

     b)  For (1,1) substitute  x = u + 1,  y = v + 1

          For(1,-1) substitute  x = u + 1,  y = v - 1
          For  (2,2)  substitute x = u + 2,  y = v + 2
          For  (2,-2)  substitute  x = u + 2,  y = v – 2
     c) At (1,1) lineaisation is 
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         At (1,-1) linearisation is  
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         At (2,2) linearisation is  
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         At (2,-2) linearisation is  
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LINEARISATION BY TAYLOR SERIES
Consider the nonlinear system 
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with equilibrium point (p,q).
Any function which is differentiable can be written as a Taylor series as follows    
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,

(

)

(

)

(

)

,

(

)

,

(

)

,

(

)

,

(

y

x

F

y

f

q

y

x

f

p

x

q

p

f

y

x

f

q

p

q

p

+

¶

¶

-

+

¶

¶

-

+

=


where F(x,y) consists of nonlinear polynomial terms in (x-p) and (y-q)

Therefore 
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If we use the change of variable u=x-p, v=y-q this will transform the equilibrium point to the origin and differentiating gives 
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. Since (p,q) is an equilibrium point  f(p,q) = g(p,q)= 0 and for  points near to the equilibrium point  (x-p) and (y-q) are small and the nonlinear terms 
[image: image91.wmf])

,

(

y

x

F

 and 
[image: image92.wmf])

,

(

y

x

G

can be neglected. Substituting in the original equations gives 
[image: image93.wmf]bv

au

u

+

=

&


                                                  
[image: image94.wmf]dv

cu

v

+

=

&

   

where 
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This can be written in the form
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 where J=
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 is called the Jacobian matrix.
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 click here for a worked example.
Consider the 
[image: image100.wmf]y

x

y

x

f

x

+

-

=

2

)

,

(

&


                     
[image: image101.wmf]2

)

,

(

x

y

y

x

g

y

+

-

=

=

&



[image: image102.wmf]·

The equilibrium points are given by         
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Solving these equations gives x=0 or 2,  y=0 or 4
Therefore the equilibrium points are (0,0) and (2,4)
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Find the Jacobian matrix
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 EMBED Equation.3  [image: image112.wmf]÷
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Therefore the linearisation at the point (0,0) is    
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Therefore the linearisation at (2,4) is  
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 click here for examples for you to work
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 EMBED Equation.3  [image: image120.wmf]
For the following examples find a) the equilibrium points  b) the Jacobian    matrix     c) the linearisation at each equilibrium point
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hint 
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Ans: Ans. 1)   a)  (0,0)     (
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c)    At (0,0) linearisation is    
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2) a)  (1,1),  (1,-1),  (2,2),  (2,-2)

b)  
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c)
At (1,1) lineaisation is 
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At (1,-1) linearisation is  
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At (2,2) linearisation is  
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At (2,-2) linearisation is  
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b) 3)  a)   (0,-1)
c) 
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d)  Linearisation is 
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3) a)  (0,0)

b) 
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c) Linearisation is 
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5) a) 
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d) b)
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e) Linearisation at 
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8)  Linearisation is 
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d)  Linearisation at (0,0) is 
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Linearisation at (-1,-1) is 
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