{VERSION 2 3 "IBM INTEL NT" "2.3" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT 256 14 "WORKED EXAMPLE" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "w ith(linalg);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 29 "Consider the nonl inear system" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "f:=-2*x+y; " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "g:=-y+x^2;" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 36 "The equilibrium points are given by " }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "solve(\{f=0,g=0\},\{x,y\}); " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 41 "The equilibrium points are( , ) and ( , )" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "a:=diff(f,x );" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "b:=diff(f,y);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "c:=diff(g,x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "d:=diff(g,y);" }}}{EXCHG {PARA 0 " " 0 "" {TEXT -1 33 "The Jacobian matrix is given by" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "J:=matrix(2,2,[a,b,c,d]);" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 9 "At (0,0) " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "a1:= subs(\{x=0,y=0\},a);" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 22 "b1:=subs(\{x=0,y=0\},b);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "c1:=subs(\{x=0,y=0\},c);" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 22 "d1:=subs(\{x=0,y=0\},d);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "J00=matrix(2,2,[a1,b1,c1,d1]);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 39 "The linearisation at (0,0) is therefore" }}{PARA 0 "" 0 "" {TEXT -1 41 " diff(u(t),t) = -2u +v" }}{PARA 0 "" 0 "" {TEXT -1 38 " diff(v(t),t) = -y" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 8 "At (2,4)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "a2:=subs( \{x=2,y=4\},a);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "b2:=subs (\{x=2,y=2\},b);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "c2:=sub s(\{x=2,y=4\},c);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "d2:=su bs(\{x=2,y=4\},d);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "J24:= matrix(2,2,[a2,b2,c2,d2]);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 49 "The linearisation at the point (2,4) is therefore" }}{PARA 0 "" 0 "" {TEXT -1 45 " diff(u(t),t) = -2u + v" }}{PARA 0 "" 0 "" {TEXT -1 44 " diff(v(t),t) = 4u - v" }}} }{MARK "1 0 0" 13 }{VIEWOPTS 1 1 0 1 1 1803 }